

Linearführungen Hauptkatalog

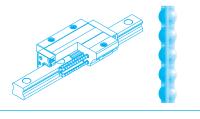
Der vorliegende Katalog wurde mit großer Gewissenhaftigkeit erstellt und auf Richtigkeit des Inhalts überprüft. Für etwaige Fehler kann keine Haftung übernommen werden.

Aus Gründen des technischen Fortschritts können die in diesem Katalog enthaltenen Angaben und technischen Daten ohne vorherige Ankündigung geändert werden.

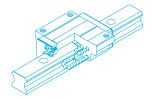
Nachdruck oder Vervielfältigung dieses Katalogs, auch auszugsweise, unabhängig davon, auf welche Art und Weise oder mit welchen Mitteln, ist nur mit ausdrücklicher schriftlicher Erlaubnis von THK gestattet.

© 2004 THK Co., Ltd. Alle Rechte vorbehalten.

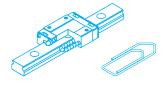
Printed in Belgium (Dezember 2004)


GRUNDLAGEN LINEARFÜHRUNGEN

Technik · Produktauswahl · Berechnung · Schmierung · Montage


LINEARFÜHRUNGEN MIT KUGELKETTE

SSR · SHS · SNR/SNS · SHW · SRS


STANDARD-LINEARFÜHRUNGEN

SR · HSR · NR/NRS · CSR · HRW · GSR · HR · NSR-TBC · HCR

MINIATURFÜHRUNGEN

 $RSR \cdot RSH \cdot MX$

LINEARACHSEN

KR · GL

GRUNDLAGEN WELLENFÜHRUNGEN

Technik · Produktauswahl · Berechnung · Schmierung · Montage

KEILWELLENFÜHRUNGEN

LBS · LBST · LBF · LBR · LBH

NUTWELLENFÜHRUNGEN

LT · LF

ROTATIONS-WELLENFÜHRUNGEN

LBG · LBGT · LTR

THK Global Network

Linearführungen mit Kugelkette

- Radialtyp mit großer Kompensation von Montageungenauigkeiten
- Größe: 15 ~ 35
- •Dyn. Tragzahl: 9,1 ~ 64,6 kN

- Linearführung mit Anschlussmaßen nach DIN 645
- Größe: 15 ~ 65
- Dyn. Tragzahl: 14,2 ~ 253 kN

- Extrem steife Linearführung
- Größe: 25 ~ 65
- Dyn. Tragzahl: 48,3 ~ 340 kN

- Breite Linearführung mit niedrigem Querschnitt
- Größe: 12 ~ 50
- •Dyn. Tragzahl: 4,3 ~ 70,2 kN

- Miniaturführung mit Kugelkette
- Größe: 9 ~ 25
- Dyn. Tragzahl: 2,7 ~ 16,5 kN

Linearführungen

- Radialtyp mit großer Kompensation von Montageungenauigkeiten
- Größe: 15 ~ 150
- •Dyn. Tragzahl: 5,39 ~ 411 kN

- Linearführung mit Anschlussmaßen nach DIN 645
- Größe: 8 ~ 150
- •Dyn. Tragzahl: 1,0 ~ 518 kN

- Extrem steife Linearführung
- Größe: 25 ~ 100
- Dyn. Tragzahl: 25,9 ~ 599 kN

- Hochpräzise Führung für Orthogonalbewegungen
- Größe: 15 ~ 45
- Dyn. Tragzahl: 8,33 ~ 80,4 kN

- Breite Linearführung mit niedrigem Querschnitt
- Größe: 12 ~ 60
- Dyn. Tragzahl: 3,29 ~ 63,8 kN

- Austauschbar und für hohe Montagetoleranzen
- Größe: 15 ~ 35
- •Dyn. Tragzahl: 4,31 ~ 25,1 kN

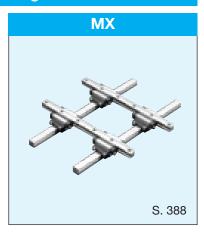
- Extrem flachbauender Typ
- Größe: 918 ~ 60125
- Dyn. Tragzahl: 1,57 ~ 141 kN

- Selbstausrichtende Linearführung
- Größe: 20 ~ 70
- Dyn. Tragzahl: 9,41 ~ 90,8 kN

- Führung für Kreis- und Bogenbewegungen
- Größe: 12 ~ 65
- •Dyn. Tragzahl: 4,7 ~ 141 kN

Zubehör

 Schmiersystem zur Verlängerung der Wartungsintervalle



 Lamellen-Kontaktabstreifer zur hermetischen Abdichtung von Linearführungen

Miniaturführungen

- Miniaturführungen für kleinste Einbauräume
- Größe: 3 ~ 20
- •Dyn. Tragzahl: 0,25 ~ 9,91 kN

- Miniaturführung für Orthogonalbewegungen
- Größe: 5 ~ 7
- Dyn. Tragzahl: 0,59 ~ 2,04 kN

Linearachsen

- Kompakt-Linearachse
- Größe: 15 ~ 65
- •Dyn. Tragzahl: 1,93 ~ 50,9 kN
- GL S. 446
- Linearachse für Hübe bis 2.700 mm
- Größe: 15 ~ 20
- Dyn. Tragzahl: 5,69 ~ 9,22 kN

Kugelkeilwellen

- Hochsteife Keilwelle für hohe Drehmomente
- Durchmesser: 15 ~ 100
- •Dyn. Tragzahl: 4,4 ~ 126 kN

Kugelnutwellen

- Hervorragende Momentsteifigkeit durch vorgespannte Mutter
- Durchmesser: 4 ~ 100
- Dyn. Tragzahl: 0,44 ~ 136,2 kN

Rotations-Wellenführungen

- Zur Übertragung hoher Drehmomente
- Durchmesser: 20 ~ 85
- Dyn. Tragzahl: 9,4 ~ 119 kN

- Nutwellenmutter mit integrierten Stützlagern
- Durchmesser: 16 ~ 60
- Dyn. Tragzahl: 7,06 ~ 73,5 kN

Weitere Linearführungen (nur im Internet)

- Hochsteifes Modell mit seitlichen Gewindebohrungen
- Größe: 15 ~ 65
- Dyn. Tragzahl: 8,33 ~ 141 kN

- Gleiche Tragzahlen in allen Hauptrichtungen
- Größe: 25 ~ 55
- Dyn. Tragzahl: 19,9 ~ 88,5 kN

- MiniaturführungGröße: 513 ~ 1025
- Dyn. Tragzahl: 54,9 ~ 215 N

Flachschienenführungen

- Preiswerte Flachschienenführung
- Größe: 2560 ~ 50110
- •Stat. Tragzahl: 0.59 ~ 1,96 kN

- Teleskopschienenführung
- Größe: 27 ~ 56
- •Stat. Tragzahl: 0,18 ~ 0,96 kN

™™ Linearführungssysteme

Seite 2	Grundlagen Linearführungen
2 3	Eigenschaften der THK-Linearführungssysteme Leichtgängige, spielfreie Bewegung
7	Einfach zu realisierende Laufgenauigkeit
9	Hohe Positioniergenauigkeit
10	Hohe Steifigkeit in allen Richtungen
11 12	Hohe Tragzahlen Gleichbleibende Präzision bei langer Lebensdauer
13	Ausgezeichnete Schnellaufeigenschaften
13	Niedrige Gesamtkosten
13	Einfache Wartung
14	Hohe Energieersparnis
16	Produktauswahl
24	Anordnung der Führungssysteme
24	Montagevarianten
29 31	Befestigungsmethoden Hauptführungsseite und Kombination der Führungsschienen
33	Gestaltung der Montagefläche
34	Kennzeichnung bei paralleler Schienenanordnung
35	Zulässige Toleranzen der Montageflächen
39	Bestimmung der Lebensdauer
39	Lebensdauer, Tragzahl und Moment
41 43	Belastungsrichtung und Tragzahl Statischer Sicherheitsfaktor
43	Lebensdauerberechnung
46	Festlegung der Einsatzbedingungen
47	Berechnung der Belastung bei Zweischienensystemen
62	Bestimmung der äquivalenten Belastung
63	Berechnung der dynamischen äquivalenten Belastung
65	Berechnungsbeispiele
74	Steifigkeit und Vorspannung
74	Radialspiel und Vorspannung
76 78	Steifigkeit Belastung und Lebensdauer bei vorgespannten Systemen
10	belastung und Lebensdauer bei vorgespannten Systemen
82	Auswahl der Genauigkeit
82	Genauigkeitsstandard
84 85	Auswahl der Genauigkeitsklassen Kompensationseffekt
86	Maschinen und empfohlene Genauigkeitsklassen
87	Berechnung der Antriebskraft
87	Verschiebewiderstand
88	Antriebskraft
88	Berechnungsbeispiel
88	Steifigkeit der Antriebskonstruktion

Seite 89 89 91 93 94 95 99 103 103 104 108 108	Schmierung THK-Schmierfette Abschmiermethoden Schmierzubehör Ölschmierung Schutzvorrichtung und Abdichtung Vorsichtsmaßnahmen und Montageanleitung Allgemeine Vorsichtsmaßnahmen Allgemeine Montageanleitung Messen der Endgenauigkeit Empfohlene Anzugsdrehmomente
109	Linearführungen mit Kugelkette
113 128 146 170 190	Linearführung SSR Linearführung SHS Linearführungen SNR/SNS Linearführung SHW Linearführung SRS
206	Standard Linearführungen
208 226 256 280 288 300 310 322 336 346 354 364	Linearführung HSR Linearführungen NR/NRS Kreuzführung CSR Linearführung HRW Linearführung GSR Linearführung GSR-R mit Zahnstange Linearführung HR Linearführung NSR-TBC Bogenführung HCR Schmiersystem QZ Kontaktabstreifer LaCS
374	Miniaturführungen
374 388 396	Miniaturführungen RSR und RSH Miniatur-Kreuzführung MX Linearachsen
396 446	Kompaktlinearachse KR Linearachse GL mit Zahnriemen oder Kugelgewindetrieb

Seite 456	Verdrehgesicherte Wellenführungen
456	Kugelkeil- und Kugelnutwellen
457	Auswahldiagramm
458	Einteilung der verdrehgesicherten Wellenführungen
462 462 463 463 464 466 467	Berechnung des Wellendurchmessers Welle bei Biegemoment Welle bei Torsionsmoment Welle bei Biege- und Torsionsmoment Steifigkeit der Welle Durchbiegung und Biegewinkel der Welle Kritische Drehzahl Flächenträgheits- und Widerstandsmomente
469 469 470 471	Lebensdauerberechnung Nominelle Lebensdauer Berechnung der nominellen Lebensdauer Äquivalenzfaktoren Beispiele zur Lebensdauerberechnung
476 476 476 477	Vorspannung Spiel in Drehrichtung Verhältnis von Vorspannung und Steifigkeit Anwendungsbedingungen und Auswahl der Vorspannung
478 478 478	Genauigkeit Genauigkeitsspezifizierung Genauigkeitsklassen
480 480 481	Schmierung und Schutzvorrichtungen Schmierung Schutzvorrichtungen
483 483 483	Montagehinweise Passung Montage
486	Checkliste für Endenhearheitung

Seite 488	Kugelkeilwellen
488 490 490 490 491 491 492 492 492	Zylindrische Mutter LBST Zylindrische Mutter LBST Flanschmutter LBF Flanschmutter LBR Blockmutter LBH Standard-Kugelkeilwellen (Lagerartikel) Massive Präzisionskeilwellen (Standardtyp) Hohle Keilwellen (Typ K) Spezialgefertigte Keilwellen Vollkeilwellen (Lagerartikel)
514	Kugelnutwellen
515 515 516 516 516 516 517	Zylindrische Mutter LT Flanschmutter LF Massive Präzisions-Nutwellen Spezialgefertigte Nutwellen Hohle Nutwellen K (dickwandig) Hohle Nutwellen N Standard-Kugelnutwellen
534	Rotations-Wellenführungen
534 544	Rotations-Keilwellenführung Typ LBG/LBGT Rotations-Nutwellenführung Typ LTR
553	Anwendungsbeispiele · Adressen · Index
554 557 558 562	Anwendungsbeispiele THK auf einen Blick Adressen Stichwortindex

Grundlagen Linearführungen

- 2 Eigenschaften der THK-Linearführungssysteme
 16 Produktauswahl
 24 Anordnung der Führungsysteme
 39 Bestimmung der Lebensdauer
- 74 Steifigkeit und Vorspannung
- 82 Auswahl der Genauigkeit
- 87 Berechnung der Arbeitskraft
- 89 Schmierung und Schutzvorrichtungen
- 103 Vorsichtsmaßnahmen und Montageanleitung

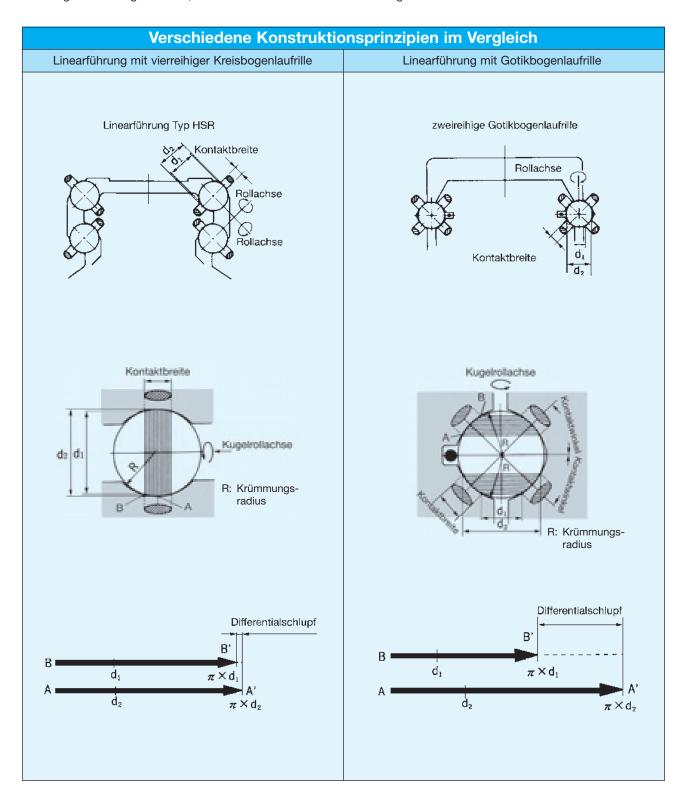
1. Eigenschaften der 冗∺К Linearführungssysteme

- 3 | Leichtgängige, spielfreie Bewegung
- 7 Einfach zu realisierende Laufgenauigkeit
- 9 Hohe Positioniergenauigkeit
- 10 Hohe Steifigkeit in allen Richtungen
- 11 Hohe Tragzahlen
- 12 Gleichbleibende Präzision bei langer Lebensdauer
- 13 Ausgezeichnete Schnellaufeigenschaften
- 13 Niedrige Gesamtkosten
- 13 Einfache Wartung
- 14 Hohe Energieersparnis

THK Linearführungen besitzen folgende Eigenschaften und Vorteile:

- 1. Leichtgängige, spielfreie Bewegung
- 2. Einfach zu erzielende Laufgenauigkeit
- 3. Hohe Positioniergenauigkeit
- 4. Steif in allen Richtungen
- 5. Hohe Tragzahlen
- 6. Hohe Präzision über einen langen Zeitraum
- 7. Ausgezeichnete Schnellaufeigenschaften

Daraus ergeben sich für den Anwender folgende Vorteile:


- Niedrige Gesamtkosten
- Hochpräzise Maschinen
- Maschinen mit hoher Produktivität
- Energieersparnis
- Geringer Konstruktionsaufwand
- Geringer Wartungsaufwand

1.1 Leichtgängige, spielfreie Bewegung

Mit dem patentierten Konstruktionsprinzip der idealen vierreihigen Kreisbogenlaufrille, das eine automatische

Selbsteinstellung ermöglicht, heben sich die '미네너 Linear-führungen von anderen Produkten ab.

Wie oben dargestellt, entsteht während einer Kugelumdrehung ein Schlupf, der sich aus der Differenz des Kugelumfangs des inneren Durchmessers $\rm d_1$ und dem Kugelumfang des äußeren Durchmesser $\rm d_2$ bildet. Dieser Schlupf wird auch als Differentialschlupf bezeichnet. Ab einer bestimmten Differenz zwischen d_1 und d_2 erfolgt der Übergang von Roll- zur Gleitreibung, mit der Folge, daß sich der Reibungskoeffizient um ein Vielfaches erhöht und der Verschiebewiderstand drastisch zunimmt.

Merkmale Kreisbogenlaufrille Merkmale Gotikbogenlaufrille Leichtgängige Bewegung Selbst unter Vorspannung oder Belastung besteht Wie in der Abbildung oben dargestellt, ist die Dif-Zwei-Punkt-Kontakt in Belastungsrichtung. Die ferenz der Kontaktflächen zwischen d₁ und d₂ zum Differentialschlupf führende Differenz zwigroß. Dadurch entsteht bei Vorspannung, bei schen d₁ und d₂ ist gering, so daß eine günstige angreifender tangentialer Belastung oder bei nicht 1 Bewegung erzielt wird. genau parallel montierten Führungsschienen ein Differentialschlupf. Dieses führt zu starker Reibung nahe dem Gleitwiderstand und einem überproportionalen Rückgang der Lebensdauer. Genauigkeit und Steifigkeit der Unterkonstruktion Aufgrund der idealen Anordnung der vier Kreis-Bei der Gotikbogenlaufrille haben die Kugeln an bogenlaufrillen und des Zwei-Punkt-Kontaktes vier Stellen Kontakt und können sich deswegen mit günstigem Kontaktwinkel sind elastische Verkaum elastisch verformen. Dadurch können Abformungen der Kugeln möglich. Gewisse Ungeweichungen der Montagefläche oder Ungenauig-2 nauigkeiten der Montageflächen können so vom keiten der montierten Schienen nicht ausgeglichen Wagen aufgenommen werden, und es wird eine werden. Aufgrund des fehlenden Kompensationsleichtgängige und gleichmäßige Bewegung vermögen sind leichtgängige Bewegungen nur zu erreicht. Deshalb ist z.B. eine steife und genaue erreichen, wenn Schienen in einer hohen Präzisionsklasse auf steifen und genau bearbeiteten Un-Unterkonstruktion bei Zuführeinrichtungen nicht unbedingt erforderlich. terkonstruktionen ausgerichtet werden. Steifigkeit Aufgrund des Zwei-Punkt-Kontaktes kann für Wie oben erwähnt, kann wegen des möglichen 3 eine hohe Steifigkeit eine genügend hohe Differentialschlupfes keine genügend hohe Vor-Vorspannung angebracht werden, ohne daß der spannung zur Steifigkeitsverbesserung aufgebracht Verschiebewiderstand ansteigt. werden. **Unterschiedliche Steifigkeit** Die beiden Steifigkeitsdiagramme zeigen, daß die Steifigkeit im wesentlichen von der Schmiegung und der Vorspannung abhängt. Steitigkeit in Abhängigkeit der Schmiegung Einfederung beim Typ HSR30 60 10 Nullspiel Kugeldurchmesser (mm) Einfederung (µm) (Steifigkeit) 40 6 4 20 2 0 6 Я 10 10 20 $(N/\mu m)$ (kN) Steifigkeit (N/µm) Belastung (kN) Zusammenhang zwischen Schmiegung und Zusammenhang zwischen Vorspannung und Steifigkeit. Steifigkeit. Tragzahlen Hohe Tragzahlen werden durch eine Schmiegung Die Schmiegung der Gotikbogenlaufrille muß 56-5 der Kugellaufbahnen erzielt, die 52-53% des 60% des Kugeldurchmessers betragen. Dies verringert die Tragfähigkeit um 50% gegenüber der Kugeldurchmessers entspricht. Kreisbogenlaufrille. **Unterschiedliche Lebensdauer** 6 Durch die im Vergleich zur Kreisbogenlaufrille um ca. 50% verringerte Tragfähigkeit der Gotikbogenlaufrille beträgt deren Lebensdauer nur ca. 12,5% der Kreisbogenlaufrille.

Messwerte für Montageflächentoleranz und Rollwiderstand

Die Unterschiede in der Kontaktstruktur kommen im Rollwiderstand zum Ausdruck.

Wird ein System mit Gotikbogenlaufrille vorgespannt, um das Spiel zu beseitigen, oder wird die Montage nicht sehr sorgfältig durchgeführt, haben die Kugeln Vier-Punkt-Kontakt. Es kommt zum Differentialschlupf, bzw. der Stick-Slip-Effekt tritt auf. Weiterhin nimmt mit einem Ansteigen des Rollwiderstands die Lebensdauer drastisch ab.

Dazu werden Linearführungen mit vierreihiger Anordnung der Kreisbogenlaufrille und vergleichbare Führungen mit zweireihiger Anordnung der Gotikbogenlaufrille miteinander verglichen:

Prüfmuster:

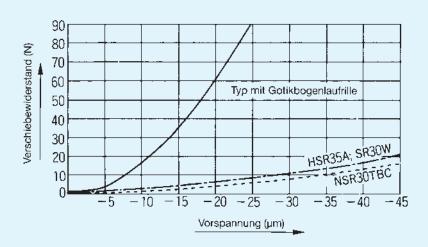
① Linearführungen

SR30W (selbsteinstellender Typ) 2 Stück

HSR35A (aus vier Richtungen

gleich belastbar) 2 Stück

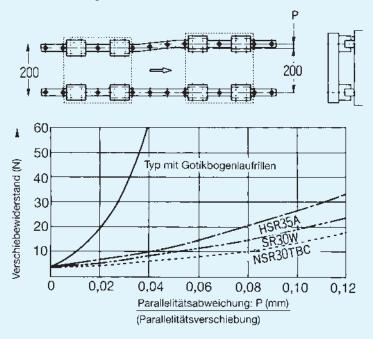
NSR30TBC (selbstausrichtender Typ) 2 Stück


② Linearführungssystem mit zwei Gotikbogenlaufrillen; in den Abmessungen vergleichbar mit dem Typ HSR30

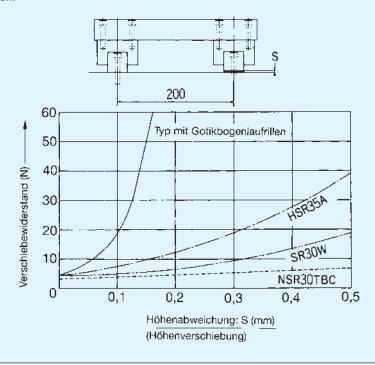
Radialspiel: ±0 µm (Vorspannungsklasse: Normal),

ohne Dichtungen und Schmierung Belastung: Tischgewicht 30 kg

Messergebnis 1: Vorspannung und Rollwiderstand


Durch Austauschen der Kugeln wurde eine Vorspannung angebracht. Bei dem Linearführungssystem mit Gotikbogenlaufrillen zeigt sich eine erhebliche Zunahme des Rollwiderstands bei gleichzeitigem Auftreten von Differentialschlupf. Im Gegensatz dazu nimmt der Rollwiderstand bei der Kompaktführung mit Zwei-Punkt-Kontakt aufgrund der elastischen Verformung der Kugeln kaum zu.

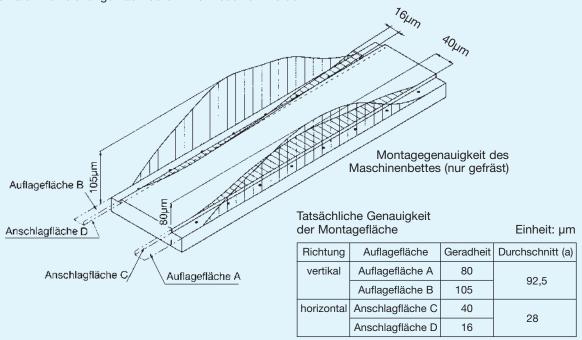
Messergebnis 2: Verschiebewiderstand bei Parallelitätsabweichung

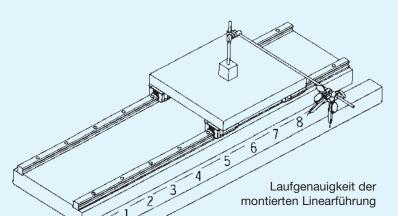

Zwei parallel montierte Führungsschienen werden, wie unten gezeigt, an einer bestimmten Stelle leicht voneinander versetzt. Dann wird im Bereich der Parallelitätsabweichung der Verschiebewiderstand gemessen. Das Ergebnis ist bei den Führungsschienen mit Gotikbogenlaufrillen ein Verschiebewiderstand von 34 N bei 0,03 mm Parallelitätsabweichung und von 62 N bei 0,04 mm Abweichung. Diese Werte entsprechen etwa dem Verschiebewiderstand einer Gleitführung.

Messergebnis 3: Verschiebewiderstand bei Höhenabweichung

Zwischen zwei Führungsschienen wird durch Unterlegen eines Klebestreifens unter einer Schiene bewußt eine Höhenabweichung hergestellt. Danach wird der Verschiebewiderstand gemessen.

Bei einer Höhenabweichung der beiden parallel verlegten Führungsschienen wirkt ein Moment auf die montierten Führungswagen, mit der Folge, daß beim Typ mit den Gotikbogenlaufrillen der Stick-Slip-Effekt auftritt. Dagegen können Kompaktführungen Höhenabweichungen bis zu 0,3/200 mm durch die elastisch Verformung der Kugeln aufnehmen.

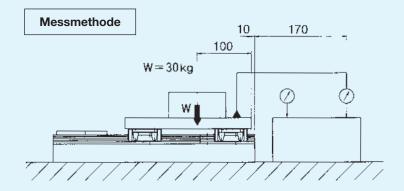

1.2 Einfach zu realisierende Laufgenauigkeit


Linearführungen von THK gewährleisten auch auf relativ ungenau bearbeiteten Montageflächen eine hohe Laufgenauigkeit bei langer Lebensdauer und Leicht-

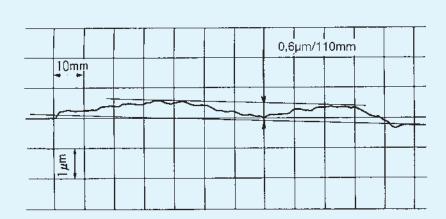
gängigkeit. Dies wird mittels der Kompensation von Montagefehlern durch die elastische Verformung der Kugeln erreicht.

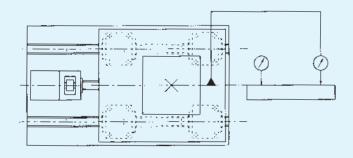
Montagebeispiel

Ein Vergleich der Genauigkeit der Montagefläche (a) und der Laufgenauigkeit (b) zeigt, daß die vertikalen und horizontalen Abweichungen auf 1/6 bzw. 1/7 reduziert werden.


Tatsächliche Laufgenauigkeit des Tisches (Messmethode s.o.) Einheit: µm

Messpunkt Richtung	1	2	3	4	5	6	7	8	Genauigkeit (b)
vertikal	0	+2	+8	+13	+15	+9	+5	0	15
horizontal	0	+1	+2	+3	+2	+2	-1	0	4


Die gemessenen Werte zeigen, dass durch den Einsatz der THK Linearführung auf einer geschruppten Montagefläche die Laufgenauigkeit des Tisches vertikal auf ca. 1/6 von 92,5 μ m auf 15 μ m und horizontal auf ca. 1/7 von 28 μ m auf 4 μ m verbessert wurde.



Tatsächliche Laufgenauigkeit eines einachsigen Tisches

Genauiakeit in M_A -Richtung

Genauigkeit in M_B-Richtung

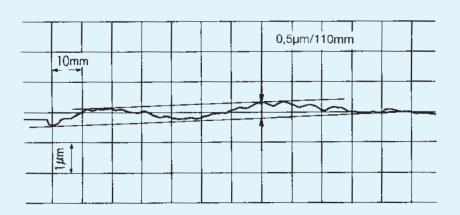
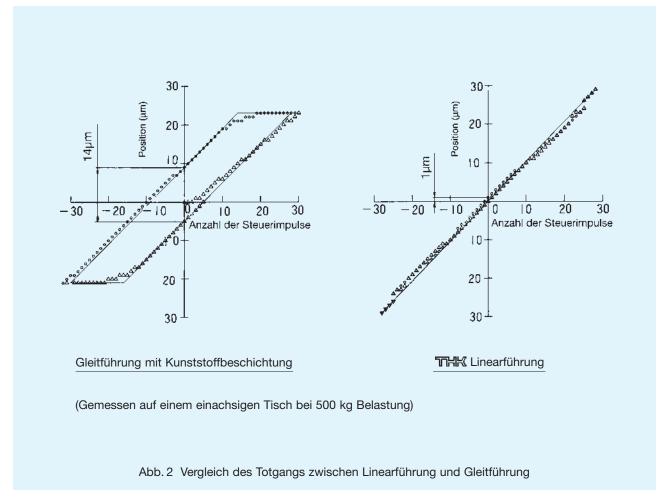



Abb.1 Laufgenauigkeit bei einem einachsigen Tisch

1.3 Hohe Positioniergenauigkeit

Aufgrund des Konstruktionsprinzips der wälzgelagerten Führung entspricht die Anfahrreibung der Linearführung annähernd der Verfahrreibung. Es tritt nur sehr wenig Totgang und Steuerungsverlust auf.

Tab.1 Totgang Einheit: µm

Prüfmethode		nach JIS B 6330			Methode der min.
Тур	Spiel	10 mm/min	500 mm/min	4000 mm/min	Inkrementeingabe
Gleitführung mit	0,02 mm	10,7	15,0	14,1	14,0
Kunststoffbeschichtung	0,005 mm	8,7	13,1	12,1	13,0
Linearführung	C1-Vorspannung ¹⁾	2,3	5,3	3,9	0
(HSR45)	C0-Vorspannung ¹⁾	3,6	4,4	3,1	1,0

¹⁾ Vorspannungsklasse der Linearführung Einheit: μm

Baugröße	C1	C0
HSR 45	-25 ~ -10	-40 ~ -25

1.4 Hohe Steifigkeit in allen Richtungen

Linearführungen sind in radialer, gegenradialer und tangentialer Richtung belastbar. Weiterhin kann aufgrund des Konstruktionsprinzips mit der Kreisbogenlaufrille eine Vorspannung für eine verbesserte Steifigkeit aufgebracht werden.

 Vergleich der statischen Steifigkeit zwischen einer Spindel, einem Kugelgewindetrieb und einer Linearführung Typ HSR bei einem vertikalen Bearbeitungszentrum und einer Spindel mit 7,5 kW Antriebsleistung.

Linearführung : HSR45LB C0-Vorspannung

(C0-Vorspannung: 8% der dynami-

schen Tragzahl)

Kugelgewindetrieb: BNFN4010-5 G0-Vorspannung

(G0-Vorspannung: 5% der dynami-

schen Tragzahl)

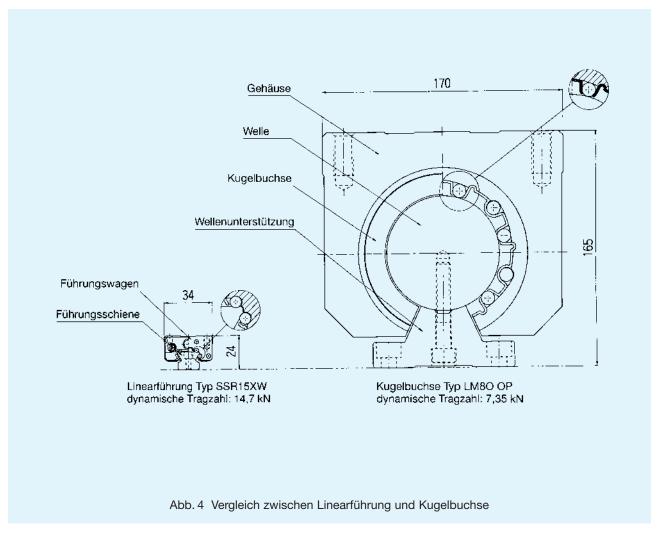
Spindel : allgem. Spindel für

Maschineneinsatz

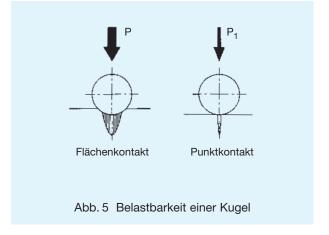
Tab. 2 Vergleich der statischen Steifigkeit Einheit: N/µm

Bauteil	in X-Achse	in Y-Achse	in Z-Achse
Linearführung	_	2800	6600 (radial) 4300 (gegenrad.)
Kugelgewindetrieb	330	_	_
Spindel	250	250	280

Anm.: Die Steifigkeit der Wellenendenlagerung ist in der Steifigkeit der Antriebsspindel mit eingeschlossen.

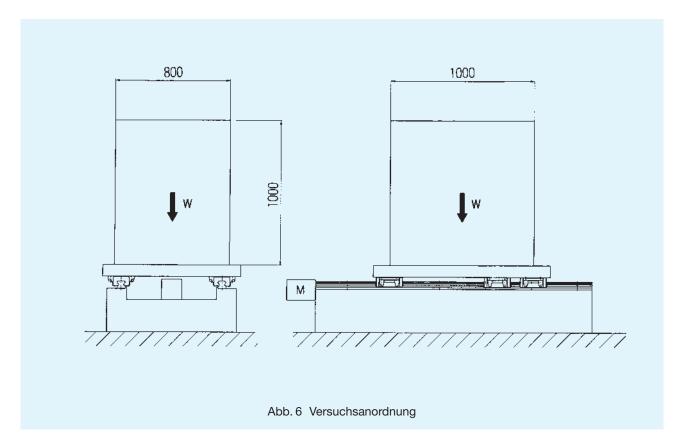

Das angeführte Beispiel zeigt, dass die Steifigkeit des Führungssystems durch Verwendung einer Linearführung weitaus größer ist als die Steifigkeit des Kugelgewindetriebs oder der Spindel.

1.5 Hohe Tragzahlen


Bei Linearführungen ist die Schmiegung der Laufrille fast identisch mit dem Kugeldurchmesser. Aufgrund dieses Konstruktionsmerkmals ist der Unterschied z.B. zu einem Führungssystem mit Kugelbuchsen beträchtlich. In Abb.4 sind eine Linearführung und eine Kugelbuchse mit ungefähr gleichen Tragzahlen im Querschnitt dargestellt. Das Beispiel zeigt, daß aufgrund der wesentlich geringeren Bauhöhe der Kompaktführung weitaus kompaktere Konstruktionen realisiert werden können.

Dazu verdeutlicht Tabelle 3 anhand der zulässigen Belastbarkeit einer Kugel, daß der Flächenkontakt beim Kreisbogenkontakt im Vergleich zum Punktkontakt der Kugel eine um den Faktor 13 höhere zulässige Belastung ermöglicht. Da die Lebensdauer in der 3. Potenz von der Belastung abhängt, ist die Lebensdauer um den Faktor 2.200 höher.

Tab. 3 Belastbarkeit einer Kugel (P), (P₁) Zulässige Flächenpressung 4.200 MPa


Kugeldurchmesser	Flächenkontakt P	Punktkontakt P ₁	P/P ₁
ø 3,175 (1/8")	0,9 kN	0,07 kN	13
ø 4,763 (3/16")	2,03 kN	0,16 kN	13
ø 6,350 (1/4")	3,61 kN	0,28 kN	13
ø 7,938 (5/16")	5,64 kN	0,44 kN	13
ø 11,906 (15/32")	12,68 kN	0,98 kN	13

1.6 Gleichbleibende Präzision bei langer Lebensdauer

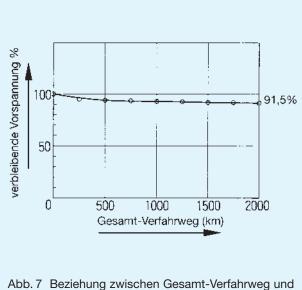
Aufgrund der idealen Rollbewegung tritt bei THK Linearführungen kaum Verschleiß auf, somit bleibt die hohe Präzision über einen langen Zeitraum erhalten. Abb. 6 zeigt eine Versuchsanordnung, bei der eine vorgespannte Führung unter Einwirkung einer Belastung noch nach 2.000 km Verfahrweg über 90% der ursprünglich angebrachten Vorspannung aufweist.

Prüfmethode

Linearführung : HSR65LA3SSC0 + 2565LP - II

Vorspannung : C0 (15,7 kN) Hublänge : 1.050 mm Geschwindigkeit (max.): 15 m/min

(jeweils 5 s Stop am Hubende)


Beschleunigungszeit :300 ms

(Beschleunigung: $a = 0.833 \text{ m/s}^2$)

Gewicht : 6.000 kg

Antrieb : Kugelgewindetrieb : Lithiumseifenfett Nr. 2 Schmierung

(alle 100 km nachgeschmiert)

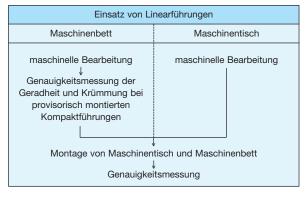
verbleibender Vorspannung

1.7 Ausgezeichnete Schnelllaufeigenschaften

TH出 Linearführungen besitzen ausgezeichnete Schnelllaufeigenschaften. Hoher Verschleiß, wie er bei Gleitführungen vorkommt, tritt nicht auf. Tabelle 4 zeigt einige Beispiele für Anwendungen mit hoher Geschwindigkeit.

Tab. 4 Beispiele für Anwendungen mit hoher Geschwindigkeit

Anwendung	Einsatzbereich	Geschwindigkeit (m/s)	™∺ KLinearführungen	
Haltbarkeits-Prüfmaschine	X-Achse	5,0	SSR25W	
Entnahmeroboter	X-Achse	2,0	SSR25W	
Entriarimeropoter	Z-Achse	3,0	SSR15W	
Spritzgußmaschiene	automatische	2,2	HSR30LR	
Spritzgubrilaschiene	Entnahmeeinrichtung	2,2		
Glasschneidemaschine	Schneidewerkzeugführung	3,7	HSR25B	
Prüfeinrichtung	Bestücker	5,0	HRW27CA	
Transportroboter	Werkstücktransport	4,2	HSR25R	
XY-Tisch	X- und Y-Achse	2,3	RSR15WV	


1.8 Niedrige Gesamtkosten

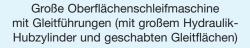
Gegenüber Gleitführungen werden bei Einsatz von Linearführungen die Arbeitsschritte zur Erstellung von Maschinen und Anlagen verringert. Zusätzlich werden die Arbeitskosten gesenkt, da für Montage und Ausrichtung weniger gelernte Fachkräfte benötigt werden. Hierzu werden in einem Beispiel die Arbeitschritte zur Herstellung eines Bearbeitungszentrums beim Einsatz von Gleitführungen mit

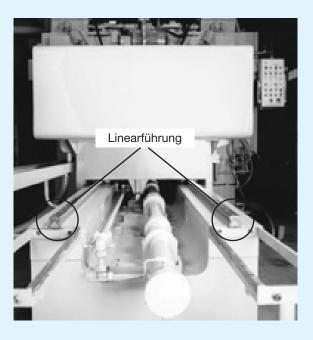
denen beim Einsatz von Linearführungen verglichen. Wird eine hohe Laufgenauigkeit nicht unbedingt gefordert, können die Linearführungen direkt auf die grob bearbeitete Fläche montiert werden. Dort, wo normalerweise ein Planschliff erforderlich ist, reicht einfaches Fräsen. Somit werden Arbeitsschritte und Kosten gespart.

1.9 Einfache Wartung

THK Linearführungen sind im Gegensatz zu Gleitführungen verschleißarm, so dass eine Nachbearbeitung der Laufbahnen oder eine Nachjustierung der Genauigkeit entfällt. Weiterhin muss die Gleitführung mit einer größeren Menge Öl zwangsgeschmiert werden, damit ein ausreichend dicker Ölfilm auf den Gleitflächen bestehenbleibt. Dagegen benötigt die THK Linearführung kleinere Mengen an Fett in bestimmten Intervallen. Dies trägt wesentlich dazu bei, den Wartungsaufwand zu minimieren und die Arbeitsbedingungen zu verbessern.

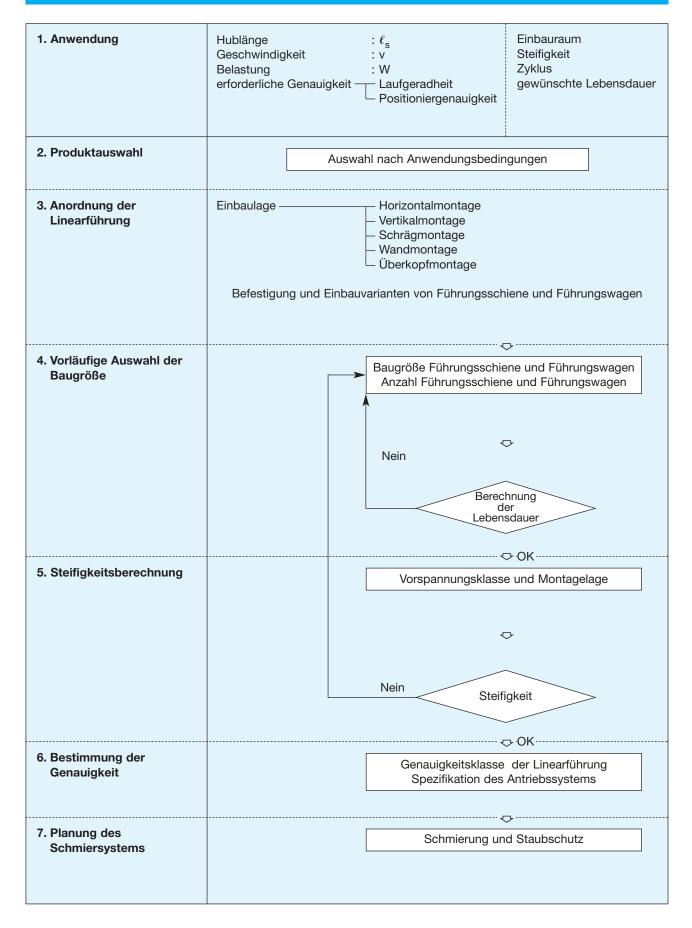
1.10 Hohe Energieersparnis


Praxistest: Energieverbrauch


In der Tabelle 5 sind die Vergleichswerte für den Energieverbrauch einer großen Oberflächenschleifmaschine angegeben. Die Maschine ist bei THK im Einsatz.

Große Oberflächenschleifmaschine mit Linearführung (mit kleinem Hydraulikzylinder) Typ NSR50TBC6UU + 1200LSP im Paralleleinsatz

Abb. 8 Vergleich zwischen Linearführung und Gleitführung



Tab. 5 Technische Daten von Gleitführung und Linearführung

	Maschinenausführung				
Тур	einachsige Oberflächenschleifmaschine (Gleitsystem) dreiachsige Oberflächenschleifmaschine (kugelgel. Syst				
Gesamtlänge/-breite	13 m x 3,2 m 12,6 m x 2,6 m				
Gesamtgewicht	17 t	16 t			
Tischgewicht	5 t	5 t			
Schleiffläche	0,7 m x 5 m	0,7 m x 5 m			
Tischführung	Gleitsystem mit Prismenführung wälzgelagertes System mit Kompaktführung				
Anzahl Schleifachsen	1 (5,5 kW) 3 Achsen (5,5 kW + 2 x 3,7 kW) Die Schleifkapazität ist hier dreimal höher als bei der anderen Maschine.				
	Tischausführung F				
Motor	38,05 kW	3,7 kW	10,3		
Hydraulikantrieb	Innendurchmesser 160 mm x 1,2 MPa	Innendurchmesser 65 mm x 0,7 MPa	_		
Antriebskraft	23.600 N	2.270 N	10,4		
Stromverbrauch	38 kWh	3,7 kWh	10,3		
Hydraulikölverbrauch	400 ℓ/Jahr	250 ℓ/Jahr	1,6		
Schmierstoffverbrauch	60 ℓ/Jahr	3,6 ℓ/Jahr (Fett)	16,7		

2. Produktauswahl

Durch langjährige Erfahrungen in vielfältigen Einsatzbereichen kann THK anwendungsspezifisches Know-how bereits in die Herstellung von Linearführungen einbringen. Aufgrunddessen sind Linearführungen in vielen opti-

malen Ausführungen und Abmessungen standardisiert. Bei einfacher Schraubenmontage gewährleisten Linearführungen so spielfreie Bewegungen bei hoher Laufgenauigkeit.

	Linearführung mit integrierter Kugelkette					
Typ	Selbsteinstellender Typ Standardtyp					
Baureihe			SHS-C SHS-LC	SHS-V SHS-LV		
Form und Einbaurichtung						
Pfeildiagramm zur Belastbarkeit	→ §	3-	↓ → ↑			
Besonderheiten	Typ für radiale Belastung Neue Führungsgeneration mit integrierter Kugelkette Äußerst niedrige Geräuschentwicklung		 Typ mit weltweit standardisierten Abmessungen Hervorragendes Kompensationsvermögen von Montageungenauigkeiten Neue Führungsgeneration mit integrierter Kugelkette Gleiche Tragzahlen in allen Hauptrichtungen Äußerst niedrige Geräuschentwicklung Langzeitwartungsfrei Hochsteifer Typ mit hohen Tragzahlen 			
Hauptanwendungsgebiete	Transporteinrichtungen IC-Bestückungsgeräte Leiterplatten-Bestückungsautomaten medizinische Geräte Messinstrumente JD-Messeinrichtungen Prüfgeräte Verpackungsmaschinen Montageroboter Industrieroboter Kartesische Koordinatenroboter Entnahmeroboter Transport- und Zuführeinrichtungen Transfermaschinen		Bearbeitungszentren XYZ-Achsen von schweren Z Schnittachse in Schleifmasch hochgenaue Anwendungen b fünfachsige Portal-Bearbeitun Drahterodiermaschinen Nahrungsmittelmaschinen NC-Drehmaschinen Z-Achse von Erodiermaschin automatische Parktürme automatische Werkzeugwech Baumaschinen NC-Fräsmaschinen Portal-Fräsmaschinen Prüfeinrichtungen Leiterplatten-Bohrmaschinen	ninen bei einwirkenden Momenten ngszentren en		

	Linearführung mit integrierter Kugelkette				
Typ		Miniaturführung			
	Standardtyp Br		Breiter Führungswagen		
Baureihe	SHS-R SHS-LR	SNR/SNS-R SNR/SNS-LR	SNR/SNS-C SNR/SNS-LC	SHW-CA SHW-CR	SRS
Form und Einbaurichtung					
Pfeildiagramm zur Belastbarkeit	↓ → ↑	→ (*	} ←	↓ → ↑	↓ → ⊕ ← ↑
Besonderheiten	Typ mit weltweit standardisierten Abmessungen Hervorragendes Kompensationsvermögen von Montageungenauigkeiten Neue Führungsgeneration mit integrierter Kugelkette Gleiche Tragzahlen in allen Hauptrichtungen Äußerst niedrige Geräuschentwicklung Langzeitwartungsfrei Hochsteifer Typ mit hohen Tragzahlen	Neue Führungsgeneration mit integrierter Kugelkette Langzeitwartungsfrei Äußerst niedrige Geräuschentwicklung Optimal für Werkzeugmaschinen Hervorragende Dämpfungseigenschaften Äußerst hohe Steifigkeit in allen Richtungen Sehr kompakte und massive Bauweise		 Die breite Schiene ist für hohe Momente und Einzelschienen-anordnung ausgelegt. Hochsteifer Typ mit äußerst niedriger Bauhöhe. Die Schienen besitzen eine Doppelreihe von Bohrungen. 	Standardausführungen aus korrosionsbeständigem Stahl lieferbar
Hauptanwendungsgebiete	Bearbeitungszentren XYZ-Achsen von schweren Zerspanungsmaschinen Schnittachse in Schleifmaschinen hochgenaue Anwendungen bei einwirkenden Momenten fünfachsige PortalBearbeitungszentren Drahterodiermaschinen Nahrungsmittelmaschinen NC-Drehmaschinen Z-Achse von Erodiermaschinen automatische Parktürme automatische Werkzeugwechsler Baumaschinen NC-Fräsmaschinen NC-Fräsmaschinen Portal-Fräsmaschinen Prüfeinrichtungen LeiterplattenBohrmaschinen	Werkzeugmaschinen allgemein Bearbeitungszentren NC-Drehmaschinen Fräsmaschinen Fünfflächen-Bearbeitungszentren Schleifmaschinen Planschleifmaschinentische Spritzgußmaschinen Holzbearbeitungsmaschinen		Z-Achsen von Leiterplatten-Bohrmaschinen Z-Achsen von kompakten Erodiermaschinen Bestücker Bearbeitungszentren NC-Drehmaschinen Roboter Draht-Erodiermaschinen automatische Werkstückwechsler Halbleiter-Produktionsanlagen Produktionsgeräte Messmaschinen Wafer-Zuführeinrichtungen Baugeräte Eisenbahnwaggons	Präzisionstische Montageroboter Zuführeinrichtungen Draht- Erodiermaschinen Werkzeugwechsler Holzbearbeitungs- maschinen Zoomobjektive

	mit integrierter Kugelkette	Hochsteifer Typ	Typ mit gleichen Tragzahlen in allen Hauptrichtungen				
Typ	Miniaturführung	Hochsteifer Typ für radiale Belastung Selbsteins		stellender Typ			
-		Standardtyp					
Baureihe	SRS-W	SR-W SR-V	SR-TB SR-SB	HSR-A HSR-LA	HSR-CA HSR-HA	HSR-B HSR-LB	HSR-CB HSR-HB
Form und Einbaurichtung					* ***		
Pfeildiagramm zur Belastbarkeit	↓ → □ ← ↑	↓ ↑		↓ → ← ↑			
Besonderheiten	Superflache und -breite Schienen-ausführung für Einschienen-Konstruktionen Ersetzt parallele Kugelbuchseneinheit	Kompakter Typ, flach bauend, optimal für Radialbelastung Ausgezeichnete Laufgenauigkeit auf ebenen Flächen Gute Fähigkeiten der Fehlerkompensation bei ungenauen Montageflächen Standardausführungen aus korrosionsbeständigem Stahl lieferbar		 Hochsteifer Typ mit hohen Tragzahlen durch verstärkten Wagen und Schiene Gleiche Tragzahlen in allen Hauptrichtungen und hohe Steifigkeit Optimaler Kugelkontaktwinkel für gute Vorspannmöglichkeit Guter Ausgleich von Montagefehlern durch Zwei-Punkt-Kontakt in X-Anordnung Standardausführungen aus korrosionsbeständigem Stahl lieferbar 			
Hauptanwendungsgebiete	XY-Achsen von Maschinen Schweißmaschinen und -roboter alle Arten von Zuführeinrichtungen Lackierautomaten Roboter-Fahrachsen automatische Garagen und Parkhäuser Palettenwechsler	Tische von Oberflächenschleifmaschinen Tische von Werkzeugschleifmaschinen XY-Achsen von Erodiermaschinen Leiterplatten-Bohrmaschinen Halbleiter-Bestückungsmaschinen schnellaufende Beförderungseinrichtungen Roboter-Fahrachsen Bearbeitungszentren und NC-Drehmaschinen Tische von fünfachsigen Bearbeitungszentren und Zuführeinrichtungen Prüfeinrichtungen von Führungsgerüsten an Pressen Testeinrichtungen medizinische Einrichtungen Verpackungsmaschinen Holzbearbeitungsmaschinen Nahrungsmittelmaschinen 3D-Messmaschinen Spritzgußmaschinen Ultrapräzisionstische		XYZ-Achs Zerspanur Schnittacl hochgena Momenter fünfachsig Drahterod Nahrungs NC-Drehn Z-Achse V automatis Baumascl NC-Fräsm Türen von Portal-Frä Prüfeinricl	ge Portal-Bea liermaschiner mittelmaschir naschinen von Erodierma che Parktürm che Werkzeu hinen naschinen i Eisenbahnw ismaschinen	n maschinen ngen bei einv rbeitungszen n nen aschinen ne gwechsler aggons	

	Gleichen Tragzahlen	Но	chsteifer und massiver	Typ	Gleichen Tragzahlen
Γγ					Gloloffett fragzanieri
		Standardtyp			Kreuzführung
Baureihe	HSR-R HSR-LR	NR-R NR-LR	NR-A NR-LA	NR-B NR-LB	CSR
Form und Einbaurichtung					
Pfeildiagramm zur Belastbarkeit	↓ ←		↓ → □ ←		↓ → ;; ← ↑
Besonderheiten	Hochsteifer Typ mit hohen Tragzahlen durch verstärkten Wagen und Schiene Gleiche Tragzahlen in allen Hauptrichtungen und hohe Steifigkeit Optimaler Kugelkontaktwinkel für gute Vorspannmöglichkeit Guter Ausgleich von Montagefehlern durch Zwei-Punkt-Kontakt in X-Anordnung Standardausführungen aus korrosionsbeständigem Stahl lieferbar	 Optimal für Werkzeugmaschinen Führungstyp mit höchsten statischen Tragzahlen Hervorragende Dämpfungseigenschaften Äußerst hohe Steifigkeit in allen Richtungen Sehr kompakte und massive Bauweise 			Im Wagen befinden sich zwei um 90° versetzte Schienen-Laufbahnen für XY-Achseneinheiten. XY-Konstruktion ohne Zwischenplatte, dadurch einfachere und kompaktere Konstruktionen
Hauptanwendungsgebiete	Bearbeitungszentren XYZ-Achsen von schweren Zerspanungsmaschinen Schnittachse in Schleifmaschinen fünfachsige PortalBearbeitungszentren Drahterodiermaschinen Nahrungsmittelmaschinen NC-Drehmaschinen Z-Achse von Erodiermaschinen automatische Parktürme automatische Werkzeugwechsler Baumaschinen NC-Fräsmaschinen Türen von Eisenbahnwaggons Portal-Fräsmaschinen Prüfeinrichtungen LeiterplattenBohrmaschinen	 Earbeitungszentren NC-Drehmaschinen Schnittachse in Schnittachse in Schleifmaschinen Fräsmaschinen Fünfflächen-Bearbeitungszentren Schleifmaschinen Fünfflächen-Bearbeitungszentren Schleifmaschinen Planschleifmaschinen Planschleifmaschinen Planschleifmaschinen Planschleifmaschinen Holzbearbeitungsmaschinen Holzbearbeitungsmaschinen Türen von Eisenbahnwaggons Portal-Fräsmaschinen Präsmaschinen Fräsmaschinen Fräsmaschinen Fräsmaschinen Fräsmaschinen Fräsmaschinen Fräsmaschinen Holzbearbeitungsmaschinen Holzbearbeit		XY-Präzisionstisch mit niedrigem Schwerpunkt NC-Drehmaschine Optische Messmaschinen Prüfgeräte Klebeeinrichtung Kreuzachsenroboter Draht- und Funkenerodiermaschinen Hohltische LeiterplattenBestückungsgeräte Werkzeugmaschinentisch XY-Achse von horizontalem Bearbeitungszentrum	

			0	5 " "	
d	Gleiche Tragzahlen	Selbsteinstellender	Gleichen Tragzahlen	Radialtyp	D ("I
Typ		und austauschbarer Typ	Selbsteinstellender Typ	Selbsteinstellender Typ	Bogenführung
	Breiter Führungswagen	.,,,,	Flache Linearführung		
Baureihe	HRW-CA HRW-CR	GSR	HR	NSR-TBC	HCR
Form und Einbaurichtung					
Pfeildiagramm zur Belastbarkeit	↓ → ↑	↓ →## #-	↓ → \$□ □ ← ↑	+ + +	↓ ← ↑
Besonderheiten	Die breite Schiene ist für hohe Momente und Einzelschienen-anordnung ausgelegt. Hochsteifer Typ mit äußerst niedriger Bauhöhe. Die Schienen besitzen eine Doppelreihe von Bohrungen.	Schiene und Wagen sind austauschbar. Vorspannung ist einstellbar. Der spezielle zweireihige Kontakt ermöglicht den Ausgleich von Höhenabweichungen und Parallelitätsfehlern.	Niedriges Profil, hochsteife Ausführung für begrenzten Einbauraum Ersatz für Kreuzrollenführungen	Montagefehler oder grobbearbeitete Montagefehler können durch die Selbstausrichtung des Wagens ausgeglichen werden. Aufbringung einer Vorspannung ist möglich. Montage auch auf unbearbeitetem Stahl möglich	Führungssystem für Kreis- und Bogenbewegungen Kreisbewegungen mit Durchmessern von über 5 m sind einfach realisierbar. Einfache Montage
Hauptanwendungsgebiete	Z-Achsen von Leiterplatten-Bohrmaschinen Z-Achsen von kompakten Erodiermaschinen Bestücker Bearbeitungszentren NC-Drehmaschinen Roboter Draht-Erodiermaschinen automatische Werkstückwechsler Halbleiter-Produktionsanlagen Produktionsgeräte Messmaschinen Wafer-Zuführeinrichtungen Baugeräte Eisenbahnwaggons	Industrieroboter diverse Transport- einrichtungen automatische Lagerhäuser Palettenwechsler automatische Werkzeugwechsler Türöffner kolbenstangenloser Zylinder Linearachse mit Aluprofil Schweißanlagen Lackierautomaten Autowaschstraßen	XYZ-Achsen von Erodiermaschinen Präzisionstische XZ-Achsen von NC-Drehmaschinen Montageroboter Zuführeinrichtungen Bearbeitungszentren Draht-Erodiermaschinen Werkzeugwechsler Holzbearbeitungs-maschinen	XY-Achsen von Maschinen Schweißmaschinen und -roboter alle Arten von Zuführeinrichtungen Lackierautomaten Roboter-Fahrachsen automatische Garagen und Parkhäuser Palettenwechsler	Optische Messvorrichtungen Werkzeug- schleifmaschinen Medizinische Geräte Röntgenapparate CT-Scanner Liegen Bühnen automatische Parktürme Vergnügungsgeräte Werkzeugwechsler Drehtische Neige-Einrichtungen für Scheren- Stromabnehmer Schwingungsdämpfer

Тур	Miniatu	führung	Kompaktlinearachse mit integriertem Kugelgewindetrieb	Linearachse mit Kugelgewinde- trieb/Zahnriemen	
Baureihe	RSR RSR-W		KR	GL	
Form und Einbaurichtung					
Pfeildiagramm zur Belastbarkeit	→ €	←	↓ → <u>•</u> •	→ s _n . → s _n . ←	
Besonderheiten	Kleinste Linearführung Standardausführungen aus korrosionsbeständigem Stahl lieferbar Typ RSH mit Kugelkäfig	Superflache und -breite Schienen-ausführung für Einschienen-Konstruktionen Ersetzt parallele Kugelbuchseneinheit Typ RSH-W mit Kugelkäfig	Raumsparendes Modell mit integrier- tem Kugelgewinde- trieb und Führung Hochsteif Hochpräzise Einfache Montage einer kompletten Achse	Raumsparendes Modell mit integrier- tem Kugelgewinde- trieb oder Zahnriemen Einfache Montage einer kompletten Achse	
Hauptanwendungsgebiete	Präzisionstische Montageroboter Zuführeinrichtungen Draht- Erodiermaschinen Werkzeugwechsler Holzbearbeitungs- maschinen Zoomobjektive	XY-Achsen von Maschinen Schweißmaschinen und -roboter alle Arten von Zuführeinrichtungen Lackierautomaten Roboter-Fahrachsen automatische Garagen und Parkhäuser Palettenwechsler	XYZ-Achsen von verschiedenen Robotern Messmaschinen Erodiermaschinen Zuführeinrichtungen Draht-Erodiermaschine Spulenwickler XY-Tische Wafer-Transporteinrichtungen Druckmaschinen IC-Bestücker Prüfeinrichtungen	Erodiermaschinen Zuführeinrichtungen Spulenwickler Wafer-Transporteinrichtungen Druckmaschinen IC-Bestücker Prüfeinrichtungen	

Typ	Kugelnutwelle	Kugelkeilwelle
Baureihe	LBS	LT
Form und Einbaurichtung		
Pfeildiagramm zur Belastbarkeit		
Besonderheiten	hohe Drehmoment-aufnahme geeignet zur Übertragung von Drehmomenten oder einer Kombination von Drehmoment und Radiallast Winkelspielfrei Mit Kugelkäfig	hohe radiale Tragzah- len geeignet zur Übertra- gung von Drehmo- menten oder einer Kombination von Drehmoment und Radiallast Winkelspielfrei Mit Kugelkäfig ab Baugröße LT6
Hauptanwendungsgebiete	Z-Achse von Montagerobotern automatische Bestücker Zuführeinrichtungen Spulenwickel-maschinen Antriebsspindel von Schleifmaschinen Steuermechanismus bei Baugeräten automatische Werkzeugwechsler Zentrifugen	Z-Achse von Montagerobotern automatische Bestücker Zuführeinrichtungen Spulenwickel-maschinen Messgeräte Zentrifugen Zylinder-Stellglieder Halbleiter-Prüfgeräte

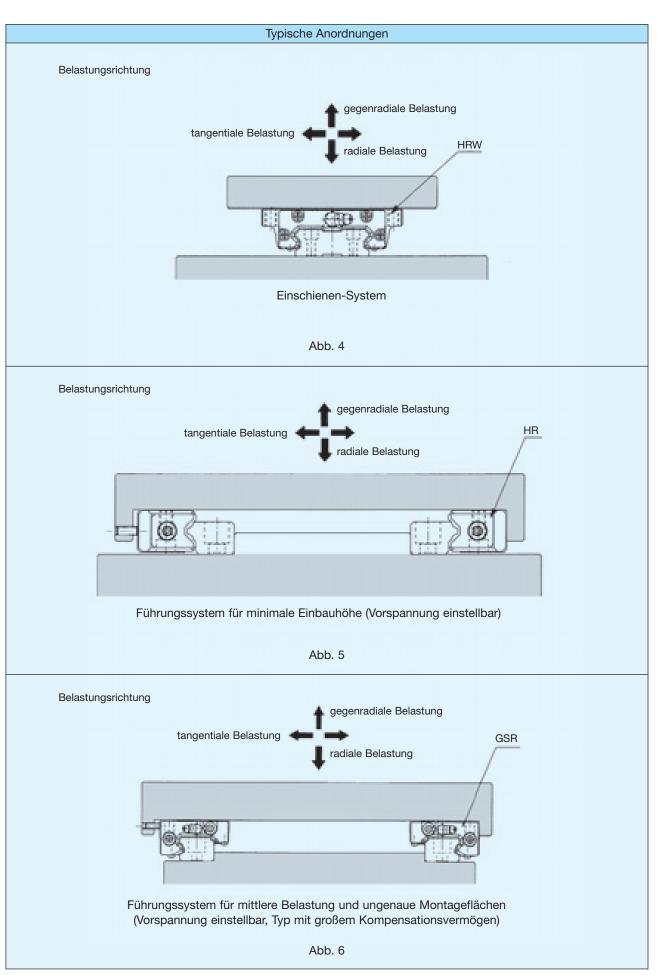
3. Anordnung der Führungssysteme

24	Montagevarianten
29	Befestigungsmethoden
31	Hauptführungsseite und Kombination von Führungsschienen
33	Gestaltung der Montagefläche
34	Kennzeichnung bei paralleler Schienenanordnung
35	Zulässige Toleranzen der Montageflächen

3.1 Montagevarianten

Für optimale lineare Bewegungen bietet THK ein großes Programm von Linearführungen an. Hieraus können Sie entsprechend Ihres Anwendungsfalls die passende Führung mit langer Lebensdauer und hoher Steifigkeit, ob sie wie in den meisten Fällen für die Horizontalmontage

oder für die Vertikal-, die Schräg-, die Wand- oder für die Überkopfmontage bestimmt ist, aussuchen. Ebenso sind Einschienen-Systeme für die Aufnahme von Momenten oder auch Führungssysteme für kleinste Einbauräume erhältlich.



Typische Anordnungen Belastungsrichtung gegenradiale Belastung tangentiale Belastung radiale Belastung HSR Zwei parallel montierte Führungsschienen für hohe Steifigkeit in allen Richtungen Abb. 1 Belastungsrichtung gegenradiale Belastung tangentiale Belastung + radiale Belastung SR Zwei parallel montierte Führungsschienen für besonders hohe Steifigkeit in radialer Richtung Abb. 2 Belastungsrichtung gegenradiale Belastung tangentiale Belastung HSR-YR radiale Belastung

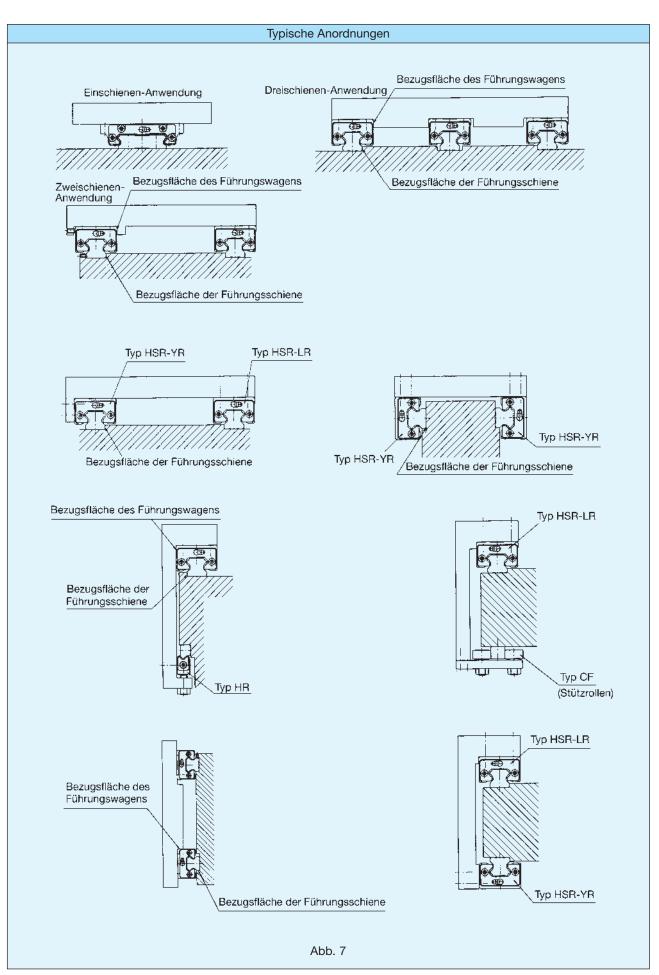
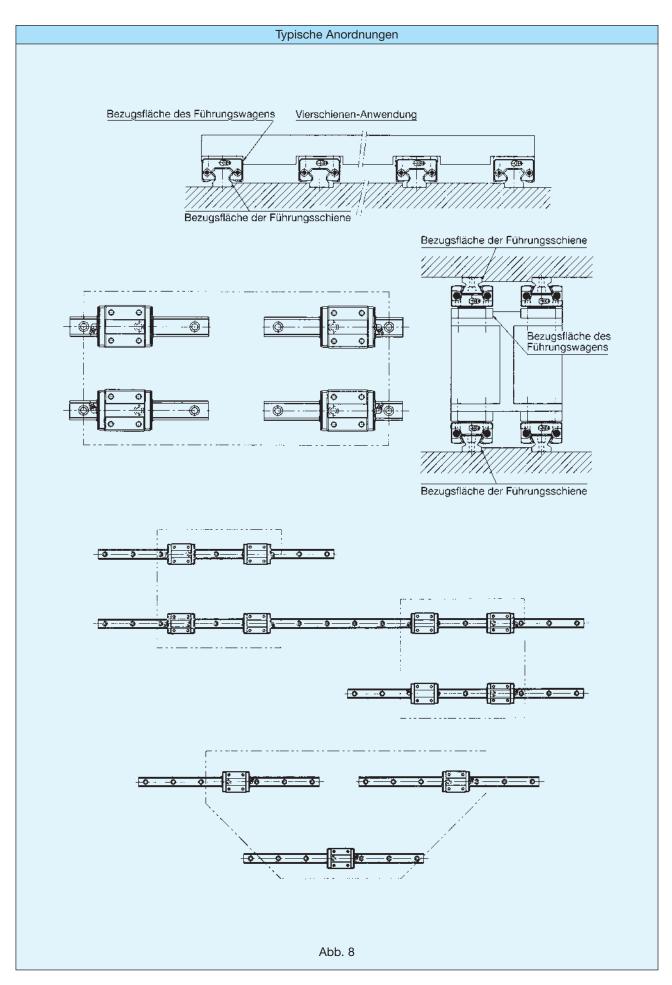
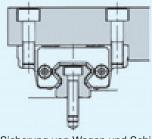

Zwei parallel und quer eingebaute Führungsschienen für eine raumsparende Konstruktion

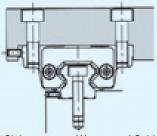
Abb. 3



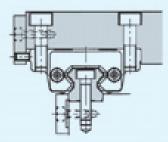
3.2 Befestigungsmethoden

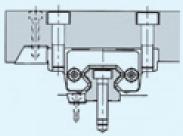

Für die Führungswagen gibt es zwei Methoden der Befestigung an der Anschlusskonstruktion. Entweder werden die Führungswagen von oben mittels Schrauben befestigt, die durch die Anschlusskonstruktion geführt werden, oder die Schrauben werden von unten durch die Führungswagen geführt.

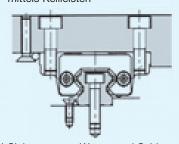
Die Führungsschienen werden entweder mit Schrauben in den dazu vorgesehenen Befestigungslöchern von unten verschraubt (K-Version) oder sie werden angeklemmt (Baureihe JR). Wählen Sie bitte nach Ihrem Einsatzfall die geeigneteste Befestigungsmethode aus.


Abb. 9 zeigt Befestigungsmethoden. Besonders in Anwendungen mit Vibrationen, in denen Führungswagen und schiene ihren Sitz verlieren können, sollte generell die in Abb. 11 gezeigte Befestigungsmethode gewählt werden. Bei paralleler Anwendung von zwei oder mehr Führungsschienen

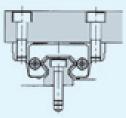
ist dabei nur der Führungswagen auf der Hauptführungsschiene einseitig an einer Schulterkante zu fixieren.


Erlaubt der Einsatzfall nicht die Befestigungsmethode nach Abb. 11, sollten die Führungsschienen mit Passstiften gesichert werden. In diesem Fall sind Bohrungen für die Passstifte in die Führungsschienen einzubringen. Bitte beachten Sie dabei, daß die Oberflächen der Schienen bis 2-3 mm Tiefe gehärtet sind und diese Schicht erst mit einem Hartmetall-Schaftfräser abgearbeitet werden muß. Bei einer nicht so hohen Genauigkeitsanforderung brauchen nicht alle Befestigungslöcher der Führungsschiene mit Schrauben versehen werden. Diese Löcher können dann für die Passstifte genutzt werden.


a) Sicherung von Wagen und Schiene an Schulterkanten


b) Sicherung von Wagen und Schiene mittels Verstellschrauben

 c) Sicherung von Wagen und Schiene mittels Anpressplatten


d) Sicherung von Wagen und Schiene mittels Keilleisten

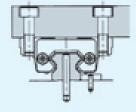
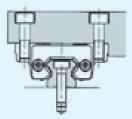
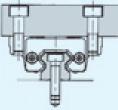

e) Sicherung von Wagen und Schiene mittels Schrauben

Abb. 9 Befestigung von Wagen und Schiene (überwiegend für Hauptführungsseite)




a) Sicherung der Schiene an Schulterkanten

d) Sicherung der Schiene mittels Passstiften

b) Sicherung des Wagens an Schulterkanten

c) Sicherung von Wagen und Schiene ohne Schulterkanten

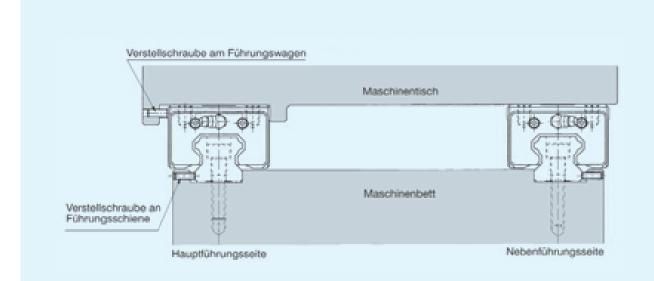
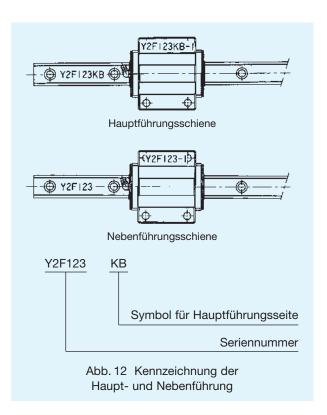


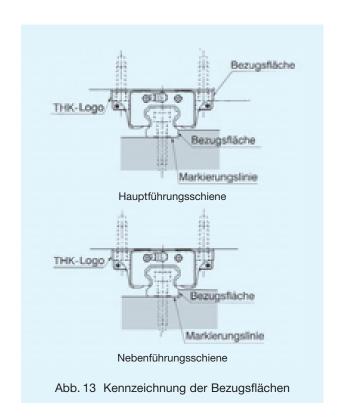
Abb.11 Montage bei Anwendungen mit Vibrationen und Stößen



3.3 Hauptführungsseite und Kombination von Führungsschienen

Kennzeichnung der Haupfführungsseite

Führungsschienen, die in einer Ebene montiert werden, sind alle mit der gleichen Seriennummer versehen. Dabei ist für Führungswagen und Führungsschienen der Hauptführungsseite das Symbol KB der Seriennummer angefügt.

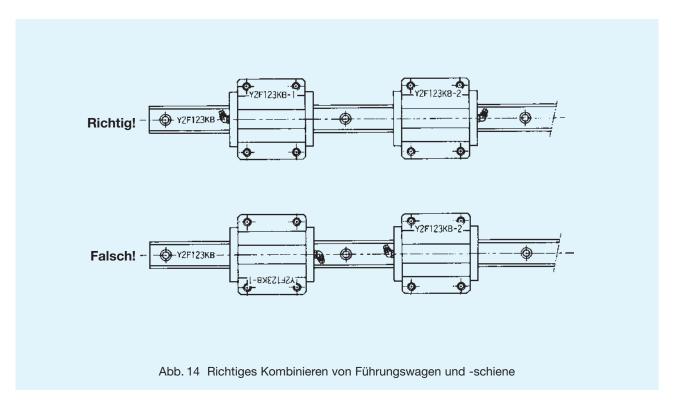

Die Bezugsflächen der Führungswagen der Hauptführungsseite sind mit einer bestimmten Genauigkeit bearbeitet und sollten daher zur Tischpositionierung verwendet werden (s. Abb. 12).

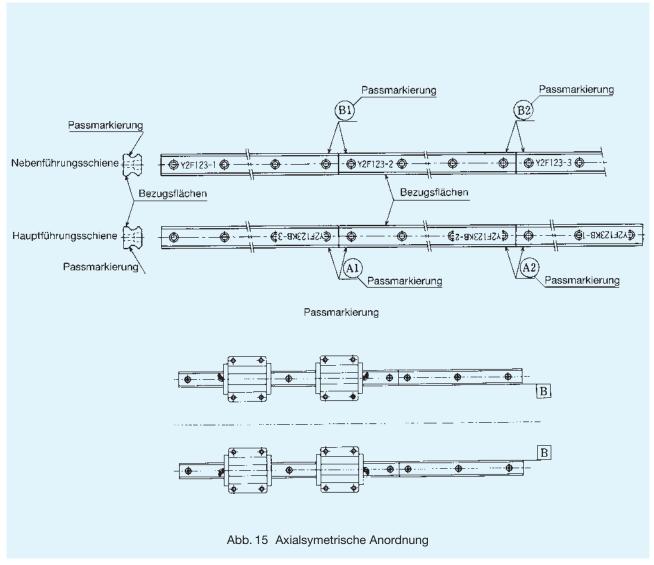
Zu beachten ist, dass Linearführungen in der Genauigkeitsklasse Normal und mit normaler Vorspannung nicht mit dem Symbol KB versehen sind. In diesem Fall kann jede Führungsschiene von mehreren Schienen mit gleichen Seriennummern als Hauptführungsschiene verwendet werden.

Kennzeichnung der Bezugsflächen

Wie in Abb. 13 dargestellt, sind die Bezugsflächen der Führungswagen auf der entgegengesetzten Seite vom THK-Logo und die Bezugsflächen der Führungsschienen auf der Seite, an der sich die Markierungslinien befinden. Ist aus Konstruktionsgründen eine entgegengesetzte Anordnung der Bezugsflächen bei Führungswagen und Führungsschienen oder eine entgegengesetzte Anbringung der Schmiernippel erforderlich, informieren Sie bitte THK bei der Bestellung.

Kennzeichnung der Kombination von Führungswagen und Führungsschiene

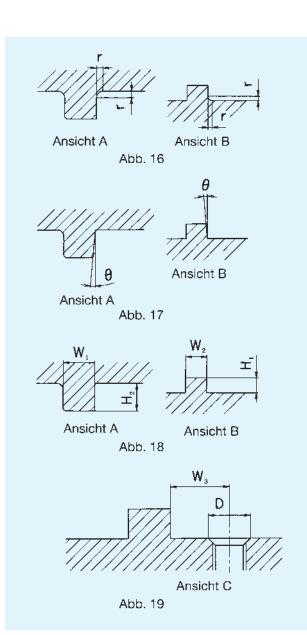

Zusammengehörende Führungswagen und Führungsschienen sind mit der gleichen Seriennummer versehen. Bei einer Wiedermontage des Führungswagens auf die Führungsschiene vergewissern Sie sich bitte, daß beide Seriennummern die gleiche Ausrichtung haben.


Schienenzusammensetzung

Führungsschienen müssen für überlange Verfahrwege, wie in Abb. 15 gezeigt, entsprechend der Paßmarkierungen gestoßen werden.

Bei Paralleleinsatz gestoßener Führungsschienen werden diese, wenn nicht anders gewünscht, axialsymmetrisch gefertigt.

3.4 Gestaltung der Montagefläche


Die Montage der Linearführungen muss besonders in Hochpräzisions-Maschinen sehr sorgfältig geschehen. In diesen Fällen müssen bei der Gestaltung der Montageflächen die unten aufgeführten Punkte beachtet werden.

Ausrundungsradien

Bei Ausrundungsradien an der Montagefäche, die größer sind als die Fasen an Führungsschienen und -wagen, haben die Bezugsflächen keinen optimalen Kontakt. Daher sollten die maximalen Ausrundungsradien immer nach den entsprechenden Angaben zu den einzelnen Linearführungen angefertigt werden (siehe Abb. 16).

Rechtwinkligkeit der Schulterkanten

Sind die Schulterkanten der Montagefläche für die Bezugsflächen der Führungsschienen und Führungswagen nicht rechtwinklig, sind beide Flächen nach der Montage nicht formschlüssig. Deswegen sind Abweichungen von der Rechtwinkligkeit zu vermeiden (siehe Abb. 17).

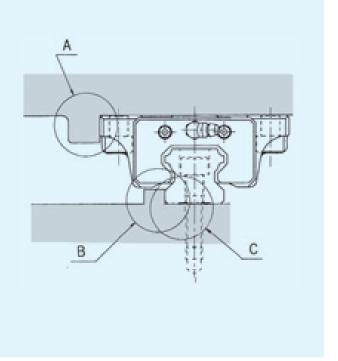
Abmessungen der Schulterkanten

Bei der Gestaltung der Schulterkanten ist deren Höhe und Stärke sorgfältig zu planen. Eine zu hohe Schulterkante kann mit dem Führungswagen in Berührung kommen. Dagegen können bei zu niedrigen Schulterkanten die korrespondierenden Flächen von Führungswagen und -schienen nicht formschlüssig angedrückt werden. Bei einer zu geringen Stärke der Anschlagflächen ist der Steifigkeitsgewinn gering. Die durch die Befestigungsschrauben übertragenen tangentialen Belastungen werden kaum aufgenommen, so daß die Genauigkeit des Führungssystems beeinträchtigt wird (siehe Abb. 18).

Maßtoleranz zwischen Schulterkante und Mitte der Befestigungsbohrung

Bei einer zu großen Maßabweichung zwischen Bezugsflächen von Führungsschiene und -wagen sowie der Mitte der Befestigungsbohrungen sind die Schulterkanten nicht formschlüssig. Allgemein sollte die Abweichung nicht größer als 0,1 mm sein (siehe Abb. 19).

Senken der Befestigungsbohrungen


Die Befestigungsbohrungen für die Führungsschienen müssen sorgfältig gesenkt werden, um die Genauigkeit nicht zu beeinträchtigen (siehe Abb. 19).

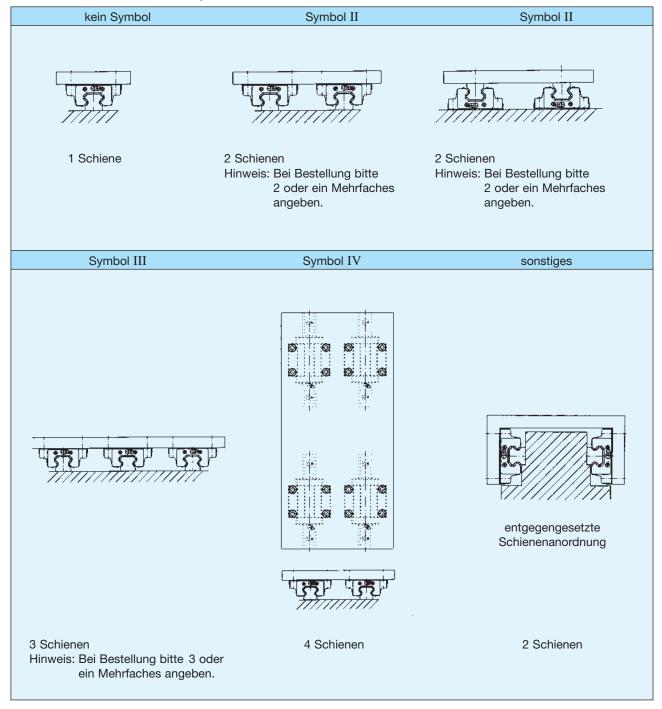
Faustregel:

Senkungsdurchmesser D = Schraubengröße + Gewindesteigung

Beispiel:

M6 (Steigung 1): D = 6 + 1 = 7

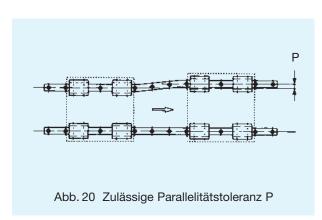
3.5 Kennzeichnung bei paralleler Schienenanordnung


THK Linearführungen der Genauigkeitsklassen "Normalklasse" und "Hochgenaue Klasse" sind untereinander austauschbar. Bei Linearführungen mit der Genauigkeitsklasse "Präzisionsklasse" oder höher bzw. bei vorgespannten Kompaktführungen (C0 oder C1), die in einer Ebene montiert werden, muß die Anzahl (und das entsprechende Kennzeichen) der parallel montierten Schienen am Ende der Bestellbezeichnung angegeben werden. In diesem Fall liefert THK aufeinander abgestimmte Führungsschienen aus.

HSR25CA2SSC0 + 1000LP-II Kennzeichen der in einer

Kennzeichen der in einer Ebene parallel angeordneten Schienen. (Die Bestellbezeichnung ist für ein Set von Führungswagen und -schiene. Bei Einsatz von zwei parallel verlaufenden Führungsschienen sind zwei Sets erforderlich.)

Bestellbezeichnung (siehe dazu die Erläuterungen zu den entsprechenden Typen)


Symbole für die Anzahl der Schienen in einer Ebene

3.6 Zulässige Toleranzen der Montageflächen

Aufgrund der Kompensationseigenschaften können THK Linearführungen Ungenauigkeiten der Montagefläche bis zu einem bestimmten Grad aufnehmen und dabei leichtgängige Laufeigenschaften gewährleisten. In den folgen-

Zulässige Parallelitätstoleranz bei den Typen SSR und SR

Einheit: µm

Vorspannklasse Baugröße	C0	C1	Normal
15	_	25	35
20	25	30	40
25	30	35	50
30	35	40	60
35	45	50	70
45	55	60	80
55	65	70	100
70	80	85	110

Zulässige Parallelitätstoleranz bei den Typen SRS, RSR und RSH

Einheit: µm

Vorspannklasse	Gotische Laufrille	
Baugröße	C1	Normal
3	_	2
5	_	2
7	_	3
9	3	4
12	5	9
15	6	10
20	8	13
25	10	15

den Tabellen sind die zulässigen Toleranzen für die Montageflächen angegeben. Bei Einhaltung der angegebenen Werte werden Verschiebewiderstand und Lebensdauer nicht negativ beeinflußt.

Zulässige Parallelitätstoleranz beim Typ GSR

Einheit: µm

Baugröße	_
15	30
20	40
25	50
30	60
35	70

Zulässige Parallelitätstoleranz bei den Typen

SHS, HSR, HSR-YR und CSR Einheit: µm

Vorspannklasse Baugröße	C0	C1	Normal
8	_	10	13
10	_	12	16
12	_	15	20
15		18	25
20	18	20	25
25	20	22	30
30	27	30	40
35	30	35	50
45	35	40	60
55	45	50	70
65	55	60	80
85	70	75	90
100	85	90	100
120	100	110	120
150	115	130	140

Zulässige Parallelitätstoleranz beim Typ NSR-TBC

Einheit: µm

Vorspannklasse Baugröße	C1	Normal
20	40	50
25	50	70
30	60	80
40	70	90
50	80	110
70	90	130

Zulässige Parallelitätstoleranz bei den Typen Typ SNR und NR

Е	inheit:	μm

Vorspannklasse Baugröße	C0	C1	Normal
25	14	15	21
30	19	21	28
35	21	25	35
45	25	28	42
55	32	35	49
65	39	42	56
75	44	47	60
85	49	53	63
100	60	63	70

Zulässige Parallelitätstoleranz

beim Typ JR

Einheit: µm

JR	_
25	100
35	200
45	300
55	400

Zulässige Parallelitätstoleranz beim Typ HR

Einheit: µm

Vorspannklasse Baugröße	C0	C1	Normal
918	_	7	10
1123	_	8	14
1530	_	12	18
2042	14	15	20
2555	20	24	35
3065	22	26	38
3575	24	28	42
4085	30	35	50
50105	38	42	55
60125	50	55	65

Ebenheit der Montagefläche beim Typ SRS

Einheit: mm

Baugröße	Ebenheit
SRS9M	0,035/200
SRS9WM	0,035/200
SRS12M	0,050/200
SRS12WM	0,050/200
SRS15M	0,060/200
SRS15WM	0,060/200
SRS20M	0,070/200
SRS25M	0,070/200

Zulässige Parallelitätstoleranz bei den Typen SNS und NRS

Vorspannklasse Baugröße	C0	C1	Normal
25	10	11	15
30	14	15	20
35	15	18	25
45	18	20	30
55	23	25	35
65	28	30	40
75	31	34	43
85	35	38	45
100	43	45	50

Zulässige Parallelitätstoleranz bei den Typen SHW und HRW

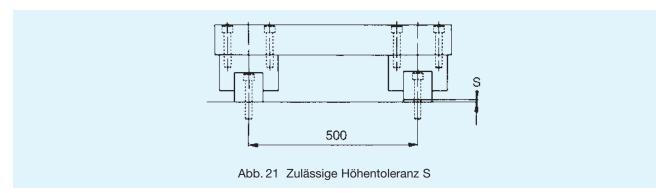
Einheit: µm

Einheit: µm

Vorspannklasse			
Baugröße	C0	C1	Normal
12	_	10	13
14	_	12	16
17	_	15	20
21	_	18	25
27	_	20	25
35	20	22	30
50	27	30	40
60	30	35	50

Ebenheit der Montagefläche beim Typ RSR¹)

Einheit: mm


Baugröße ²⁾	Ebenheit ³⁾
RSR3	0,012/200
RSR5	0,015/200
RSR7	0,025/200
RSR9	0,035/200
RSR12	0,050/200
RSR15	0,060/200
RSR20	0,110/200

- ¹⁾ Empfohlen wird eine Ebenheit unter 70% des angegebenen Wertes.
- ²⁾ Gültig auch für RSR-W und RSH
- ³⁾ Die angegebenen Werte beziehen sich auf nicht vorgespannte Führungen. Bei Vorspannung C1 wird eine Ebenheit von maximal 50% des angegebenen Wertes empfohlen.

Zulässige Höhentoleranz

Die in den Tabellen angegebenen Werte geben die zulässigen Höhentoleranzen für den Schienenabstand von 500 mm an. Bei den Typen SRS, RSR, RSR-W und RSH gilt ein Abstand von 200 mm. Die zulässigen Toleranzen verhalten sich proportional zum Schienenabstand.

Zulässige Höhentoleranz bei den Typen SSR und SR

Einheit: µm

Vorspannklasse Baugröße	C0	C1	Normal
15	_	100	180
20	80	100	180
25	100	120	200
30	120	150	240
35	170	210	300
45	200	240	360
55	250	300	420
70	300	350	480

Zulässige Höhentoleranz bei den Typen SRS, RSR und RSH

Einheit: µm

Vorspannklasse	Gotische Laufrille		
Baugröße	C1	Normal	
3		15	
5	_ 20		
7	1	25	
9	6	35	
12	12	50	
15	20	60	
20	30	70	
25	40	80	

Zulässige Höhentoleranz

beim Typ GSR Einheit: µm

GSR	_
15	240
20	300
25	360
30	420
35	480

Zulässige Höhentoleranz bei den Typen SHS, HSR, HSR-YR und CSR

Einheit: µm

Vorspannklasse Baugröße	C0	C1	Normal
8	_	11	40
10	_	16	50
12	_	20	65
15	_	85	130
20	50	85	130
25	70	85	130
30	90	110	170
35	120	150	210
45	140	170	250
55	170	210	300
65	200	250	350
85	240	290	400
100	280	330	450
120	320	370	500
150	360	410	550

Zulässige Höhentoleranz beim Typ NSR-TBC

Einheit: µm

Vorspannklasse Baugröße	C1	Normal
20	210	300
25	240	360
30	270	420
40	360	540
50	420	600
70	480	660

Zulässige Höhentoleranz bei den Typen SNR und NR

Einheit: µm

Vorspannklasse Baugröße	C0	C1	Normal
25	35	43	65
30	45	55	85
35	60	75	105
45	70	85	125
55	85	105	150
65	100	125	175
75	110	135	188
85	120	145	200
100	140	165	225

Zulässige Höhentoleranz bei den Typen SNS und NRS

Vorspannklasse C0 C1 Normal Baugröße

Zulässige Höhentoleranz

beim Typ JR

Einheit: µm

JR	_
25	400
35	500
45	800
55	1000

Zulässige Höhentoleranz

beim Typ HR

Einheit: µm

Vorspannklasse Baugröße	C0	C1	Normal
918	_	15	45
1123	_	20	50
1530	_	60	90
2042	50	60	90
2555	85	100	150
3065	95	110	165
3575	100	120	175
4085	120	150	210
50105	140	175	245
60125	170	200	280

Zulässige Höhentoleranz bei den Typen SHW und HRW

Einheit: µm

Einheit: µm

Vorspannklasse Baugröße	C0	C1	Normal
12	_	11	40
14	_	16	50
17	_	20	65
21	_	85	130
27	_	85	130
35	70	85	130
50	90	110	170
60	120	150	210

4. Bestimmung der Lebensdauer

Lebensdauer, Tragzahl und Moment 39 **Belastungsrichtung und Tragzahl** 41 Statischer Sicherheitsfaktor 43 Lebensdauerberechnung 43 Festlegung der Einsatzbedingungen 46 Berechnung der Belastung bei Zweischienensystemen 47 Bestimmung der äquivalenten Belastung 62 Berechnung der dynamischen äquivalenten Belastung 63 65 Berechnungsbeispiele

4.1 Lebensdauer, Tragzahl und Moment

Lebensdauer von Linearführungssystemen

Führt ein Linearführungssystem unter Belastung Wälzbewegungen durch, werden die Laufbahnen und Wälzkörper (Kugeln bzw. Rollen) permanenten Beanspruchungen ausgesetzt. Beim Erreichen der Grenzbelastung zeigen die Rollflächen Ermüdungsbrüche, und außerdem blättern Teile der Oberfläche ab, die sogenannte Pittingbildung.

Die Gesamtlaufstrecke eines Linearführungssystems, bei dem an Laufbahnen oder Wälzkörpern ein erstes Abblättern wegen Materialermüdung erfolgt, wird als Lebensdauer definiert.

Nominelle Lebensdauer

Die Lebensdauer von gleichen Linearführungssystemen ist oftmals unterschiedlich, obwohl sie unter gleichen Bedingungen hergestellt und auch betrieben werden. Als Richtlinie wird die nominelle Lebensdauer wie folgt definiert:

Die nominelle Lebensdauer ist die Gesamtlaufstrecke, die ohne erste Anzeichen einer Werkstoffermüdung von 90% einer genügend großen Gruppe gleicher Linearführungssysteme erreicht oder überschritten wird, wenn diese einzeln unter gleichen Bedingungen betrieben werden.

Tragzahl

Zwei Werte werden für die Tragfähigkeit von Linearführungssystemen benutzt. Mit der dynamischen Tragzahl C wird die Lebensdauer berechnet. Die statische Tragzahl ${\bf C}_0$ gibt die maximal zulässige statische Tragfähigkeit an.

Dynamische Tragzahl C

Bei unabhängigem Betrieb eines Linearführungssystems aus einer Gruppe von identischen Linearführungssystemen unter gleichen Bedingungen entspricht die dynamische Tragzahl C einer Belastung in konstanter Höhe und gleicher Richtung, die bei kugelgelagerten Linearführungssystemen eine nominelle Lebensdauer von 50 km und bei rollengelagerten Linearführungssystemen eine Lebensdauer von 100 km ergeben.

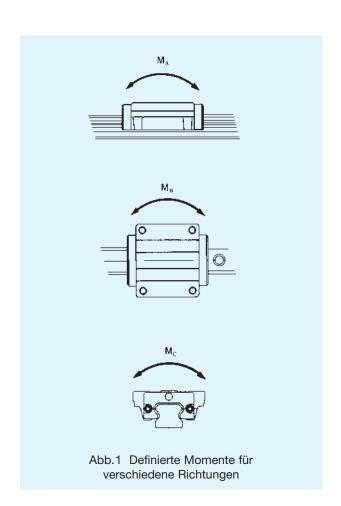
Die dynamische Tragzahl C dient zum Berechnen der Lebensdauer eines unter Belastung betriebenen Linearführungssystems. Sie wird in den Maßtabellen zu den entsprechenden Linearführungssystemen angegeben.

Statische Tragzahl Co

Wirkt eine zu große Traglast auf das ruhende oder fahrende Linearführungssystem, entsteht zwischen Laufbahn und Wälzkörper eine lokale plastische Verformung. Ab einem bestimmten Grad kann diese Verformung einen negativen Einfluß auf die Laufleistung ausüben.

Die statische Tragzahl C_0 ist eine statische Last von konstanter Höhe und gleicher Richtung, die an der am höchsten belasteten Kontaktfläche von Laufbahn und Wälzkörper eine permanente Verformung von bis zu 1/10.000 des Wälzkörperdurchmessers verursacht.

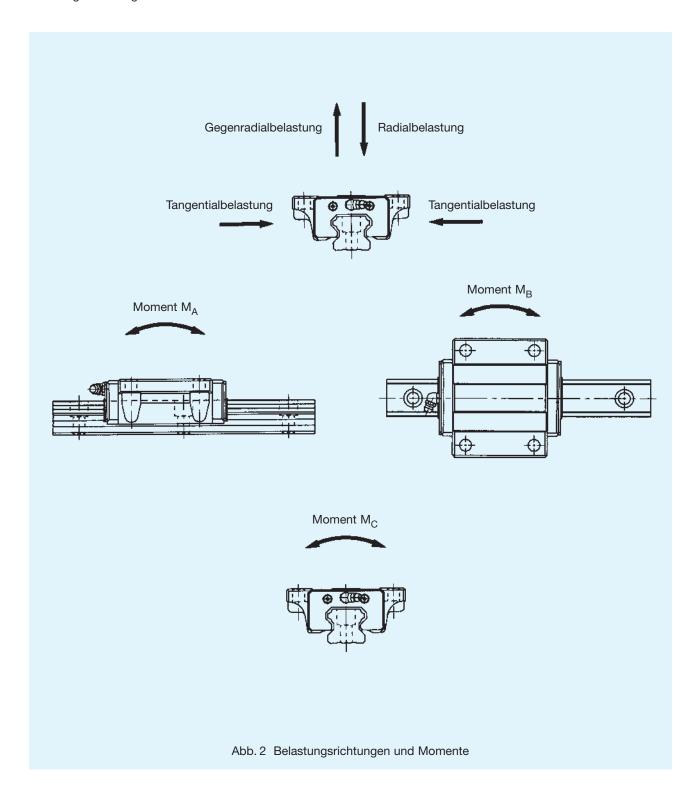
Die Radialbelastung wird herangezogen, um die statische Tragzahl von Linearführungssystemen zu bestimmen. Die statische Tragzahl C_0 gibt die maximal zulässige statische Tragfähigkeit an. Sie wird in den Maßtabellen zu den entsprechenden Linearführungssystemen angegeben.


Zulässiges statisches Moment M₀

Wirkt ein Moment auf ein Linearführungssystem, treten die maximalen Belastungen an den äußeren Wälzkörpern des Führungssystems auf.

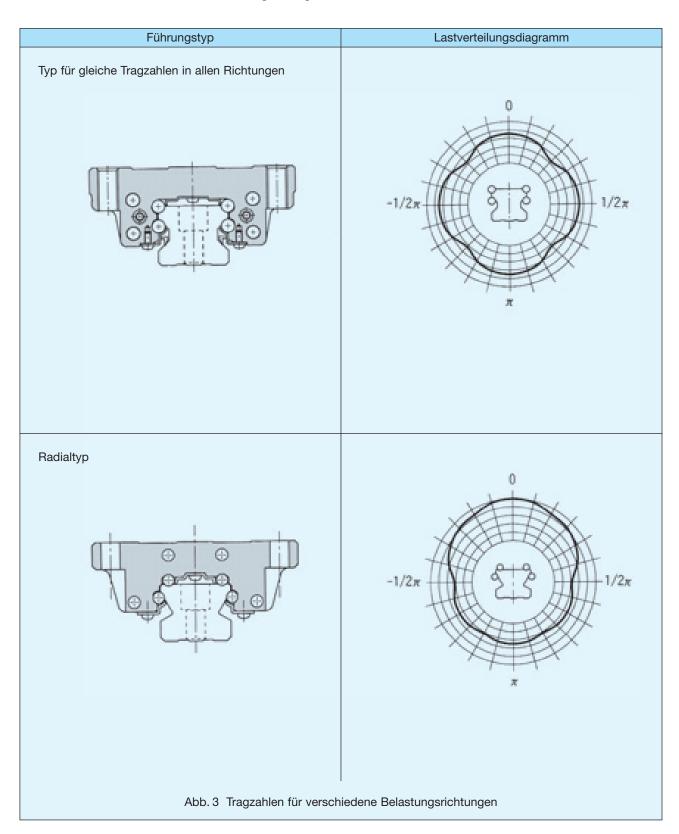
Bei Kontakt der maximal belasteten Wälzkörper mit der Laufbahn wird das zulässige statische Moment $\rm M_0$ als ein Moment von gleicher Höhe und konstanter Richtung definiert, bei der die Summe der permanenten Verformungen der Wälzkörper und der Laufbahnen 1/10.000 des Wälzkörperdurchmessers entspricht.

Das zulässige statische Moment eines Linearführungssystems wird für die drei Richtungen $\rm M_A,\ M_B$ und $\rm M_C$ definiert.


Das zulässige statische Moment ist die maximale statische Momentbelastung. Es wird in den Maßtabellen zu den entsprechenden Linearführungssystemen angegeben.

4.2 Belastungsrichtung und Tragzahl

THK Linearführungen können aus allen Richtungen Belastungen und Momente resultierend aus der Einbaulage der Führungen, dem Antrieb, der Beschleunigung, den Bearbeitungskräften sowie dem Massenschwerpunkt des zu bewegenden Gegenstandes u.a. aufnehmen.



Tragzahlen der Linearführungen in verschiedenen Richtungen

Bezüglich der Tragzahlen können THK Linearführungen in zwei große Gruppen eingeteilt werden (siehe Abbildung 3). Die erste Gruppe umfaßt die Linearführungen mit gleichen Tragzahlen in allen vier Hauptrichtungen (radial, gegenradial und tangential), und die zweite Gruppe beinhaltet die für besonders radiale Belastungen ausge-

legten Führungstypen. Da bei der zweiten Gruppe die radialen, gegenradialen und tagentialen Tragzahlen unterschiedlich sind, müssen hier die einzehen Tragzahlen mit einem je nach Typ unterschiedlichen Faktor multipliziert werden. Der Faktor ist zum jeweiligen Typ angegeben.

4.3 Statischer Sicherheitsfaktor

Der statische Sicherheitsfaktor fs gibt das Verhältnis von möglicher Belastung (statische Tragzahl C₀) zu der tatsächlichen Belastung eines Linearführungssystem wieder.

$$f_{S} = \frac{C_0}{P} \dots (1)$$

Bei Linearführungen mit unterschiedlichen Tragzahlen in den Hauptrichtungen ist die Tabelle 1 zu berücksichtigen.

Tab. 1

bei größerer Radialbelastung	$\frac{C_0}{T} \ge f_0$
	P _R s
bei größerer Gegenradialbelastung	$\frac{C_{0L}}{P_L} \ge f_s$
bei größerer Tangentialbelastung	$\frac{C_{0T}}{P_{T}} \ge f_{S}$

 $\begin{array}{lll} f_s & : \mbox{statischer Sicherheitsfaktor} \\ C_0 & : \mbox{statische Tragzahl (radial)} & (N) \\ C_{0L} : \mbox{statische Tragzahl (gegenradial)} & (N) \\ C_{0T} : \mbox{statische Tragzahl (tangential)} & (N) \\ P_R : \mbox{ermittelte Belastung (radial)} & (N) \\ P_L : \mbox{ermittelte Belastung (gegenradial)} & (N) \\ P_T : \mbox{ermittelte Belastung (tangential)} & (N) \\ \end{array}$

Bei der Berechnung der Belastung eines Linearführungssystems müssen die äquivalente Belastung, die auch zur Ermittlung der Lebensdauer benötigt wird, und die maximal auf ein Linearführungssystem wirkende Belastung ermittelt werden. Zu berücksichtigen sind dabei auch unerwartet hohe Belastungen in Folge von kurzen Start-Stop-Zyklen, Trägheitsmomente durch Beschleunigung oder Verzögerung, hohe Momentbelastungen aufgrund überhängender Lasten sowie hohe Bearbeitungskräfte. Bei der Auswahl eines Führungstyps sind daher auch die maximalen Belastungen während des Stillstands mit in die Berechnung einzuschließen. Dazu sind Standardwerte für den statischen Sicherheitsfaktor in der Tabelle weiter unten aufgeführt.

Tab.2 Standardwerte für den stat. Sicherheitsfaktor (f_s)

Anwendungs- bereich	Anwendungsbedingungen	f _s
	normale	10 10
Maschinen	Bewegungen	1,0 ~ 1,3
allgemein	Bewegungen begleitet von	2,0 ~ 3,0
	Stößen und Schwingungen	2,0 ~ 3,0
	normale	1,0 ~ 1,5
Werkzeug-	Bewegungen	1,0 ~ 1,5
maschinen-	Bewegungen begleitet von	0.5. 7.0
	Stößen und Schwingungen	2,5 ~ 7,0

4.4 Lebensdauerberechnung

Berechnung der Lebensdauer in km

Ist die dynamische Tragzahl C und die Belastung P bekannt, kann mit den folgenden Formeln die nominelle Lebensdauer ermittelt werden.

• Für Linearführungssysteme mit Kugeln:

$$L = \left(\frac{C}{P}\right)^3 \times 50 \tag{2}$$

• Für Linearführungssysteme mit Rollen:

$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} \times 100...$$
 (3)

L : nominelle Lebensdauer (km)
C : dynamische Tragzahl (N)
P : Belastung (N)

In vielen Fällen ist es nur schwer möglich, die wirkenden Belastungen zu bestimmen.

Im Betrieb wirken oft plötzliche Stöße und Vibrationen oder wechselnde Belastungen auf das Linearführungssystem. Dazu können eine unterschiedliche Härte der Laufbahnen z.B. die Wellen von Kugelbuchsenführungen und eine überhöhte Betriebstemperatur des Linearführungssystems die berechnete Lebensdauer erheblich beeinflussen. Berücksichtigt man diese Faktoren, kann die Lebensdauer mit folgenden Formeln bestimmt werden:

• Für Linearführungssysteme mit Kugeln:

$$L = \left(\frac{f_H \times f_T \times f_C}{f_W} \times \frac{C}{P}\right)^3 \times 50 \quad ... \tag{4}$$

• Für Linearführungssysteme mit Rollen:

$$L = \left(\frac{f_H \times f_T \times f_C}{f_W} \times \frac{C}{P}\right)^{\frac{10}{3}} \times 100$$
 (5)

Anm.: Unter Vorspannung ergibt sich eine andere Belastung (siehe dazu "Belastungen und Lebendauer bei vorgespannten Linearführungen").

Kontaktfaktor f_C

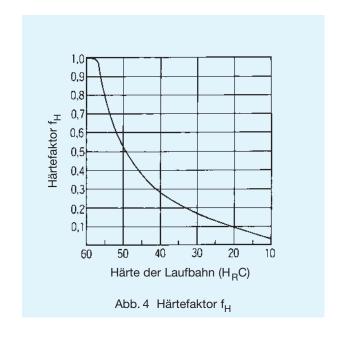
Wenn mehrere Führungswagen in einem Linearführungssystem auf engem Raum eingesetzt werden, ist eine gleichmäßige Lastverteilung aufgrund von Momenten, Abweichungen der Montagefläche u.a. nur schwer zu erreichen. Werden zwei oder mehr Wagen auf engem Raum eingesetzt, sollte die dynamische sowie die statische Tragzahl mit dem Kontaktfaktor multipliziert werden.

Tab. 3 Kontaktfaktor f_C

Führungswagen, eng zusammengesetzt	Kontaktfaktor f _C
2	0,81
3	0,72
4	0,66
5	0,61
Normalbetrieb	1

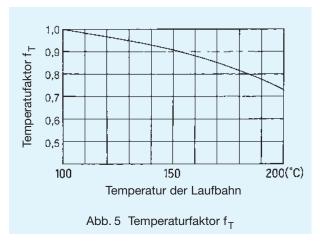
Anm.: Bei ungleicher Lastverteilung in großen Maschinen sollte der Kontaktfaktor ebenfalls berücksichtigt werden.

Belastungsfaktor f_W


Maschinen mit oszillierenden Bewegungen verursachen normalerweise Stöße und Vibrationen. Im allgemeinen können diese Belastungen, wie Vibrationen im Hochgeschwindigkeitsbetrieb sowie Stoßbelastungen durch wiederholtes Anfahren und Anhalten, nur schwer genau bestimmt werden. Wenn die tatsächliche Belastung nur schwer zu bestimmen ist oder wenn Geschwindigkeit und Vibrationen einen großen Einfluß auf das Linearführungssystem ausüben, sollte die dynamische und statische Tragzahl durch die in Tabelle 4 aufgeführten Erfahrungswerte dividiert werden.

Tab. 4 Belastungsfaktor f_W

Anwendungs-	Geschwindigkeit	f _w
bedingungen	V	VV
ohne Stöße	sehr langsam	1,0 ~ 1,2
und Vibrationen	V ≤ 15 m/min	1,0 ~ 1,2
leichte Stöße	langsam	1,2 ~ 1,5
oder Vibrationen	15 < V ≤ 60 m/min	1,2 ~ 1,5
mittlere Stöße	mittel	1,5 ~ 2,0
oder Vibrationen	60 < V ≤ 120 m/min	1,5 ~ 2,0
größere Stöße	hoch	2,0 ~ 3,5
oder Vibrationen	V > 120 m/min	2,0 ~ 3,3


Härtefaktor f_H

Für eine optimale Tragfähigkeit des Linearführungssystems sollten die Laufbahnen einen Härtegrad von $H_{\rm R}C$ 58 bis 64 aufweisen. Da bei einer geringeren Härte die Tragzahlen (dynamisch und statisch) abnehmen, sollten beide Tragzahlen mit dem Härtefaktor multipliziert werden.

Temperaturfaktor f_T

Wird das Linearführungssystem Temperaturen von über 100°C ausgesetzt, sollte der Temperaturfaktor berücksichtigt werden. Außerdem sollten nur Linearführungssysteme speziell für hohe Temperaturbereiche ausgewählt werden.

Anm.: Bei einer Umgebungstemperatur von über 80°C müssen die Dichtungen entfernt werden, sowie spezielle Endplatten und Käfige eingesetzt werden. Bei einer Umgebungstemperatur von über 120°C ist eine besondere Verarbeitung zur Aufrechterhaltung der Leistungseigenschaften notwendig.

Berechnung der Lebensdauer in Stunden

Bei Umrechnung der nominellen Lebensdauer in die Lebensdauer in Stunden wird die Laufleistung pro Zeiteinheit bestimmt.

Bei konstanter Hublänge und Hubanzahl

$$L_h = \frac{L \times 10^3}{2 \times \ell_S \times n_1 \times 60} \dots (6)$$

 L_h : Lebensdauer in Stunden (h) ℓ_S : Hublänge (m) n_1 : Doppelhübe je Minute (min-1

Bei Berechnung der mittleren Geschwindigkeit:

$$L_{h} = \frac{L \times 10^{3}}{V_{m} \times 60} \tag{7}$$

 ${\sf L_h}$: Lebensdauer in Stunden (h) ${\sf V_m}$: mittlere Geschwindigkeit (m/min

$$V_{m} = \frac{V_{1} \times n_{1} + V_{2} \times n_{2} + V_{3} \times n_{3} + ... + V_{n} \times n_{n}}{100}$$
(8)

Arbeitszyklus

Bereich	Geschwindigkeit (m/min)	Zeitfaktor (%)
1	V ₁	n ₁
2	V_2	n ₂
3	V ₃	n ₃
n	V _n	n _n

Berechnungsbeispiel

Berechnungen der nominellen Lebensdauer bei folgenden Bedingungen:

 Linearführungssystem 	LBS20UU
 Tragzahl 	C = 7840 N
 Radialbelastung pro Wagen 	P = 980 N
Hublänge	$\ell_{\rm S} = 0.4 \; {\rm m}$
 Doppelhübe je Minute 	$n_1 = 12 \text{ min}^{-1}$
 max. Geschwindigkeit 	$V_{max} = 15$
m/min	

- ruhige Bewegung ohne Stöße und Vibrationen
- Anwendung bei Raumtemperatur

Nach Formel (4) ergibt sich folgende nominelle Lebensdauer:

$$L = \left(\frac{f_H \times f_T \times f_C}{f_W} \times \frac{C}{P}\right)^3 \times 50$$

$$f_{H} = 1$$

$$f_{T} = 1$$

$$f_{C} = 1$$

$$L = \Big(\frac{1 \times 1 \times 1 \times 7.840}{1,2 \times 980}\Big)^3 \times 50$$

≈ 14.800 km

Nach Formel (6) ergibt sich folgende Lebensdauer in Stunden:

$$L_{h} = \frac{14.800 \times 10^{3}}{2 \times 0.4 \times 12 \times 60}$$

$$\approx 25.700 \text{ h}$$

Angenommen die Arbeitszyklen sind wie folgt,

Bereich	Geschwindigkeit (m/min)	Zeitfaktor (%)
1	5	20
2	10	15
3	15	10
4	3	20
5	0 (Halt)	35

dann ergibt sich nach Formel (8) folgende mittlere Geschwindigkeit:

$$V_{m} = \frac{5 \times 20 + 10 \times 15 + 15 \times 10 + 3 \times 20 + 0 \times 35}{100}$$

$$\approx 4.6 \text{ m/min}$$

Nach Formel (7) ergibt sich eine Lebensdauer in Stunden von:

$$L_{h} = \frac{14.800 \times 10^{3}}{4,6 \times 60}$$

$$\approx 53.600 \text{ h}$$

4.5 Festlegung der Einsatzbedingungen

Die Festlegung der Einsatzbedingungen ist für die Bestimmung der Lebensdauer und der Belastung eines Linearführungssystems notwendig. Folgende Bedingungen werden dabei berücksichtigt:

 Gewichtskraft Richtung der Gewichtskraft Lage der Gewichtskräfte vom 	: W	(N)
Systemmittelpunkt	$: \ell_2, \ell_3, h_1$	(mm)
4) Antriebsposition	$:\ell_{4},h_{2}$	(mm)
5) Anordnung des Linearführungssystems	3	
Wagenabstand, Schienenabstand	$: \ell_0, \ell_1$	(mm)
6) Geschwindigkeitsdiagramm	0 1	
Geschwindigkeit	: V	(mm/s)
Dauer	:t _n	(s)
7) Arbeitszyklus		
Anzahl der Doppelhübe	: N ₁	(min-1)
8) Hublänge	:ℓ _s	(mm)
mittlere Verfahrgeschwindigkeit	: V _m	(mm/min)
10) geforderte Lebensdauer in Stunden	:L _h	(h)

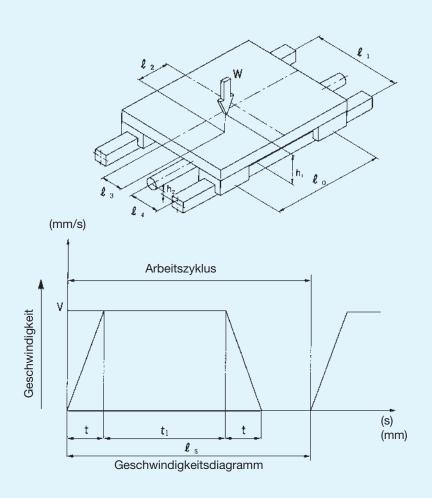


Abb. 6 Einsatzbedingungen

4.6 Berechnung der Belastung bei Zweischienensystemen

Berechnung von Vierwagen-Systemen

Die auf ein Linearführungssystem einwirkenden Belastungen sind abhängig von der Schwerpunktlage des Objektes, der Antriebsposition, der Beschleunigung und Verzögerung beim Anfahren und Halten, den Bearbeitungskräften sowie anderen äußeren Kräften. Diese Parameter müssen alle ausreichend bei der Auslegung eines Linearführungssystems berücksichtigt werden. Bei den folgenden zehn Beispielen werden die Belastungen für Linearführungssysteme bei unterschiedlichen Einsatzbedingungen bestimmt.

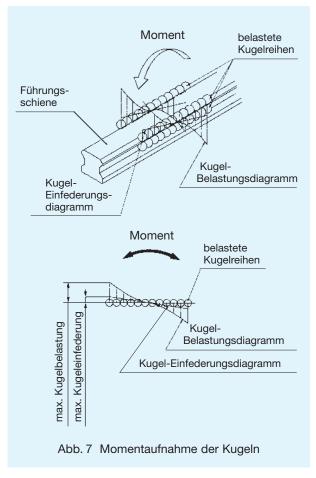
Gewichtskraft : W (N) Verfahrweg (mm) Antriebskraft : F (N) : R_n äußere Kraft (N) Belastung (radial, gegenradial) : P_n (N) Belastung (tangential) : P_{nT} (N) Erdbeschleunigung (g= 9.8×10^3 mm/s²): g (mm/s²)Geschwindigkeit (mm/s)

Beispiel	Einsatzbedingung	Formeln zur Belastungsberechnung
1	Horizontalmontage (Führungswagen beweglich) konstante Geschwindigkeit oder Halt P-	$P_{1} = \frac{W}{4} + \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} - \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{2} = \frac{W}{4} - \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} - \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{3} = \frac{W}{4} - \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} + \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{4} = \frac{W}{4} + \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} + \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$
2	Horizontalmontage mit überhängender Belastung (Führungswagen beweglich) konstante Geschwindigkeit oder Halt P- P+ P3 P2 P4 P4 P4 P4 P4 P4 P5 P5 P6 P7	$P_{1} = \frac{W}{4} + \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} + \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{2} = \frac{W}{4} - \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} + \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{3} = \frac{W}{4} - \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} - \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{4} = \frac{W}{4} + \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} - \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$

		,
Beispiel	Einsatzbedingung	Formeln zur Belastungsberechnung
3	• Vertikalmontage • konstante Geschwindigkeit oder Halt P+ PT+ PT+ P1 P1 P2	$P_{1} = P_{4} = -\frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{2} = P_{3} = \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{1T} = P_{4T} = \frac{W}{2} \times \frac{\ell_{3}}{\ell_{0}}$ $P_{2T} = P_{3T} = -\frac{W}{2} \times \frac{\ell_{3}}{\ell_{0}}$
4	• Wandmontage • konstante Geschwindigkeit oder Halt PT P+ P- P- P- P- P- P- P- P- P-	$P_{1} = P_{2} = -\frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{3} = P_{4} = \frac{W}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{1T} = P_{4T} = \frac{W}{4} + \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{2T} = P_{3T} = \frac{W}{4} - \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}}$

Belspiel Einsatzbedingung Formeln zur Belastungsberechnung P1 ischbewegungsrichtung (+) P1 = P4 = $\frac{W}{4} + \frac{W}{2} \times \frac{\ell_1}{\ell_0}$ * Horizontal-Schrägmontage (1) * P1 = $\frac{W}{4} \times \frac{W}{2} \times \frac{\ell_1}{\ell_0}$ * $\frac{W}{4} \times \frac{W \times \cos\theta}{4} \times \frac{W}{2} \times \frac{\ell_1}{\ell_0}$ * $\frac{W \times \cos\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_0}$ * $\frac{W \times \cos\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_0}$ * $\frac{W \times \cos\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_0}$ * $\frac{W \times \cos\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_0}$ * $\frac{W \times \cos\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_0}$ * $\frac{W \times \cos\theta}{4} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_0}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{2} \times \frac{\ell_1}{2} \times \frac{\ell_1}{\ell_1}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_1}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_1}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_1}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_1}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_1}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_1}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{4} \times \frac{W \times \sin\theta}{2} \times \frac{\ell_2}{2} \times \frac{\ell_1}{\ell_1}$ * $\frac{W \times \sin\theta}{4} \times \frac{W \times \cos\theta}{4} \times \frac{W \times \sin\theta}{4} \times W \times $			
Führungsschienen bzw. Wellen beweglich P ₁ = P ₄ = $\frac{W}{4} - \frac{W}{2} \times \frac{\ell_1}{\ell_0}$ P ₂ = P ₃ = $\frac{W}{4} + \frac{W}{2} \times \frac{\ell_1}{\ell_0}$ Tischbewegungsrichtung (·) P ₁ = P ₄ = $\frac{W}{4} + \frac{W}{2} \times \frac{\ell_1}{\ell_0}$ P ₂ = P ₃ = $\frac{W}{4} + \frac{W}{2} \times \frac{\ell_1}{\ell_0}$ P ₃ = P ₄ = $\frac{W}{4} + \frac{W \times \cos \theta \times \ell_2}{2 \times \ell_0}$ + $\frac{W \times \cos \theta \times \ell_3}{2 \times \ell_1} + \frac{W \times \sin \theta \times h_1}{2 \times \ell_1}$ P ₁ = $\frac{W \times \sin \theta}{4} + \frac{W \times \sin \theta \times \ell_2}{2 \times \ell_0}$ P ₂ = + $\frac{W \times \cos \theta \times \ell_3}{4} + \frac{W \times \sin \theta \times \ell_2}{2 \times \ell_0}$ P ₃ = + $\frac{W \times \cos \theta \times \ell_3}{4} - \frac{W \times \sin \theta \times \ell_2}{2 \times \ell_0}$ P ₄ = + $\frac{W \times \sin \theta}{4} - \frac{W \times \sin \theta \times \ell_2}{2 \times \ell_0}$ P ₄ = + $\frac{W \times \cos \theta \times \ell_3}{4} + \frac{W \times \cos \theta \times \ell_2}{2 \times \ell_0}$ P ₄ = + $\frac{W \times \cos \theta \times \ell_3}{4} + \frac{W \times \cos \theta \times \ell_2}{2 \times \ell_0}$ P ₅ = $\frac{W \times \sin \theta \times \theta}{4} - \frac{W \times \cos \theta \times \ell_2}{2 \times \ell_0}$ P ₆ = $\frac{W \times \sin \theta}{4} - \frac{W \times \cos \theta \times \ell_2}{2 \times \ell_0}$ P ₇ = $\frac{W \times \sin \theta}{4} - \frac{W \times \sin \theta \times h_1}{2 \times \ell_1}$	Beispiel	Einsatzbedingung	Formeln zur Belastungsberechnung
$P_{T} = \frac{W \times \cos\theta \times \ell_{3}}{2 \times \ell_{1}} + \frac{W \times \sin\theta \times h_{1}}{2 \times \ell_{1}}$ $P_{1T} = \frac{W \times \sin\theta}{4} + \frac{W \times \sin\theta \times \ell_{2}}{2 \times \ell_{0}}$ $P_{2} = + \frac{W \times \cos\theta}{4} - \frac{W \times \cos\theta \times \ell_{2}}{2 \times \ell_{0}}$ $+ \frac{W \times \cos\theta \times \ell_{3}}{2 \times \ell_{1}} + \frac{W \times \sin\theta \times h_{1}}{2 \times \ell_{1}}$ $P_{2T} = \frac{W \times \sin\theta}{4} - \frac{W \times \sin\theta \times \ell_{2}}{2 \times \ell_{0}}$ $P_{3} = + \frac{W \times \cos\theta \times \ell_{3}}{4} - \frac{W \times \sin\theta \times \ell_{2}}{2 \times \ell_{0}}$ $P_{3T} = \frac{W \times \sin\theta \times \ell_{3}}{4} - \frac{W \times \sin\theta \times k_{1}}{2 \times \ell_{1}}$ $P_{3T} = \frac{W \times \sin\theta \times \ell_{2}}{4} - \frac{W \times \sin\theta \times \ell_{2}}{2 \times \ell_{0}}$ $P_{4} = + \frac{W \times \cos\theta \times \ell_{3}}{4} + \frac{W \times \cos\theta \times \ell_{2}}{2 \times \ell_{0}}$ $P_{4} = + \frac{W \times \cos\theta \times \ell_{3}}{4} - \frac{W \times \sin\theta \times h_{1}}{2 \times \ell_{1}}$	5	• Führungsschienen bzw. Wellen beweglich P-	$\begin{split} & P_1 = P_4 = \frac{W}{4} - \frac{W}{2} \times \frac{\ell_1}{\ell_0} \\ & P_2 = P_3 = \frac{W}{4} + \frac{W}{2} \times \frac{\ell_1}{\ell_0} \end{split}$ Tischbewegungsrichtung (-) $& P_1 = P_4 = \frac{W}{4} + \frac{W}{2} \times \frac{\ell_1}{\ell_0} \end{split}$
Beispiel: Tisch von NC-Drehmaschinen	6	P_{T} P_{T	$\begin{split} &+ \frac{W \times \cos\theta \times \ell_3}{2 \times \ell_1} + \frac{W \times \sin\theta \times h_1}{2 \times \ell_1} \\ &+ \frac{W \times \sin\theta \times \ell_2}{4} + \frac{W \times \sin\theta \times \ell_2}{2 \times \ell_0} \\ &+ \frac{W \times \cos\theta}{4} - \frac{W \times \cos\theta \times \ell_2}{2 \times \ell_0} \\ &+ \frac{W \times \cos\theta \times \ell_3}{2 \times \ell_1} + \frac{W \times \sin\theta \times h_1}{2 \times \ell_1} \\ &+ \frac{W \times \sin\theta}{4} - \frac{W \times \sin\theta \times \ell_2}{2 \times \ell_0} \\ &+ \frac{W \times \cos\theta \times \ell_3}{2 \times \ell_1} - \frac{W \times \sin\theta \times \ell_2}{2 \times \ell_0} \\ &+ \frac{W \times \cos\theta \times \ell_3}{2 \times \ell_1} - \frac{W \times \sin\theta \times h_1}{2 \times \ell_1} \\ &+ \frac{W \times \cos\theta \times \ell_3}{2 \times \ell_1} - \frac{W \times \sin\theta \times h_1}{2 \times \ell_1} \\ &+ P_{3T} = \frac{W \times \sin\theta}{4} - \frac{W \times \sin\theta \times \ell_2}{2 \times \ell_0} \\ &+ P_4 = + \frac{W \times \cos\theta}{4} + \frac{W \times \cos\theta \times \ell_2}{2 \times \ell_0} \\ &- \frac{W \times \cos\theta \times \ell_3}{2 \times \ell_1} - \frac{W \times \sin\theta \times h_1}{2 \times \ell_1} \\ &- \frac{W \times \cos\theta \times \ell_3}{2 \times \ell_1} - \frac{W \times \sin\theta \times h_1}{2 \times \ell_1} \end{split}$

Beispiel	Einsatzbedingung	Formeln zur Belastungsberechnung
7	• Vertikal-Schrägmontage (2) P-PT-PT-PT-PT-PT-PT-PT-PT-PT-PT-PT-PT-PT	Formeln zur Belastungsberechnung $P_{1} = + \frac{W \times \cos\theta}{4} - \frac{W \times \cos\theta \times \ell_{2}}{2 \times \ell_{0}}$ $- \frac{W \times \cos\theta \times \ell_{3}}{2 \times \ell_{1}} + \frac{W \times \sin\theta \times h_{1}}{2 \times \ell_{0}}$ $P_{1T} = + \frac{W \times \sin\theta \times \ell_{3}}{2 \times \ell_{0}}$ $P_{2} = + \frac{W \times \cos\theta}{4} - \frac{W \times \cos\theta \times \ell_{2}}{2 \times \ell_{0}}$ $- \frac{W \times \cos\theta \times \ell_{3}}{2 \times \ell_{1}} - \frac{W \times \sin\theta \times h_{1}}{2 \times \ell_{0}}$ $P_{2T} = - \frac{W \times \sin\theta \times \ell_{3}}{2 \times \ell_{0}}$ $P_{3} = + \frac{W \times \cos\theta}{4} - \frac{W \times \cos\theta \times \ell_{2}}{2 \times \ell_{0}}$ $+ \frac{W \times \cos\theta \times \ell_{3}}{2 \times \ell_{1}} - \frac{W \times \sin\theta \times h_{1}}{2 \times \ell_{0}}$ $P_{3T} = - \frac{W \times \sin\theta \times \ell_{3}}{2 \times \ell_{0}}$ $P_{4} = + \frac{W \times \cos\theta}{4} + \frac{W \times \cos\theta \times \ell_{2}}{2 \times \ell_{0}}$ $+ \frac{W \times \cos\theta \times \ell_{3}}{2 \times \ell_{1}} + \frac{W \times \sin\theta \times h_{1}}{2 \times \ell_{0}}$ $P_{4T} = + \frac{W \times \sin\theta \times \ell_{3}}{2 \times \ell_{0}}$
8	• Horizontalmontage mit Trägheitskräften • Horizontalmontage mit Trägheitskräften P- (mm/s) Geschwindigkeit v1 Erdbeschleunigung: g (9,8 x 103 mm/s2) Geschwindigkeitsdiagramm	Beschleunigung $P_{1} = P_{4} = \frac{W}{4} - \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{1}} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{2} = P_{3} = + \frac{W}{4} + \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{1}} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{1T} = P_{4T} = \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{1}} \times \frac{\ell_{3}}{\ell_{0}}$ $P_{2T} = P_{3T} = -\frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{1}} \times \frac{\ell_{3}}{\ell_{0}}$ konstante Geschwindigkeit $P_{1} \sim P_{4} = \frac{W}{4}$ $Verzögerung$ $P_{1} = P_{4} = \frac{W}{4} + \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{3}} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{2} = P_{3} = \frac{W}{4} - \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{3}} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{1T} = P_{4T} = -\frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{3}} \times \frac{\ell_{3}}{\ell_{0}}$ $P_{2T} = P_{3T} = \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{3}} \times \frac{\ell_{3}}{\ell_{0}}$

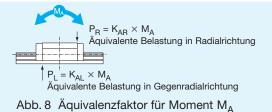


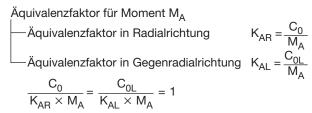
Beispiel	Einsatzbedingung	Formeln zur Belastungsberechnung
	Vertikalmontage mit Trägheitskräften	Beschleunigung
9	$\begin{array}{c} \text{P} \\ $	$\begin{split} & P_{1} = P_{4} = -\frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} - \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{1}} \times \frac{\ell_{2}}{\ell_{0}} \\ & P_{2} = P_{3} = \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} + \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{1}} \times \frac{\ell_{2}}{\ell_{0}} \\ & P_{1T} = P_{4T} = \frac{W}{2} \times \frac{\ell_{3}}{\ell_{0}} + \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{1}} \times \frac{\ell_{3}}{\ell_{0}} \\ & P_{2T} = P_{3T} = -\frac{W}{2} \times \frac{\ell_{3}}{\ell_{0}} - \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{1}} \times \frac{\ell_{3}}{\ell_{0}} \\ & Konstante Geschwindigkeit \\ & P_{1} = P_{4} = -\frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} \\ & P_{2} = P_{3} = \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} \\ & P_{1T} = P_{4T} = \frac{W}{2} \times \frac{\ell_{3}}{\ell_{0}} \\ & Verzögerung \\ & P_{1} = P_{4} = -\frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} + \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{3}} \times \frac{\ell_{2}}{\ell_{0}} \\ & P_{2} = P_{3} = \frac{W}{2} \times \frac{\ell_{2}}{\ell_{0}} - \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{3}} \times \frac{\ell_{2}}{\ell_{0}} \\ & P_{1T} = P_{4T} = \frac{W}{2} \times \frac{\ell_{3}}{\ell_{0}} - \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{3}} \times \frac{\ell_{3}}{\ell_{0}} \\ & P_{1T} = P_{4T} = \frac{W}{2} \times \frac{\ell_{3}}{\ell_{0}} - \frac{W}{2} \times \frac{1}{g} \times \frac{V_{1}}{t_{3}} \times \frac{\ell_{3}}{\ell_{0}} \end{split}$
	Erdbeschleunigung: g (9,8 x 10 ³ mm/s ²)	$P_{2T} = P_{3T} = -\frac{W}{2} \times \frac{\ell_3}{\ell_0} + \frac{W}{2} \times \frac{1}{g} \times \frac{V_1}{t_3} \times \frac{\ell_3}{\ell_0}$
10	Horizontalmontage mit Bearbeitungskräften PT	bei Bearbeitunskraft R ₁ $P_{1} = P_{4} = -\frac{R_{1}}{2} \times \frac{\ell_{5}}{\ell_{0}}$ $P_{2} = P_{3} = \frac{R_{1}}{2} \times \frac{\ell_{5}}{\ell_{0}}$ $P_{1T} = P_{4T} = -\frac{R_{1}}{2} \times \frac{\ell_{4}}{\ell_{0}}$ $P_{2T} = P_{3T} = \frac{R_{1}}{2} \times \frac{\ell_{4}}{\ell_{0}}$ bei Bearbeitunskraft R ₂ $P_{1} = P_{4} = \frac{R_{2}}{4} + \frac{R_{2}}{2} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{2} = P_{3} = \frac{R_{2}}{4} - \frac{R_{2}}{2} \times \frac{\ell_{2}}{\ell_{0}}$ bei Bearbeitunskraft R ₃ $P_{1} = P_{2} = \frac{R_{3}}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{3} = P_{4} = -\frac{R_{3}}{2} \times \frac{\ell_{3}}{\ell_{1}}$ $P_{1T} = P_{4T} = \frac{R_{3}}{4} + \frac{R_{3}}{2} \times \frac{\ell_{2}}{\ell_{0}}$ $P_{2T} = P_{3T} = \frac{R_{3}}{4} - \frac{R_{3}}{2} \times \frac{\ell_{2}}{\ell_{0}}$

Berechnung bei Einzelwagen und eng zusammengesetzten Wagen

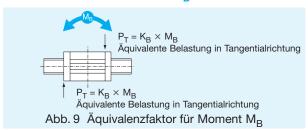
Linearführungen werden z.T. wegen beengter Einbauverhältnisse mit nur einem Führungswagen bzw. mit zwei zusammengesetzten Wagen eingesetzt. In diesen Fällen werden die äußeren Kugeln an den Wagenenden größerem Verschleiß ausgesetzt als die anderen Kugeln (siehe Abb. 7). Hier kann der Verschleiss durch Abblättern während des Betriebs an den am größten belasteten Stellen zunehmen und die berechnete Lebensdauer dementsprechend abnehmen. Daher müssen bei diesen Betriebsbedingungen die Momente mit den entsprechenden Äquivalenzfaktoren multipliziert werden (siehe Tab. 5 bis 13).

Mit der folgenden Formel wird die äquivalente Belastung ermittelt, wenn ein Moment auf die Linearführung wirkt.

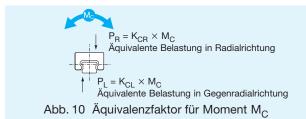

$$P = K \times M$$


P: äquivalente Belastung pro Wagen (N) K : Äquivalenzfaktor (mm-1)M: Moment (Nmm)

Äquivalenzfaktor


Einige Linearführungen haben unterschiedliche Tragzahlen pro Belastungsrichtung. In diesem Fall sind für gleiche Momente in MA- und MC-Richtung die Äquivalenzfaktoren für die Radial- bzw. Gegenradialrichtung unterschiedlich.

Äquivalenzfaktor für Moment M_A



Äquivalenzfaktor für Moment M_R

Äquivalenzfaktor für Moment M_R -Äquivalenzfaktor in Tangentialrichtung $\frac{C_{0T}}{K_{B} \times M_{B}} = 1$

Äquivalenzfaktor für Moment M_C

Äquivalenzfaktor für Moment M_C -Äquivalenzfaktor in Radialrichtung -Äquivalenzfaktor in Gegenradialrichtung $K_{CL} = \frac{C_{0L}}{M}$ $\frac{C_0}{K_{CR} \times M_C} = \frac{C_{0L}}{K_{CL} \times M_C} = 1$

C ₀ : Statische Tragzahl in Radialrichtung	(N)
C _{0L} : Statische Tragzahl in Gegenradialrichtung	(N)
C _{CT} : Statische Tragzahl in Tangentialrichtung	(N)
P _R : Belastung in Radialrichtung	(N)
P _I : Belastung in Gegenradialrichtung	(N)
P _T : Belastung in Tangentialrichtung	(N)

Tab. 5 Äquivalenzfaktoren SSR, SNR und SNS

Baureihe/				Äquivalen	zfaktoren			
-größe	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
SSR15XW(TB)	2,08×10 ⁻¹	1,04×10 ⁻¹	3,75×10 ⁻²	1,87×10 ⁻²	1,46×10 ⁻¹	2,59×10 ⁻²	1,71×10 ⁻¹	8,57×10 ⁻²
SSR15XV	3,19×10 ⁻¹	1,60×10 ⁻¹	5,03×10 ⁻²	2,51×10 ⁻²	2,20×10 ⁻¹	3,41×10 ⁻²	1,71×10 ⁻¹	8,57×10 ⁻²
SSR20XW(TB)	1,69×10 ⁻¹	8,46×10 ⁻²	3,23×10 ⁻²	1,62×10 ⁻²	1,19×10 ⁻¹	2,25×10 ⁻²	1,29×10 ⁻¹	6,44×10 ⁻²
SSR20XV	2,75×10 ⁻¹	1,37×10 ⁻¹	4,28×10 ⁻²	2,14×10 ⁻²	1,89×10 ⁻¹	2,89×10 ⁻²	1,29×10 ⁻¹	6,44×10 ⁻²
SSR25XW(TB)	1,41×10 ⁻¹	7,05×10 ⁻²	2,56×10 ⁻²	1,28×10 ⁻²	9,86×10 ⁻²	1,77×10 ⁻²	1,10×10 ⁻¹	5,51×10 ⁻²
SSR25XV	2,15×10 ⁻¹	1,08×10 ⁻¹	3,40×10 ⁻²	1,70×10 ⁻²	1,48×10 ⁻¹	2,31×10 ⁻²	1,10×10 ⁻¹	5,51×10 ⁻²
SSR30XW	1,18×10 ⁻¹	5,91×10 ⁻²	2,19×10 ⁻²	1,10×10 ⁻²	8,26×10 ⁻²	1,52×10 ⁻²	9,22×10 ⁻²	4,61×10 ⁻²
SSR35XW	1,01×10 ⁻¹	5,03×10 ⁻²	1,92×10 ⁻²	9,60×10 ⁻³	7,04×10 ⁻²	1,33×10 ⁻²	7,64×10 ⁻²	3,82×10 ⁻²
SNR25	1,16×10 ⁻¹	7,41×10 ⁻²	2,18×10 ⁻²	1,40×10 ⁻²	7,02×10 ⁻²	1,33×10 ⁻²	9,09×10 ⁻²	5,82×10 ⁻²
SNR25L	8,79×10 ⁻²	5,62×10 ⁻²	1,82×10 ⁻²	1,16×10 ⁻²	5,41×10 ⁻²	1,13×10 ⁻²	9,09×10 ⁻²	5,82×10 ⁻²
SNR30	1,02×10 ⁻¹	6,51×10 ⁻²	1,86×10 ⁻²	1,19×10 ⁻²	6,16×10 ⁻²	1,13×10 ⁻²	8,11×10 ⁻²	5,19×10 ⁻²
SNR30L	7,60×10 ⁻²	4,87×10 ⁻²	1,55×10 ⁻²	9,93×10 ⁻³	4,68×10 ⁻²	9,58×10 ⁻³	8,11×10 ⁻²	5,19×10 ⁻²
SNR35	8,92×10 ⁻²	5,71×10 ⁻²	1,67×10 ⁻²	1,07×10 ⁻²	5,40×10 ⁻²	1,01×10 ⁻²	6,73×10 ⁻²	4,31×10 ⁻²
SNR35L	7,01×10 ⁻²	4,48×10 ⁻²	1,37×10 ⁻²	8,79×10 ⁻³	4,27×10 ⁻²	8,41×10 ⁻³	6,73×10 ⁻²	4,31×10 ⁻²
SNR45	6,55×10 ⁻²	4,19×10 ⁻²	1,35×10 ⁻²	8,62×10 ⁻³	4,03×10 ⁻²	8,32×10 ⁻³	5,10×10 ⁻²	3,27×10 ⁻²
SNR45L	5,32×10 ⁻²	3,41×10 ⁻²	1,10×10 ⁻²	7,01×10 ⁻³	3,26×10 ⁻²	6,73×10 ⁻³	5,10×10 ⁻²	3,27×10 ⁻²
SNR55	5,85×10 ⁻²	3,74×10 ⁻²	1,13×10 ⁻²	7,24×10 ⁻³	3,56×10 ⁻²	6,92×10 ⁻³	4,36×10 ⁻²	2,79×10 ⁻²
SNR55L	4,55×10 ⁻²	2,91×10 ⁻²	9,36×10 ⁻³	5,99×10 ⁻³	2,79×10 ⁻²	5,75×10 ⁻³	4,36×10 ⁻²	2,79×10 ⁻²
SNR65	5,07×10 ⁻²	3,25×10 ⁻²	9,92×10 ⁻³	6,35×10 ⁻³	3,09×10 ⁻²	6,06×10 ⁻³	3,70×10 ⁻²	2,37×10 ⁻²
SNR65L	3,58×10 ⁻²	2,29×10 ⁻²	7,67×10 ⁻³	4,91×10 ⁻³	2,21×10 ⁻²	4,75×10 ⁻³	3,70×10 ⁻²	2,37×10 ⁻²
SNS25	1,12×10 ⁻¹	9,42×10 ⁻²	2,11×10 ⁻²	1,78×10 ⁻²	1,02×10 ⁻¹	1,91×10 ⁻²	9,41×10 ⁻²	7,90×10 ⁻²
SNS25L	8,52×10 ⁻²	7,16×10 ⁻²	1,77×10 ⁻²	1,48×10 ⁻²	7,73×10 ⁻²	1,60×10 ⁻²	9,41×10 ⁻²	7,90×10 ⁻²
SNS30	9,86×10 ⁻²	8,28×10 ⁻²	1,80×10 ⁻²	1,51×10 ⁻²	8,93×10 ⁻²	1,63×10 ⁻²	8,42×10 ⁻²	7,07×10 ⁻²
SNS30L	7,37×10 ⁻²	6,19×10 ⁻²	1,50×10 ⁻²	1,26×10 ⁻²	6,68×10 ⁻²	1,36×10 ⁻²	8,42×10 ⁻²	7,07×10 ⁻²
SNS35	8,64×10 ⁻²	7,26×10 ⁻²	1,61×10 ⁻²	1,36×10 ⁻²	7,83×10 ⁻²	1,46×10 ⁻²	7,01×10 ⁻²	5,89×10 ⁻²
SNS35L	6,80×10 ⁻²	5,71×10 ⁻²	1,33×10 ⁻²	1,12×10 ⁻²	6,17×10 ⁻²	1,21×10 ⁻²	7,01×10 ⁻²	5,89×10 ⁻²
SNS45	6,34×10 ⁻²	5,33×10 ⁻²	1,30×10 ⁻²	1,10×10 ⁻²	5,75×10 ⁻²	1,18×10 ⁻³	5,27×10 ⁻²	4,43×10 ⁻²
SNS45L	5,17×10 ⁻²	4,34×10 ⁻²	1,06×10 ⁻²	8,94×10 ⁻³	4,69×10 ⁻²	9,64×10 ⁻³	5,27×10 ⁻²	4,43×10 ⁻²
SNS55	5,67×10 ⁻²	4,76×10 ⁻²	1,10×10 ⁻²	9,22×10 ⁻³	5,14×10 ⁻²	9,94×10 ⁻³	4,52×10 ⁻²	3,80×10 ⁻²
SNS55L	4,42×10 ⁻²	3,72×10 ⁻²	9,09×10 ⁻³	7,64×10 ⁻³	4,01×10 ⁻²	8,24×10 ⁻³	4,52×10 ⁻²	3,80×10 ⁻²
SNS65	4,92×10 ⁻²	4,13×10 ⁻²	9,62×10 ⁻³	8,08×10 ⁻³	4,46×10 ⁻²	8,71×10 ⁻³	3,82×10 ⁻²	3,21×10 ⁻²
SNS65L	3,47×10 ⁻²	2,92×10 ⁻²	7,45×10 ⁻³	6,26×10 ⁻³	3,15×10 ⁻²	6,75×10 ⁻³	3,82×10 ⁻²	3,21×10 ⁻²

 ${
m K_{AR1}}$: Äquivalenzfaktor für 1 Wagen in ${
m M_A}$ -Radialrichtung ${
m K_{AL1}}$: Äquivalenzfaktor für 1 Wagen in ${
m M_A}$ -Gegenradialrichtung

K_{AR2}: Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A-Radialrichtung

K_{AL2}: Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A-Gegenradialrichtung

 ${\rm K_{B1}}\,$: Äquivalenzfaktor für 1 Wagen in ${\rm M_{B} ext{-}Richtung}$

K_{B2}: Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_B-Richtung

 $\rm K_{CR}$: Äquivalenzfaktor in $\rm M_{C}\text{-}Radialrichtung}$ $\rm K_{CL}$: Äquivalenzfaktor in $\rm M_{C}\text{-}Gegenradialrichtung}$

Tab. 6 Äquivalenzfaktoren SHS, SHW und SRS

Baureihe/		Äd	quivalenzfakto	ren					
-größe	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}	
SHS15		×10 ⁻¹	2,69	×10 ⁻²	1,38×10 ⁻¹	2,69×10 ⁻²	1,50	×10 ⁻¹	
SHS15L	1,07	×10 ⁻¹	2,22×10 ⁻²		1,07×10 ⁻¹	2,22×10 ⁻²	1,50	×10 ⁻¹	
SHS20	1,15	×10 ⁻¹	2,18	×10 ⁻²	1,15×10 ⁻¹	2,18×10 ⁻²	1,06	×10 ⁻¹	
SHS20L	8,85×10 ⁻²		1,79	×10 ⁻²	8,85×10 ⁻²	1,79×10 ⁻²	1,06	1,06×10 ⁻¹	
SHS25	9,25	×10 ⁻²	1,90	×10 ⁻²	9,25×10 ⁻²	1,90×10 ⁻²	9,29	9,29×10 ⁻²	
SHS25L	7,62	×10 ⁻²	1,62	×10 ⁻²	7,62×10 ⁻²	1,62×10 ⁻²	9,29	×10 ⁻²	
SHS30	8,47	×10 ⁻²	1,63	×10 ⁻²	8,47×10 ⁻²	1,63×10 ⁻²	7,69	×10 ⁻²	
SHS30L	6,52	×10 ⁻²	1,34	×10 ⁻²	6,52×10 ⁻²	1,34×10 ⁻²	7,69	×10 ⁻²	
SHS35	6,95	×10 ⁻²	1,43	×10 ⁻²	6,95×10 ⁻²	1,43×10 ⁻²	6,29	×10 ⁻²	
SHS35L	5,43	×10 ⁻²	1,16	×10 ⁻²	5,43×10 ⁻²	1,16×10 ⁻²	6,29	×10 ⁻²	
SHS45	6,13	×10 ⁻²	1,24	×10 ⁻²	6,13×10 ⁻²	1,24×10 ⁻²	4,69	×10 ⁻²	
SHS45L	4,79	×10 ⁻²	1,02	×10 ⁻²	4,79×10 ⁻²	1,02×10 ⁻²	4,69	×10 ⁻²	
SHS55	4,97	×10 ⁻²	1,02	×10 ⁻²	4,97×10 ⁻²	1,02×10 ⁻²	4,02	×10 ⁻²	
SHS55L	3,88×10 ⁻²		8,30	×10 ⁻³	3,88×10 ⁻²	8,30×10 ⁻³	4,02	×10 ⁻²	
SHS65	3,87	×10 ⁻²	7,91×10 ⁻³		3,87×10 ⁻²	7,91×10 ⁻³	3,40	×10 ⁻²	
SHS65L	3,06	×10 ⁻²	6,51×10 ⁻³		3,06×10 ⁻²	6,51×10 ⁻³	3,40	×10 ⁻²	
SHW12	2,48	×10 ⁻¹	4,69×10 ⁻²		2,48×10 ⁻¹	4,69×10 ⁻²	1,40	×10 ⁻¹	
SHW12L	1,70	×10 ⁻¹	3,52×10 ⁻²		1,70×10 ⁻¹	3,52×10 ⁻²	1,40	×10 ⁻¹	
SHW14	1,92	×10 ⁻¹	3,80	×10 ⁻²	1,92×10 ⁻¹	3,80×10 ⁻²	9,93	×10 ⁻²	
SHW17	1,72	×10 ⁻¹	3,41	×10 ⁻²	1,72×10 ⁻¹	3,41×10 ⁻²	6,21	×10 ⁻²	
SHW21	1,59	×10 ⁻¹	2,95	×10 ⁻²	1,59×10 ⁻¹	2,95×10 ⁻²	5,57	×10 ⁻²	
SHW27	1,21	×10 ⁻¹	2,39	×10 ⁻²	1,21×10 ⁻¹	2,39×10 ⁻²	4,99	×10 ⁻²	
SHW35	8,15	×10 ⁻²	1,64	×10 ⁻²	8,15×10 ⁻²	1,64×10 ⁻²	3,02	×10 ⁻²	
SHW50	6,22	×10 ⁻²	1,24	×10 ⁻²	6,22×10 ⁻²	1,24×10 ⁻²	2,30	×10 ⁻²	
SRS9	2,95	×10 ⁻¹	5,26	×10 ⁻²	3,04×10 ⁻¹	5,40×10 ⁻²	2,17	×10 ⁻¹	
SRS9W	2,37	×10 ⁻¹	4,25	×10 ⁻²	2,44×10 ⁻¹	4,37×10 ⁻²	1,06	×10 ⁻¹	
SRS12	2,94	×10 ⁻¹	4,50×10 ⁻²		2,94×10 ⁻¹	4,50×10 ⁻²	1,53	×10 ⁻¹	
SRS12W	2,00	×10 ⁻¹	3,69×10 ⁻²		2,00×10 ⁻¹	3,69×10 ⁻²	7,97×10 ⁻²		
SRS15	2,17	×10 ⁻¹	3,69×10 ⁻²		2,17×10 ⁻¹	3,69×10 ⁻²	1,41×10 ⁻¹		
SRS15W	1,67	×10 ⁻¹	2,94	×10 ⁻²	1,67×10 ⁻¹	2,94×10 ⁻²	4,83×10 ⁻²		
SRS20	1,80	×10 ⁻¹	3,30	×10 ⁻²	1,86×10 ⁻¹	3,41×10 ⁻²	9,34×10 ⁻²		
SRS25	1,14	×10 ⁻¹	2,17×10 ⁻²		1,14×10 ⁻¹	2,17×10 ⁻²	8,13	×10 ⁻²	

 ${
m K_{AR1}}$: Äquivalenzfaktor für 1 Wagen in ${
m M_A}$ -Radialrichtung ${
m K_{AL1}}$: Äquivalenzfaktor für 1 Wagen in ${
m M_A}$ -Gegenradialrichtung

 K_{AR2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Radialrichtung K_{AL2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Gegenradialrichtung

 ${\rm K_{B1}}\,$: Äquivalenzfaktor für 1 Wagen in ${\rm M_{B}}\text{-Richtung}$

 K_{B2}^- : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_B -Richtung

 ${
m K_{CR}}\,$: Äquivalenzfaktor in ${
m M_{C}}$ -Radialrichtung ${
m K_{CL}}\,$: Äquivalenzfaktor in ${
m M_{C}}$ -Gegenradialrichtung

Tab. 7 Äquivalenzfaktoren SRG, SRN und SR

Baureihe/		Ä	quivalenzfaktor	en				
-größe	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
SRG25	8,96>	×10 ⁻²	1,55	<10 ⁻²	8,96×10 ⁻²	1,55×10 ⁻²	7,23>	×10 ⁻²
SRG25L	6,99	×10 ⁻²	1,31	1,31×10 ⁻²		1,31×10 ⁻²	7,23×10 ⁻²	
SRG30	8,06>	×10 ⁻²	1,33	<10 ⁻²	8,06×10 ⁻²	1,33×10 ⁻²	5,61×10 ⁻²	
SRG30L	6,12	×10 ⁻²	1,112	<10 ⁻²	6,12×10 ⁻²	1,11×10 ⁻²	5,61×10 ⁻²	
SRG35	7,14>	×10 ⁻²	1,18	<10 ⁻²	7,14×10 ⁻²	1,18×10 ⁻²	4,98>	×10 ⁻²
SRG35L	5,26>	×10 ⁻²	9,67	<10 ⁻³	5,26×10 ⁻²	9,67×10 ⁻³	4,98>	<10 ⁻²
SRG45	5,49>	×10 ⁻²	9,58	<10 ⁻³	5,49×10 ⁻²	9,58×10 ⁻³	3,85>	×10 ⁻²
SRG45L	4,18	×10 ⁻²	7,93	<10 ⁻³	4,18×10 ⁻²	7,93×10 ⁻³	3,85>	×10 ⁻²
SRG55	4,56	×10 ⁻²	8,04	<10 ⁻³	4,56×10 ⁻²	8,04×10 ⁻³	3,25>	×10 ⁻²
SRG55L	3,37	×10 ⁻²	6,42	<10 ⁻³	3,37×10 ⁻²	6,42×10 ⁻³	3,25>	×10 ⁻²
SRG65L	2,63	×10 ⁻²	4,97	<10 ⁻³	2,63×10 ⁻²	4,97×10 ⁻³	2,70>	×10 ⁻²
SRN35	7,14	×10 ⁻²	1,18×10 ⁻²		7,14×10 ⁻²	1,18×10 ⁻²	4,98×10 ⁻²	
SRN35L	5,26×10 ⁻²		9,67×10 ⁻³		5,26×10 ⁻²	9,67×10 ⁻³	4,98×10 ⁻²	
SRN45	5,49>	×10 ⁻²	9,58×10 ⁻³		5,49×10 ⁻²	9,58×10 ⁻³	3,85>	×10 ⁻²
SRN45L	4,18	×10 ⁻²	7,93×10 ⁻³		4,18×10 ⁻²	7,93×10 ⁻³	3,85×10 ⁻²	
SRN55	4,56	×10 ⁻²	8,04×10 ⁻³		4,56×10 ⁻²	8,04×10 ⁻³	3,25>	<10 ⁻²
SRN55L	3,37	×10 ⁻²	6,42×10 ⁻³		3,37×10 ⁻²	6,42×10 ⁻³	3,25>	×10 ⁻²
SRN65L	2,63	×10 ⁻²	4,97×10 ⁻³		2,63×10 ⁻²	4,97×10 ⁻³	2,70>	<10 ⁻²
SR15W(TB)	2,09×10 ⁻¹	1,04×10 ⁻¹	3,74×10 ⁻²	1,87×10 ⁻²	1,46×10 ⁻¹	2,58×10 ⁻²	1,70×10 ⁻¹	8,48×10 ⁻²
SR15V(SB)	3,40×10 ⁻¹	1,70×10 ⁻¹	4,94×10 ⁻²	2,47×10 ⁻²	2,35×10 ⁻¹	3,32×10 ⁻²	1,70×10 ⁻¹	8,48×10 ⁻²
SR20W(TB)	1,72×10 ⁻¹	8,61×10 ⁻²	3,24×10 ⁻²	1,62×10 ⁻²	1,21×10 ⁻¹	2,25×10 ⁻²	1,30×10 ⁻¹	6,49×10 ⁻²
SR20V(SB)	2,72×10 ⁻¹	1,36×10 ⁻¹	4,33×10 ⁻²	2,16×10 ⁻²	1,88×10 ⁻¹	2,94×10 ⁻²	1,30×10 ⁻¹	6,49×10 ⁻²
SR25W(TB)	1,38×10 ⁻¹	6,89×10 ⁻²	2,59×10 ⁻²	1,30×10 ⁻²	9,67×10 ⁻²	1,80×10 ⁻²	1,11×10 ⁻¹	5,55×10 ⁻²
SR25V(SB)	2,17×10 ⁻¹	1,09×10 ⁻¹	3,46×10 ⁻²	1,73×10 ⁻²	1,51×10 ⁻¹	2,35×10 ⁻²	1,11×10 ⁻¹	5,55×10 ⁻²
SR30W(TB)	1,15×10 ⁻¹	5,74×10 ⁻²	2,22×10 ⁻²	1,11×10 ⁻²	8,06×10 ⁻²	1,55×10 ⁻²	9,22×10 ⁻²	4,61×10 ⁻²
SR30V(SB)	1,99×10 ⁻¹	9,93×10 ⁻²	2,99×10 ⁻²	1,49×10 ⁻²	1,37×10 ⁻¹	2,02×10 ⁻²	9,22×10 ⁻²	4,61×10 ⁻²
SR35W(TB)	1,04×10 ⁻¹	5,21×10 ⁻²	1,92×10 ⁻²	9,61×10 ⁻³	7,31×10 ⁻²	1,33×10 ⁻²	7,64×10 ⁻²	3,82×10 ⁻²
SR35V(SB)	1,70×10 ⁻¹	8,51×10 ⁻²	2,61×10 ⁻²	1,31×10 ⁻²	1,17×10 ⁻¹	1,77×10 ⁻²	7,64×10 ⁻²	3,82×10 ⁻²
SR45W(TB)	9,12×10 ⁻²	4,56×10 ⁻²	1,69×10 ⁻²	8,47×10 ⁻³	6,39×10 ⁻²	1,17×10 ⁻²	5,71×10 ⁻²	2,85×10 ⁻²
SR55W(TB)	6,89×10 ⁻²	3,44×10 ⁻²	1,39×10 ⁻²	6,93×10 ⁻³	4,84×10 ⁻²	9,66×10 ⁻³	5,46×10 ⁻²	2,73×10 ⁻²

 K_{AR1} : Äquivalenzfaktor für 1 Wagen in M_A -Radialrichtung

 K_{AL1} : Äquivalenzfaktor für 1 Wagen in M_A -Gegenradialrichtung

 K_{AR2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Radialrichtung K_{AL2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Gegenradialrichtung

 ${\rm K_{B1}}\,$: Äquivalenzfaktor für 1 Wagen in ${\rm M_{B} ext{-}Richtung}$

 ${\rm K_{B2}}\,$: Äquivalenzfaktor für 2 zusammengesetzte Wagen in ${\rm M_B ext{-}Richtung}$

 $\rm K_{CR}$: Äquivalenzfaktor in $\rm M_{C}\text{-}Radialrichtung}$ $\rm K_{CL}$: Äquivalenzfaktor in $\rm M_{C}\text{-}Gegenradialrichtung}$

Tab. 8 Äquivalenzfaktoren NR und NRS

Baureihe/				Äquivalen	zfaktoren			
-größe	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
NR25X	1,10×10 ⁻¹	7,78×10 ⁻²	2,19×10 ⁻²	1,55×10 ⁻²	8,11×10 ⁻²	1,63×10 ⁻²	9,26×10 ⁻²	6,58×10 ⁻²
NR25XL	8,91×10 ⁻²	6,33×10 ⁻²	1,79×10 ⁻²	1,27×10 ⁻²	6,55×10 ⁻²	1,33×10 ⁻²	9,26×10 ⁻²	6,58×10 ⁻²
NR30	9,66×10 ⁻²	6,86×10 ⁻²	1,84×10 ⁻²	1,31×10 ⁻²	7,05×10 ⁻²	1,35×10 ⁻²	8,28×10 ⁻²	5,88×10 ⁻²
NR30L	7,43×10 ⁻²	5,27×10 ⁻²	1,52×10 ⁻²	1,08×10 ⁻²	5,47×10 ⁻²	1,13×10 ⁻²	8,28×10 ⁻²	5,88×10 ⁻²
NR35	8,82×10 ⁻²	6,26×10 ⁻²	1,64×10 ⁻²	1,16×10 ⁻²	6,42×10 ⁻²	1,20×10 ⁻²	6,92×10 ⁻²	4,91×10 ⁻²
NR35L	6,67×10 ⁻²	4,74×10 ⁻²	1,35×10 ⁻²	9,61×10 ⁻³	4,90×10 ⁻²	1,00×10 ⁻²	6,92×10 ⁻²	4,91×10 ⁻²
NR45	6,84×10 ⁻²	4,86×10 ⁻²	1,30×10 ⁻²	9,23×10 ⁻³	5,00×10 ⁻²	9,58×10 ⁻³	5,19×10 ⁻²	3,68×10 ⁻²
NR45L	5,11×10 ⁻²	3,62×10 ⁻²	1,08×10 ⁻²	7,66×10 ⁻³	3,79×10 ⁻²	8,07×10 ⁻³	5,19×10 ⁻²	3,68×10 ⁻²
NR55	5,75×10 ⁻²	4,08×10 ⁻²	1,11×10 ⁻²	7,90×10 ⁻³	4,21×10 ⁻²	8,21×10 ⁻³	4,44×10 ⁻²	3,15×10 ⁻²
NR55L	4,53×10 ⁻²	3,22×10 ⁻²	9,16×10 ⁻³	6,51×10 ⁻³	3,34×10 ⁻²	6,79×10 ⁻³	4,44×10 ⁻²	3,15×10 ⁻²
NR65	4,97×10 ⁻²	3,53×10 ⁻²	9,74×10 ⁻³	6,91×10 ⁻³	3,64×10 ⁻²	7,18×10 ⁻³	3,75×10 ⁻²	2,66×10 ⁻²
NR65L	3,56×10 ⁻²	2,53×10 ⁻²	7,51×10 ⁻³	5,33×10 ⁻³	2,65×10 ⁻²	5,61×10 ⁻³	3,75×10 ⁻²	2,66×10 ⁻²
NR75	4,21×10 ⁻²	2,99×10 ⁻²	8,31×10 ⁻³	5,90×10 ⁻³	3,08×10 ⁻²	6,13×10 ⁻³	3,16×10 ⁻²	2,24×10 ⁻²
NR75L	3,14×10 ⁻²	2,23×10 ⁻²	6,74×10 ⁻³	4,78×10 ⁻³	2,33×10 ⁻²	5,04×10 ⁻³	3,16×10 ⁻²	2,24×10 ⁻²
NR85	3,70×10 ⁻²	2,62×10 ⁻²	7,31×10 ⁻³	5,19×10 ⁻³	2,71×10 ⁻²	5,40×10 ⁻³	2,80×10 ⁻²	1,99×10 ⁻²
NR85L	2,80×10 ⁻²	1,99×10 ⁻²	6,07×10 ⁻³	4,31×10 ⁻³	2,08×10 ⁻²	4,55×10 ⁻³	2,80×10 ⁻²	1,99×10 ⁻²
NR100	3,05×10 ⁻²	2,17×10 ⁻²	6,20×10 ⁻³	4,41×10 ⁻³	2,26×10 ⁻²	4,63×10 ⁻³	2,38×10 ⁻²	1,69×10 ⁻²
NR100L	2,74×10 ⁻²	1,95×10 ⁻²	5,46×10 ⁻³	3,87×10 ⁻³	2,00×10 ⁻²	4,00×10 ⁻³	2,38×10 ⁻²	1,69×10 ⁻²
NRS25X	1,05>	<10 ⁻¹	2,11>	<10 ⁻²	1,05×10 ⁻¹	2,11×10 ⁻²	9,41>	<10 ⁻²
NRS25XL	8,60>	<10 ⁻²	1,73×10 ⁻²		8,60×10 ⁻²	1,73×10 ⁻²	9,41×10 ⁻²	
NRS30	9,30>	<10 ⁻²	1,77×10 ⁻²		9,30×10 ⁻²	1,77×10 ⁻²	8,44>	<10 ⁻²
NRS30L	7,17>	<10 ⁻²	1,47×10 ⁻²		7,17×10 ⁻²	1,47×10 ⁻²	8,44>	<10 ⁻²
NRS35	8,47>	<10 ⁻²	1,57>	<10 ⁻²	8,47×10 ⁻²	1,57×10 ⁻²	7,08>	<10 ⁻²
NRS35L	6,44>	<10 ⁻²	1,31>	<10 ⁻²	6,44×10 ⁻²	1,31×10 ⁻²	7,08>	<10 ⁻²
NRS45	6,58>	<10 ⁻²	1,25>	<10 ⁻²	6,58×10 ⁻²	1,25×10 ⁻²	5,26>	<10 ⁻²
NRS45L	4,92>	<10 ⁻²	1,04>	<10 ⁻²	4,92×10 ⁻²	1,04×10 ⁻²	5,26>	<10 ⁻²
NRS55	5,54>	<10 ⁻²	1,07>	<10 ⁻²	5,54×10 ⁻²	1,07×10 ⁻²	4,52>	<10 ⁻²
NRS55L	4,38>	<10 ⁻²	8,85>	<10 ⁻³	4,38×10 ⁻²	8,85×10 ⁻³	4,52>	<10 ⁻²
NRS65				<10 ⁻³	4,79×10 ⁻²	9,38×10 ⁻³	3,81>	<10 ⁻²
NRS65L	3,43>	3,43×10 ⁻² 7,2		<10 ⁻³	3,43×10 ⁻²	7,25×10 ⁻³	3,81>	<10 ⁻²
NRS75	4,50×10 ⁻²		8,01>	<10 ⁻³	4,05×10 ⁻²	8,01×10 ⁻³	3,20>	<10 ⁻²
NRS75L	3,03×10 ⁻²		6,50>	<10 ⁻³	3,03×10 ⁻²	6,50×10 ⁻³	3,20>	<10 ⁻²
NRS85	3,56×10 ⁻²		7,05>	<10 ⁻³	3,56×10 ⁻²	7,05×10 ⁻³	2,83×10 ⁻²	
NRS85L	2,70>		5,87>	<10 ⁻³	2,70×10 ⁻²	5,87×10 ⁻³	2,83×10 ⁻²	
NRS100	2,93>		5,97>	<10 ⁻³	2,93×10 ⁻²	5,97×10 ⁻³	2,41>	<10 ⁻²
NRS100L	2,65>	×10 ⁻²	5,27>	<10 ⁻³	2,65×10 ⁻²	5,27×10 ⁻³	2,41>	<10 ⁻²

 K_{AR1} : Äquivalenzfaktor für 1 Wagen in M_A -Radialrichtung

 K_{AL1} : Äquivalenzfaktor für 1 Wagen in M_A -Gegenradialrichtung K_{AR2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Radialrichtung ${\rm K_{AL2}}$: Äquivalenzfaktor für 2 zusammengesetzte Wagen in ${\rm M_A}$ -Gegenradialrichtung

 ${\rm K_{B1}}\,$: Äquivalenzfaktor für 1 Wagen in ${\rm M_{B} ext{-}Richtung}$

 ${\sf K}_{\sf B2}^{-}$: Äquivalenzfaktor für 2 zusammengesetzte Wagen in ${\sf M}_{\sf B}$ -Richtung

 ${\rm K_{\rm CR}}$: Äquivalenzfaktor in ${\rm M_{\rm C}\text{-}Radial richtung}$ ${\rm K_{CL}}\,$: Äquivalenzfaktor in ${\rm M_{C}}$ -Gegenradialrichtung

Tab. 9 Äquivalenzfaktoren HSR, JR und CSR

Baureihe/	Äquivalenzfaktoren						
-größe	K _{AR1} K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
HSR8	4,39×10 ⁻¹	6,75×	10 ⁻²	4,39×10 ⁻¹	6,75×10 ⁻²	2,97×	10 ⁻¹
HSR10	3,09×10 ⁻¹	5,33×	10 ⁻²	3,09×10 ⁻¹	5,33×10 ⁻²	2,35×	10 ⁻¹
HSR12	2,08×10 ⁻¹	3,74×	3,74×10 ⁻²		3,74×10 ⁻²	1,91×	10 ⁻¹
HSR15	1,68×10 ⁻¹	2,95×	10 ⁻²	1,68×10 ⁻¹	2,95×10 ⁻²	1,60×	10 ⁻¹
HSR20	1,25×10 ⁻¹	2,28×	10 ⁻²	1,25×10 ⁻¹	2,28×10 ⁻²	1,18×	10 ⁻¹
HSR20L	9,83×10 ⁻²	1,91×	10 ⁻²	9,83×10 ⁻²	1,91×10 ⁻²	1,18×	10 ⁻¹
HSR25	1,12×10 ⁻¹	2,01×	10 ⁻²	1,12×10 ⁻¹	2,01×10 ⁻²	1,00×	10 ⁻¹
HSR25L	8,66×10 ⁻²	1,68×	10 ⁻²	8,66×10 ⁻²	1,68×10 ⁻²	1,00×	10 ⁻¹
HSR30	8,93×10 ⁻²	1,73×	10 ⁻²	8,93×10 ⁻²	1,73×10 ⁻²	8,31×	10 ⁻²
HSR30L	7,02×10 ⁻²	1,43×	10 ⁻²	7,02×10 ⁻²	1,43×10 ⁻²	8,31×	10 ⁻²
HSR35	7,81×10 ⁻²	1,55×	10 ⁻²	7,81×10 ⁻²	1,55×10 ⁻²	6,74×	10 ⁻²
HSR35L	6,15×10 ⁻²	1,28×	10 ⁻²	6,15×10 ⁻²	1,28×10 ⁻²	6,74×	10 ⁻²
HSR45	6,71×10 ⁻²	1,21×	10 ⁻²	6,71×10 ⁻²	1,21×10 ⁻²	5,22×	10 ⁻²
HSR45L	5,20×10 ⁻²	1,00×	10 ⁻²	5,20×10 ⁻²	1,00×10 ⁻²	5,22×	10 ⁻²
HSR55	5,59×10 ⁻²	1,03×	10 ⁻²	5,59×10 ⁻²	1,03×10 ⁻²	4,27×	10 ⁻²
HSR55L	4,33×10 ⁻²	8,56×	10 ⁻³	4,33×10 ⁻²	8,56×10 ⁻³	4,27×	10 ⁻²
HSR65	4,47×10 ⁻²	9,13×	9,13×10 ⁻³		9,13×10 ⁻³	3,69×	10 ⁻²
HSR65L	3,28×10 ⁻²	7,06×	10 ⁻³	3,28×10 ⁻²	7,06×10 ⁻³	3,69×	10 ⁻²
HSR85	3,73×10 ⁻²	6,80×	6,80×10 ⁻³		6,80×10 ⁻³	2,79×	10 ⁻²
HSR85L	2,89×10 ⁻²	5,68×	10 ⁻³	2,89×10 ⁻²	5,68×10 ⁻³	2,79×	10 ⁻²
HSR100	2,60×10 ⁻²	5,15×	10 ⁻³	2,60×10 ⁻²	5,15×10 ⁻³	2,25×	10 ⁻²
HSR120	2,36×10 ⁻²	4,72×	10 ⁻³	2,36×10 ⁻²	4,72×10 ⁻³	1,97×	10 ⁻²
HSR150	2,17×10 ⁻²	4,35×	10 ⁻³	2,17×10 ⁻²	4,35×10 ⁻³	1,61×	10 ⁻²
HSR15M2A	1,65×10 ⁻¹	2,89×	10 ⁻²	1,65×10 ⁻¹	2,89×10 ⁻²	1,86×	10 ⁻¹
HSR20M2A	1,23×10 ⁻¹	2,23×	10 ⁻²	1,23×10 ⁻¹	2,23×10 ⁻²	1,34×	10 ⁻¹
HSR25M2A	1,10×10 ⁻¹	1,98×	10 ⁻²	1,10×10 ⁻¹	1,98×10 ⁻²	1,14×	10 ⁻¹
JR25	1,12×10 ⁻¹	2,01×	10 ⁻²	1,12×10 ⁻¹	2,01×10 ⁻²	1,00×	10 ⁻¹
JR35	7,81×10 ⁻²	1,55×	10 ⁻²	7,81×10 ⁻²	1,55×10 ⁻²	6,74×	10 ⁻²
JR45	6,71×10 ⁻²	1,21×	10 ⁻²	6,71×10 ⁻²	1,21×10 ⁻²	5,22×	10 ⁻²
JR55	5,59×10 ⁻²	1,03×		5,59×10 ⁻²	1,03×10 ⁻²	4,27×	10 ⁻²
CSR15	1,68×10 ⁻¹	2,95×	10 ⁻²	1,68×10 ⁻¹	2,95×10 ⁻²	1,60×	10 ⁻¹
CSR20S	1,25×10 ⁻¹	2,28×	2,28×10 ⁻²		2,28×10 ⁻²	1,18×	10 ⁻¹
CSR20	9,83×10 ⁻²	1,91×	10 ⁻²	9,83×10 ⁻²	1,91×10 ⁻²	1,18×	10 ⁻¹
CSR25S	1,12×10 ⁻¹	2,01×	10 ⁻²	1,12×10 ⁻¹	2,01×10 ⁻²	1,00×	10 ⁻¹
CSR25	8,66×10 ⁻²	1,68×	10 ⁻²	8,66×10 ⁻²	1,68×10 ⁻²	1,00×	
CSR30S	8,93×10 ⁻²	1,73×	10 ⁻²	8,93×10 ⁻²	1,73×10 ⁻²	8,31×10 ⁻²	
CSR30	7,02×10 ⁻²	1,43×	10 ⁻²	7,02×10 ⁻²	1,43×10 ⁻²	8,31×	10 ⁻²
CSR35	6,15×10 ⁻²	1,28×	10 ⁻²	6,15×10 ⁻²	1,28×10 ⁻²	6,74×	
CSR45	5,20×10 ⁻²	1,00×	10 ⁻²	5,20×10 ⁻²	1,00×10 ⁻²	5,22×	10 ⁻²

 ${\rm K_{AL2}}$: Äquivalenzfaktor für 2 zusammengesetzte Wagen in ${\rm M_A}$ -Gegenradialrichtung

 ${\rm K_{B1}}\,$: Äquivalenzfaktor für 1 Wagen in ${\rm M_{B} ext{-}Richtung}$

 $K_{\rm B2}^{-}$: Äquivalenzfaktor für 2 zusammengesetzte Wagen in $M_{\rm B}$ -Richtung

 \mathbf{K}_{CR} : Äquivalenzfaktor in $\mathbf{M}_{\mathrm{C}}\text{-Radialrichtung}$ K_{CL} : Äquivalenzfaktor in M_{C} -Gegenradialrichtung

Tab. 10 Äquivalenzfaktoren HRW, GSR und HR

Baureihe/				Äquivalen	zfaktoren			
-größe	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
HRW12	2,72	×10 ⁻¹	5,16	×10 ⁻²	5,47×10 ⁻¹	1,04×10 ⁻¹	1,40>	×10 ⁻¹
HRW14	2,28	×10 ⁻¹	4,16	×10 ⁻²	4,54×10 ⁻¹	8,28×10 ⁻²	1,01>	≺10 ⁻¹
HRW17	1,95	×10 ⁻¹	3,33	×10 ⁻²	1,95×10 ⁻¹	3,33×10 ⁻²	6,32>	×10 ⁻²
HRW21	1,64	×10 ⁻¹	2,89	×10 ⁻²	1,64×10 ⁻¹	2,89×10 ⁻²	5,92>	×10 ⁻²
HRW27	1,30	×10 ⁻¹	2,33	×10 ⁻²	1,30×10 ⁻¹	2,33×10 ⁻²	5,12>	×10 ⁻²
HRW35	8,66	×10 ⁻²	1,59	×10 ⁻²	8,66×10 ⁻²	1,59×10 ⁻²	3,06>	×10 ⁻²
HRW50	6,50	×10 ⁻²	1,21	×10 ⁻²	6,50×10 ⁻²	1,21×10 ⁻²	2,35>	×10 ⁻²
HRW60	5,77	×10 ⁻²	8,24	×10 ⁻³	5,77×10 ⁻²	8,24×10 ⁻³	1,77>	<10 ⁻²
GSR15T	1,61×10 ⁻¹	1,44×10 ⁻¹	2,88×10 ⁻²	2,59×10 ⁻²	1,68×10 ⁻¹	3,01×10 ⁻²	_	
GSR15V	2,21×10 ⁻¹	1,99×10 ⁻¹	3,54×10 ⁻²	3,18×10 ⁻²	2,30×10 ⁻¹	3,68×10 ⁻²	_	_
GSR20T	1,28×10 ⁻¹	1,16×10 ⁻¹	2,34×10 ⁻²	2,10×10 ⁻²	1,34×10 ⁻¹	2,44×10 ⁻²	_	
GSR20V	1,77×10 ⁻¹	1,59×10 ⁻¹	2,87×10 ⁻²	2,58×10 ⁻²	1,84×10 ⁻¹	2,99×10 ⁻²	_	
GSR25T	1,07×10 ⁻¹	9,63×10 ⁻²	1,97×10 ⁻²	1,77×10 ⁻²	1,12×10 ⁻¹	2,06×10 ⁻²	_	
GSR25V	1,47×10 ⁻¹	1,33×10 ⁻¹	2,42×10 ⁻²	2,18×10 ⁻²	1,53×10 ⁻¹	2,52×10 ⁻²	_	_
GSR30T	9,17×10 ⁻²	8,26×10 ⁻²	1,68×10 ⁻²	1,51×10 ⁻²	9,59×10 ⁻²	1,76×10 ⁻²	_	
GSR35T	8,03×10 ⁻²	7,22×10 ⁻²	1,48×10 ⁻²	1,33×10 ⁻²	8,39×10 ⁻²	1,55×10 ⁻²	_	_
HR918	2,65×10 ⁻¹	2,65×10 ⁻¹	_	_	2,65×10 ⁻¹	_	_	
HR1123	2,08×10 ⁻¹	2,08×10 ⁻¹	_	_	2,08×10 ⁻¹	_	_	_
HR1530	1,56×10 ⁻¹	1,56×10 ⁻¹			1,56×10 ⁻¹		_	
HR2042	1,11×10 ⁻¹	1,11×10 ⁻¹	_	_	1,11×10 ⁻¹	_	_	_
HR2042T	8,64×10 ⁻²	8,64×10 ⁻²	_	_	8,64×10 ⁻²	_	_	
HR2555	7,79×10 ⁻²	7,79×10 ⁻²	_	_	7,79×10 ⁻²	_	_	_
HR2555T	6,13×10 ⁻²	6,13×10 ⁻²			6,13×10 ⁻²	_	_	
HR3065	6,92×10 ⁻²	6,92×10 ⁻²			6,92×10 ⁻²		_	
HR3065T	5,45×10 ⁻²	5,45×10 ⁻²			5,45×10 ⁻²	_	_	
HR3575	6,23×10 ⁻²	6,23×10 ⁻¹	_	_	6,23×10 ⁻²	_	_	
HR3575T	4,90×10 ⁻²	4,90×10 ⁻²			4,90×10 ⁻²		_	
HR4085	5,19×10 ⁻²	5,19×10 ⁻²	_	_	5,19×10 ⁻²	_	_	_
HR4085T	4,09×10 ⁻²	4,09×10 ⁻²	_	_	4,09×10 ⁻²	_	_	
HR50105	4,15×10 ⁻²	4,15×10 ⁻²	_	_	4,15×10 ⁻²	_	_	_
HR50105T	3,27×10 ⁻²	3,27×10 ⁻²	_	_	3,27×10 ⁻²	_	_	
HR60125	2,88×10 ⁻²	2,88×10 ⁻²	_		2,88×10 ⁻²	_	_	_

 ${
m K_{AR1}}$: Äquivalenzfaktor für 1 Wagen in ${
m M_A}$ -Radialrichtung ${
m K_{AL1}}$: Äquivalenzfaktor für 1 Wagen in ${
m M_A}$ -Gegenradialrichtung

 K_{AR2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Radialrichtung K_{AL2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Gegenradialrichtung

 ${\rm K_{B1}}\,$: Äquivalenzfaktor für 1 Wagen in ${\rm M_{B}}\text{-Richtung}$

K_{B2}: Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_B-Richtung

 ${
m K_{CR}}$: Äquivalenzfaktor in ${
m M_{C}}$ -Radialrichtung ${
m K_{CL}}$: Äquivalenzfaktor in ${
m M_{C}}$ -Gegenradialrichtung

Tab. 11 Äquivalenzfaktoren RSR

Baureihe/	Äquivalenzfaktoren							
-größe	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
RSR3M	9,20	×10 ⁻¹	1,27>	<10 ⁻¹	9,20×10 ⁻¹	1,27×10 ⁻¹	6,06>	<10 ⁻¹
RSR3N	6,062	6,06×10 ⁻¹		1,01×10 ⁻¹		1,01×10 ⁻¹	6,06×10 ⁻¹	
RSR3W	7,03	×10 ⁻¹	1,06>	≺10 ⁻¹	7,03×10 ⁻¹	1,06×10 ⁻¹	3,17×10 ⁻¹	
RSR3WN	4,76	×10 ⁻¹	8,27>	≺10 ⁻²	4,76×10 ⁻¹	8,27×10 ⁻²	3,17×10 ⁻¹	
RSR5M	6,67	×10 ⁻¹	9,06>	×10 ⁻²	6,67×10 ⁻¹	9,06×10 ⁻²	3,85×10 ⁻¹	
RSR5N	5,21	×10 ⁻¹	8,00>	×10 ⁻²	5,21×10 ⁻¹	8,00×10 ⁻²	3,85>	<10 ⁻¹
RSR5W	4,85	×10 ⁻¹	7,28>	<10 ⁻²	4,85×10 ⁻¹	7,28×10 ⁻²	1,96>	<10 ⁻¹
RSR5WN	3,442	×10 ⁻¹	5,93>	×10 ⁻²	3,44×10 ⁻¹	5,93×10 ⁻²	1,96>	<10 ⁻¹
RSR7M	4,662	×10 ⁻¹	6,57>	×10 ⁻²	4,66×10 ⁻¹	6,57×10 ⁻²	2,74>	<10 ⁻¹
RSR7Z	4,662	×10 ⁻¹	6,60>	×10 ⁻²	4,66×10 ⁻¹	6,60×10 ⁻²	2,74>	<10 ⁻¹
RSR7N	2,883	×10 ⁻¹	5,01>	×10 ⁻²	2,88×10 ⁻¹	5,01×10 ⁻²	2,74>	<10 ⁻¹
RSR7W	3,07	×10 ⁻¹	5,30>	×10 ⁻²	3,07×10 ⁻¹	5,30×10 ⁻²	1,40>	<10 ⁻¹
RSR7WZ	3,30	×10 ⁻¹	5,12×10 ⁻²		3,30×10 ⁻¹	5,12×10 ⁻²	1,40>	<10 ⁻¹
RSR7WN	2,18×10 ⁻¹		4,13×10 ⁻²		2,18×10 ⁻¹	4,13×10 ⁻²	1,40×10 ⁻¹	
RSR9K	3,06×10 ⁻¹		5,19×10 ⁻²		3,06×10 ⁻¹	5,19×10 ⁻²	2,15×10 ⁻¹	
RSR9Z	3,063	×10 ⁻¹	5,23×10 ⁻²		3,06×10 ⁻¹	5,23×10 ⁻²	2,15>	<10 ⁻¹
RSR9N	2,15	×10 ⁻¹	4,08×10 ⁻²		2,15×10 ⁻¹	4,08×10 ⁻²	2,15>	<10 ⁻¹
RSR9WV	2,442	×10 ⁻¹	4,22×10 ⁻²		2,44×10 ⁻¹	4,22×10 ⁻²	1,09×10 ⁻¹	
RSR9WZ	2,442	×10 ⁻¹	4,22×10 ⁻²		2,44×10 ⁻¹	4,22×10 ⁻²	1,09×10 ⁻¹	
RSR9WN	1,73	×10 ⁻¹	3,32×10 ⁻²		1,73×10 ⁻¹	4,22×10 ⁻²	1,09>	<10 ⁻¹
RSR12V	3,52×10 ⁻¹	2,46×10 ⁻¹	5,37×10 ⁻²	3,76×10 ⁻²	2,81×10 ⁻¹	4,21×10 ⁻²	2,09×10 ⁻¹	1,46×10 ⁻¹
RSR12Z	3,52×10 ⁻¹	2,46×10 ⁻¹	5,37×10 ⁻²	3,76×10 ⁻²	2,81×10 ⁻¹	4,21×10 ⁻²	2,09×10 ⁻¹	1,46×10 ⁻¹
RSR12N	2,30×10 ⁻¹	1,61×10 ⁻¹	4,08×10 ⁻²	2,85×10 ⁻²	1,85×10 ⁻¹	3,25×10 ⁻²	2,09×10 ⁻¹	1,46×10 ⁻¹
RSR12WV	2,47×10 ⁻¹	1,73×10 ⁻¹	4,38×10 ⁻²	3,07×10 ⁻²	1,99×10 ⁻¹	3,49×10 ⁻²	1,02×10 ⁻¹	7,15×10 ⁻²
RSR12WZ	2,47×10 ⁻¹	1,73×10 ⁻¹	4,38×10 ⁻²	3,07×10 ⁻²	1,99×10 ⁻¹	3,49×10 ⁻²	1,02×10 ⁻¹	7,15×10 ⁻²
RSR12WN	1,71×10 ⁻¹	1,20×10 ⁻¹	3,36×10 ⁻²	2,35×10 ⁻²	1,38×10 ⁻¹	2,70×10 ⁻²	1,02×10 ⁻¹	7,15×10 ⁻²
RSR15V	2,77×10 ⁻¹	1,94×10 ⁻¹	4,38×10 ⁻²	3,07×10 ⁻²	2,21×10 ⁻¹	3,45×10 ⁻²	1,69×10 ⁻¹	1,18×10 ⁻¹
RSR15Z	2,77×10 ⁻¹	1,94×10 ⁻¹	4,38×10 ⁻²	3,07×10 ⁻²	2,21×10 ⁻¹	3,45×10 ⁻²	1,69×10 ⁻¹	1,18×10 ⁻¹
RSR15N	1,70×10 ⁻¹	1,19×10 ⁻¹	3,24×10 ⁻²	2,27×10 ⁻²	1,37×10 ⁻¹	2,59×10 ⁻²	1,69×10 ⁻¹	1,18×10 ⁻¹
RSR15WV	1,95×10 ⁻¹	1,36×10 ⁻¹	3,52×10 ⁻²	2,46×10 ⁻²	1,56×10 ⁻¹	2,80×10 ⁻²	5,83×10 ⁻²	4,08×10 ⁻²
RSR15WZ	1,95×10 ⁻¹	1,36×10 ⁻¹	3,52×10 ⁻²	2,46×10 ⁻²	1,56×10 ⁻¹	2,80×10 ⁻²	5,83×10 ⁻²	4,08×10 ⁻²
RSR15WN	1,34×10 ⁻¹	9,41×10 ⁻²	2,68×10 ⁻²	1,88×10 ⁻²	1,09×10 ⁻¹	2,16×10 ⁻²	5,82×10 ⁻²	4,08×10 ⁻²
RSR20V	1,68×10 ⁻¹	1,18×10 ⁻¹	2,92×10 ⁻²	2,04×10 ⁻²	1,35×10 ⁻¹	2,32×10 ⁻²	1,30×10 ⁻¹	9,13×10 ⁻²
RSR20N	1,20×10 ⁻¹	8,39×10 ⁻²	2,30×10 ⁻²	1,61×10 ⁻²	9,68×10 ⁻²	1,84×10 ⁻²	1,30×10 ⁻¹	9,13×10 ⁻²

 K_{AR1} : Äquivalenzfaktor für 1 Wagen in M_A -Radialrichtung K_{AL1} : Äquivalenzfaktor für 1 Wagen in M_A -Gegenradialrichtung

 K_{AR2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Radialrichtung

 K_{AL2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Gegenradialrichtung

 ${\rm K_{B1}}\,$: Äquivalenzfaktor für 1 Wagen in ${\rm M_{B} ext{-}Richtung}$

 $\rm K_{B2}\;$: Äquivalenzfaktor für 2 zusammengesetzte Wagen in $\rm M_B\text{-}Richtung$

 ${\rm K_{CR}}$: Äquivalenzfaktor in ${\rm M_{C}}\text{-Radialrichtung}$ ${\rm K_{CL}}\,$: Äquivalenzfaktor in ${\rm M_{C}}\text{-}{\rm Gegenradial richtung}$

Tab. 12 Äquivalenzfaktoren RSH, MX, NSR und KR

Baureihe/				Äquivalen	zfaktoren			
-größe	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
RSH7Z	4,66>	×10 ⁻¹	6,60	×10 ⁻²	4,66×10 ⁻¹	6,60×10 ⁻²	2,74>	<10 ⁻¹
RSH7WZ	3,30>	×10 ⁻¹	5,12	×10 ⁻²	3,30×10 ⁻¹	5,12×10 ⁻²	1,40>	<10 ⁻¹
RSH9Z	3,06>	×10 ⁻¹	5,23	×10 ⁻²	3,06×10 ⁻¹	5,23×10 ⁻²	2,15>	<10 ⁻¹
RSH9WZ	2,44>	×10 ⁻¹	4,22	×10 ⁻²	2,44×10 ⁻¹	4,22×10 ⁻²	1,09>	<10 ⁻¹
RSH12Z	3,52×10 ⁻¹	2,46×10 ⁻¹	5,37×10 ⁻²	3,76×10 ⁻²	2,81×10 ⁻¹	4,21×10 ⁻²	2,09×10 ⁻¹	1,46×10 ⁻¹
RSH12WZ	2,47×10 ⁻¹	1,73×10 ⁻¹	4,38×10 ⁻²	3,07×10 ⁻²	1,99×10 ⁻¹	3,49×10 ⁻²	1,02×10 ⁻¹	7,15×10 ⁻²
RSH15Z	2,77×10 ⁻¹	1,94×10 ⁻¹	4,38×10 ⁻²	3,07×10 ⁻²	2,21×10 ⁻¹	3,45×10 ⁻²	1,69×10 ⁻¹	1,18×10 ⁻¹
RSH15WZ	1,95×10 ⁻¹	1,36×10 ⁻¹	3,52×10 ⁻²	2,46×10 ⁻²	1,56×10 ⁻¹	2,80×10 ⁻²	5,83×10 ⁻²	4,08×10 ⁻²
MX5	4,27>	×10 ⁻¹	7,01×10 ⁻²		4,27×10 ⁻¹	7,01×10 ⁻²	3,85>	<10 ⁻²
MX7W	2,18>	×10 ⁻¹	4,13×10 ⁻¹		2,18×10 ⁻¹	4,13×10 ⁻¹	1,40>	<10 ⁻¹
NSR20TBC	2,29>	×10 ⁻¹	2,68	×10 ⁻²	2,29×10 ⁻¹	2,68×10 ⁻²	_	
NSR25TBC	2,01>	×10 ⁻¹	2,27	×10 ⁻²	2,01×10 ⁻¹	2,27×10 ⁻²	_	_
NSR30TBC	1,85>	×10 ⁻¹	1,93	×10 ⁻²	1,85×10 ⁻¹	1,93×10 ⁻²	_	
NSR40TBC	1,39×10 ⁻¹		1,60	×10 ⁻²	1,39×10 ⁻¹	1,60×10 ⁻²	_	_
NSR50TBC	1,24>	×10 ⁻¹	1,42	×10 ⁻²	1,24×10 ⁻¹	1,42×10 ⁻²	_	_
NSR70TBC	9,99>	×10 ⁻²	1,15	×10 ⁻²	9,99×10 ⁻²	1,15×10 ⁻²	_	_

 ${
m K_{AR1}}$: Äquivalenzfaktor für 1 Wagen in ${
m M_A}$ -Radialrichtung ${
m K_{AL1}}$: Äquivalenzfaktor für 1 Wagen in ${
m M_A}$ -Gegenradialrichtung

 K_{AR2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Radialrichtung K_{AL2} : Äquivalenzfaktor für 2 zusammengesetzte Wagen in M_A -Gegenradialrichtung

 ${\rm K_{B1}}\,$: Äquivalenzfaktor für 1 Wagen in ${\rm M_{B}}\text{-Richtung}$

 ${
m K}_{
m B2}\,$: Äquivalenzfaktor für 2 zusammengesetzte Wagen in ${
m M}_{
m B}$ -Richtung

 ${
m K_{CR}}\,$: Äquivalenzfaktor in ${
m M_{C}}$ -Radialrichtung ${
m K_{CL}}\,$: Äquivalenzfaktor in ${
m M_{C}}$ -Gegenradialrichtung

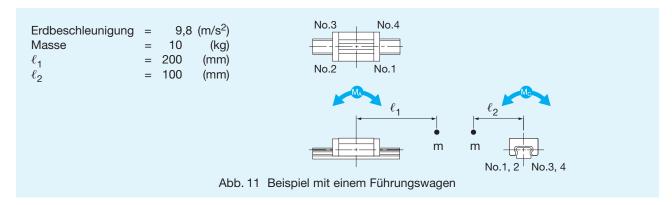
Tab. 13 Äquivalenzfaktoren KR

Einheit: mm⁻¹

Baugröße	K,	K _B	K _c
KR15 - A	3,20×10 ⁻¹	3,20×10 ⁻¹	9,09×10 ⁻²
KR15 - B	5,96×10 ⁻²	5,96×10 ⁻²	9,09×10 ⁻²
KR20 - A	2,40×10 ⁻¹	2,40×10 ⁻¹	7,69×10 ⁻²
KR20 - B	4,26×10 ⁻²	4,26×10 ⁻²	7,69×10 ⁻²
KR26 - A	1,73×10 ⁻¹	1,73×10 ⁻¹	5,88×10 ⁻²
KR26 - B	3,06×10 ⁻²	3,06×10 ⁻²	5,88×10 ⁻²
KR30H - A	1,51×10 ⁻¹	1,51×10 ⁻¹	4,78×10 ⁻²
KR30H - B	2,76×10 ⁻²	2,76×10 ⁻²	4,78×10 ⁻²
KR30H - C	2,77×10 ⁻¹	2,77×10 ⁻¹	4,78×10 ⁻²
KR30H - D	3,99×10 ⁻²	3,99×10 ⁻²	4,78×10 ⁻²
KR33 - A	1,51×10 ⁻¹	1,51×10 ⁻¹	4,93×10 ⁻²
KR33 - B	2,57×10 ⁻²	2,57×10 ⁻²	4,93×10 ⁻²
KR33 - C	2,77×10 ⁻¹	2,77×10 ⁻¹	4,93×10 ⁻²
KR33 - D	3,55×10 ⁻²	3,55×10 ⁻²	4,93×10 ⁻²

Baugröße	K _A	K _B	K _c
KR45H - A	9,83×10 ⁻²	9,83×10 ⁻²	3,45×10 ⁻²
KR45H - B	1,87×10 ⁻²	1,87×10 ⁻²	3,45×10 ⁻²
KR45H - C	1,83×10 ⁻¹	1,83×10 ⁻¹	3,45×10 ⁻²
KR45H - D	2,81×10 ⁻²	2,81×10 ⁻²	3,45×10 ⁻²
KR46 - A	1,01×10 ⁻¹	1,01×10 ⁻¹	3,38×10 ⁻²
KR46 - B	1,78×10 ⁻²	1,78×10 ⁻²	3,38×10 ⁻²
KR46 - C	1,85×10 ⁻¹	1,85×10 ⁻¹	3,38×10 ⁻²
KR46 - D	2,50×10 ⁻²	2,50×10 ⁻²	3,38×10 ⁻²
KR55 - A	8,63×10 ⁻²	8,63×10 ⁻²	2,83×10 ⁻²
KR55 - B	1,53×10 ⁻²	1,53×10 ⁻²	2,83×10 ⁻²
KR65 - A	7,55×10 ⁻²	7,55×10 ⁻²	2,14×10 ⁻²
KR65 - B	1,35×10 ⁻²	1,35×10 ⁻²	2,14×10 ⁻²

 $\begin{array}{ll} {\rm K_A:} & {\rm \ddot{A}quivalenzfaktor~f\ddot{u}r~M_A-Richtung} \\ {\rm K_B:} & {\rm \ddot{A}quivalenzfaktor~f\ddot{u}r~M_B-Richtung} \\ {\rm K_C:} & {\rm \ddot{A}quivalenzfaktor~f\ddot{u}r~M_C-Richtung} \end{array}$

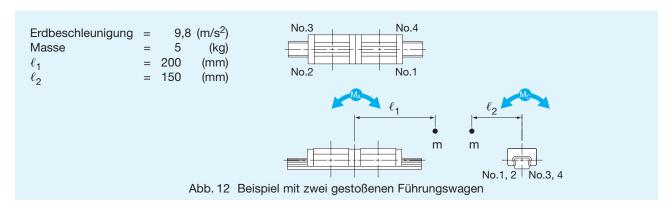

Anm.: Bei den Typen KR-B und KR-D gelten die Werte für zwei gestoßene Innenwagen.

Berechnungsbeispiele

Beispiel mit einem Führungswagen

Typ: SSR20XV1

No.1
$$P_1 = mg + K_{AR1} \times mg \times \ell_1 + K_{CR} \times mg \times \ell_2 = 98 + 0,275 \times 98 \times 200 + 0,129 \times 98 \times 100 = 6752$$
 (N)


No.2
$$P_2 = mg - K_{AL1} \times mg \times \ell_1 + K_{CR} \times mg \times \ell_2 = 98 - 0,137 \times 98 \times 200 + 0,129 \times 98 \times 100 = -1323$$
 (N)

No.3
$$P_3 = mg - K_{AL1} \times mg \times \ell_1 - K_{CL} \times mg \times \ell_2 = 98 - 0,137 \times 98 \times 200 - 0,0644 \times 98 \times 100 = -3218$$
 (N)

No.4
$$P_4 = mg + K_{AR1} \times mg \times \ell_1 - K_{CL} \times mg \times \ell_2 = 98 + 0.275 \times 98 \times 200 - 0.0644 \times 98 \times 100 = 4857$$
 (N)

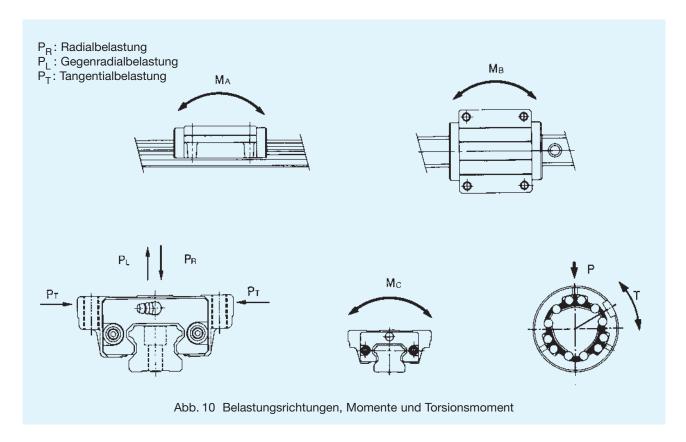
Beispiel mit zwei gestoßenen Führungswagen

Typ: SNS30R2

No.1
$$P_1 = \frac{mg}{2} + K_{AR2} \times mg \times \ell_1 + K_{CR} \times \frac{mg \times \ell_2}{2} = \frac{49}{2} + 0.018 \times 49 \times 200 + 0.0842 \times \frac{49 \times 150}{2} = 510.3$$
 (N)

No.2
$$P_2 = \frac{mg}{2} - K_{AL2} \times mg \times \ell_1 + K_{CR} \times \frac{mg \times \ell_2}{2} = \frac{49}{2} - 0,0151 \times 49 \times 200 + 0,0842 \times \frac{49 \times 150}{2} = 186$$
 (N)

No.3
$$P_3 = \frac{mg}{2} - K_{AL2} \times mg \times \ell_1 - K_{CL} \times \frac{mg \times \ell_2}{2} = \frac{49}{2} - 0.0151 \times 49 \times 200 - 0.0707 \times \frac{49 \times 150}{2} = -283.3$$
 (N)


No.4
$$P_4 = \frac{mg}{2} + K_{AR2} \times mg \times \ell_1 - K_{CL} \times \frac{mg \times \ell_2}{2} = \frac{49}{2} + 0.018 \times 49 \times 200 - 0.0707 \times \frac{49 \times 150}{2} = -58.9$$
 (N)

Anm.: Einige Baureihen haben für verschiedene Richtungen unterschiedliche Tragzahlen. In diesen Fällen muss die äquivalente Belastung für die kritische Richtung berechnet werden.

4.7 Bestimmung der äquivalenten Belastung

Auf ein Linearführungssystem können gleichzeitig Belastungen aus verschiedenen Richtungen sowie Momente und Torsionsmomente wirken. Die einwirkenden Belastungen sind weiter unten dargestellt.

Äquivalente Belastung P_F

Wirken gleichzeitig mehrere Belastungen (z.B. Radialund Tangentialbelastung) auf ein Linearführungssystem, wird mittels der äquivalenten Belastung, die aus der radialen, tangentialen oder einer anderen Belastung ermittelt wird, die Lebensdauer und der statische Sicherheitsfaktor ermittelt.

Berechnungsformel zur äquivalenten Belastung

Die Berechnungsformel zur äquivalenten Belastung ist je nach Typ unterschiedlich. Siehe dazu die entsprechenden Ausführungen zu den einzelnen Typen.

Beispiel Linearführung

 Bei gleichzeitiger radialer und tangentialer Belastung wird die äquivalente Belastung wie folgt bestimmt:

$$P_E = P_R + P_T$$

P_R: Radialbelastung P_T: Tangentialbelastung

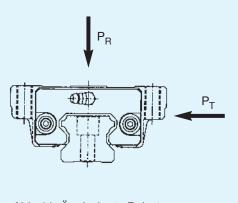


Abb. 11 Äquivalente Belastung

4.8 Berechnung der dynamischen äquivalenten Belastung

Die auf ein Linearführungssystem wirkenden Belastungen während des Betriebs unterliegen häufigen Schwankungen. Beispielsweise variiert die Belastung eines Industrieroboters während der Vorwärtsbewegung, des Aufnehmens und Ablegens eines Werkstücks sowie bei der Rückwärtsbewegung. Auch bei Werkzeugmaschinen können die Belastungen wechseln. In diesen und ähnlichen Fällen sind die unterschiedlichen Belastungen bei der Berechnung der Lebensdauer zu berücksichtigen.

Die dynamische äquivalente Belastung P_m bezeichnet die wechselnde Belastungsaufnahme eines Führungswagens bei unterschiedlichen Betriebsbedingungen während einer Verfahrstrecke. Sie ergibt die gleiche nominelle Lebensdauer wie bei einer konstant wirkenden Belastung aus einer Richtung.

1) Stufenförmig verlaufende Belastungsänderung

Bei einer stufenförmig verlaufenden Belastungsänderung über einen bestimmten Verfahrweg (s. Abb. 12) wird die dynamisch äquivalente Belastung mit folgender Formel ermittelt:

$$P_{m} = \sqrt[n]{\frac{1}{L} (P_{1}^{\ n} \cdot L_{1} + P_{2}^{\ n} \cdot L_{2} P_{n}^{\ n} \cdot L_{n})}$$

n = 3 bei Kugeln

n = 10/3 bei Rollen

2) Lineare Belastungsänderung

Bei einer linearen Belastungsänderung wird die dynamisch äquivalente Belastung näherungsweise mit folgender Formel ermittelt:

$$P_m \approx \frac{1}{3} (P_{min} + 2 \times P_{max})$$

$$P_{\min}$$
: minimale Belastung (N) P_{\max} : maximale Belastung (N)

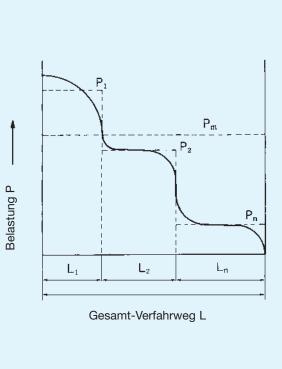


Abb. 12 Stufenförmig verlaufende Belastungsänderung

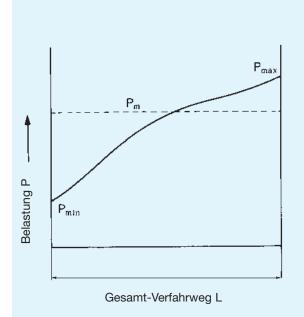
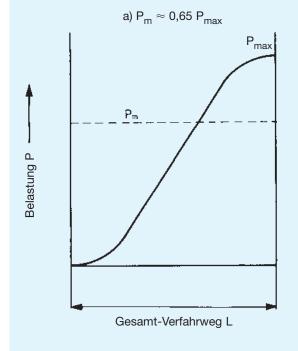


Abb. 13 Lineare Belastungsänderung


3) Sinusförmige Belastungsänderung

Bei einer sinusförmigen Belastungsänderung wird die dynamisch äquivalente Belastung näherungsweise mit folgender Formel ermittelt:

a)
$$P_m \approx 0.65 P_{max}$$

b)
$$P_m \approx 0.75 P_{max}$$

Je nach Einsatzbedingung wirkt eine wechselnde Belastung während des Verfahrvorgangs auf das Linearführungssystem. Daraus ergibt sich die dynamisch äquivalente Belastung $P_{\rm m}$ mit einer Lebensdauer, die gleich der Lebensdauer bei einer bestimmten, nicht wechselnden Belastung ist.

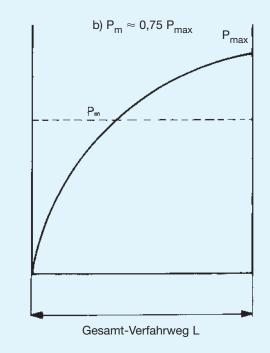
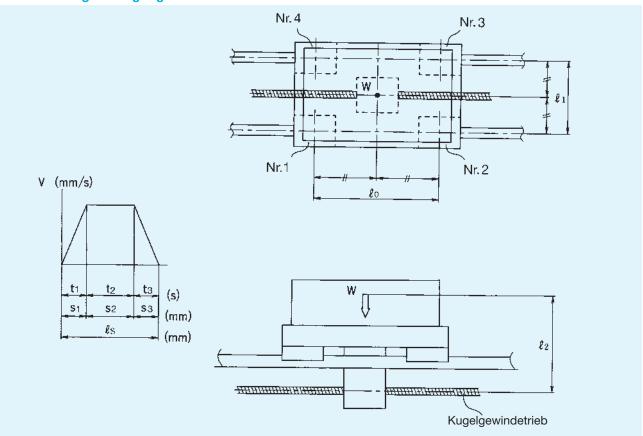


Abb. 14 Sinusförmige Belastungsänderung

Belastung P


4.9 Berechnungsbeispiele

Berechnungsbeispiel 1

Berechnung der dynamischen äquivalenten Belastung:

- Horizontale Einbaulage, Berücksichtigung der Beschleunigung und Verzögerung -

1. Anwendungsbedingung

2. Belastung der Führungswagen

1) konstante Geschwindigkeit

$$\boldsymbol{P}_1 = +\frac{\boldsymbol{W}}{4}$$

$$P_2 = + \frac{W}{4}$$

$$P_3 = + \frac{W}{4}$$

$$P_4 = + \frac{W}{4}$$

2) bei Beschleunigung nach rechts

$$P_{a_1} = P_1 + \frac{W}{q} \times \frac{V}{t_1} \times \frac{\ell_2}{2 \times \ell_0}$$

$$P_{a_2} = P_2 - \frac{W}{Q} \times \frac{V}{t_1} \times \frac{\ell_2}{2 \times \ell_0}$$

$$P_{a_3} = P_3 - \frac{W}{g} \times \frac{V}{t_1} \times \frac{\ell_2}{2 \times \ell_0}$$

$$P_{a_4} = P_4 + \frac{W}{g} \times \frac{V}{t_1} \times \frac{\ell_2}{2 \times \ell_0}$$

 bei Verzögerung nach rechts

$$P_{d_1} = P_1 - \frac{W}{g} \times \frac{V}{t_3} \times \frac{\ell_2}{2 \times \ell_0}$$

$$\mathsf{P}_{\mathsf{d}_2} = \mathsf{P}_2 + \frac{\mathsf{W}}{\mathsf{g}} \times \frac{\mathsf{V}}{\mathsf{t}_3} \times \frac{\ell_2}{2 \times \ell_0}$$

$$P_{d_3} = P_3 + \frac{W}{g} \times \frac{V}{t_3} \times \frac{\ell_2}{2 \times \ell_0}$$

$$P_{d_4} = P_4 - \frac{W}{g} \times \frac{V}{t_3} \times \frac{\ell_2}{2 \times \ell_0}$$

3. Dynamisch äquivalente Belastung

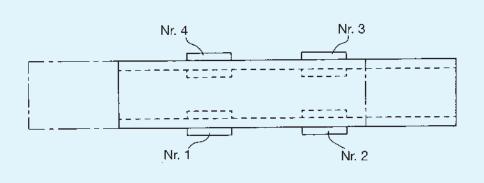
$$P_{m_1} = \sqrt[3]{\frac{1}{\ell_s}(P_{a_1}^3 \times s_1 + P_1^3 \times s_2 + P_{d_1}^3 \times s_3)}$$

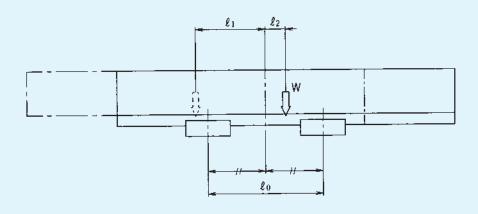
$$P_{m_2} = \sqrt[3]{\frac{1}{\ell_s} (P_{a_2}^3 \times s_1 + P_2^3 \times s_2 + P_{d_2}^3 \times s_3)}$$

$$P_{m_3} = \sqrt[3]{\frac{1}{\ell_s} (P_{a_3}^3 \times s_1 + P_3^3 \times s_2 + P_{d_3}^3 \times s_3)}$$

$$P_{m_4} = \sqrt[3]{\frac{1}{\ell_s} (P_{a_4}^3 \times s_1 + P_4^3 \times s_2 + P_{d_4}^3 \times s_3)}$$

Anm.: P_{\square_n} bezieht sich auf die Belastung eines Führungswagens. Der Zusatz kennzeichnet den entsprechenden Führungswagen (siehe Abb. oben).




Berechnungsbeispiel 2

Berechnung der dynamischen äquivalenten Belastung:

- Anordnung mit verfahrbaren Schienen -

1. Anwendungsbedingungen

2. Belastung der Führungswagen

1) Hebelarm ℓ₁

$$\mathsf{P}_{\ell_1} = +\frac{\mathsf{W}}{4} + \frac{\mathsf{W} \times \ell_1}{2 \times \ell_0}$$

$$\textbf{P}_{\ell_2} = +\frac{\textbf{W}}{4} - \frac{\textbf{W} \times \ell_1}{2 \times \ell_0}$$

$$P_{\ell_3} = +\frac{W}{4} - \frac{W \times \ell_1}{2 \times \ell_0}$$

$$\mathsf{P}_{\ell_4} = +\frac{\mathsf{W}}{4} + \frac{\mathsf{W} \times \ell_1}{2 \times \ell_0}$$

2) Hebelarm ℓ_2

$$P_{r_1} = +\frac{W}{4} - \frac{W \times \ell_2}{2 \times \ell_0}$$

$$P_{r_2} = + \frac{W}{4} + \frac{W \times \ell_2}{2 \times \ell_0}$$

$$P_{r_3} = +\frac{W}{4} + \frac{W \times \ell_2}{2 \times \ell_0}$$

$$P_{r_4} = +\frac{W}{4} - \frac{W \times \ell_2}{2 \times \ell_0}$$

3. Dynamische äquivalente Belastung

$$P_{m_1} = \frac{1}{3} \times (2 \times |P_{\ell_1}| + |P_{r_1}|)$$

$$P_{m_2} = \frac{1}{3} \times (2 \times |P_{\ell_2}| + |P_{r_2}|)$$

$${\sf P_{m_3}} {=} \frac{1}{3} \times (\,2 {\times} |{\sf P_{\ell_3}}| + |{\sf P_{r_3}}|)$$

$$P_{m_4} = \frac{1}{3} \times (2 \times |P_{\ell_4}| + |P_{r_4}|)$$

Anm.: P_{\square_n} bezieht sich auf die Belastung eines Führungswagens. Der Zusatz kennzeichnet den entsprechenden Führungswagen (siehe Abb. oben).

4. Typenauswahl

Vorläufige Auswahl eines Linearführungssystems.

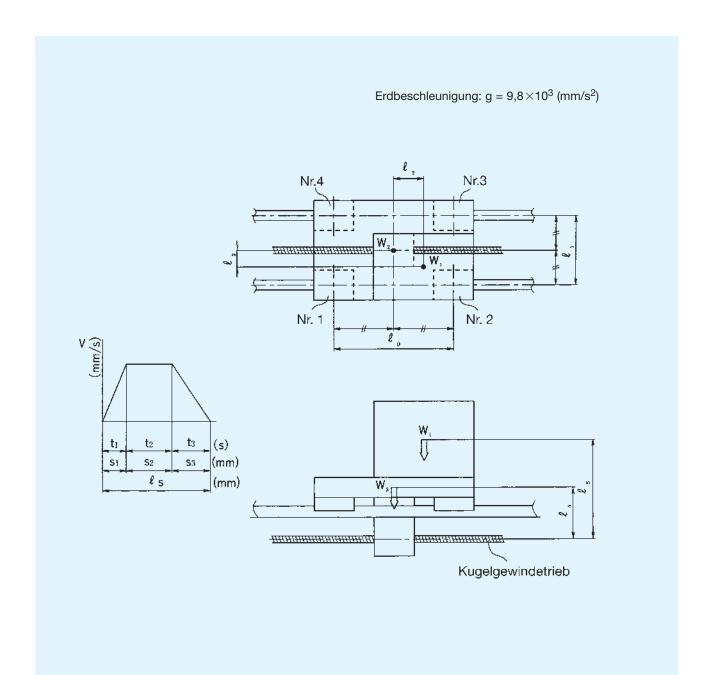
Berechnungsbeispiel 3

Horizontaler Einbau der Linearführung mit hoher Beschleunigung bzw. Verzögerung.

1. Anwendungsbedingungen

Verwendeter Typ: HSR35LA2SS+2500LP Belastung: $W_1 = 7.840 \text{ N}$ Abstand: $\ell_0 = 600 \text{ mm}$

(dynamische Tragzahl: C=50,2 kN) $W_2 = 4.900 \text{ N}$ $\ell_1 = 400 \text{ mm}$


(statische Tragzahl: $C_0=81,4$ kN) Geschwindigkeit: V=500 mm/s $\ell_2=120$ mm

Taktzeit: $t_1 = 0.05 \text{ s}$ $\ell_3 = 50 \text{ mm}$

 $t_2 = 2.8 \text{ s}$ $\ell_4 = 200 \text{ mm}$

 $t_3 = 0.15 \text{ s}$ $\ell_5 = 350 \text{ mm}$

Hublänge: $\ell_{\rm S} = 1.450 \ {\rm mm}$

2. Belastung der Führungswagen

Berechnung der einzelnen Belastungen pro Führungswagen

1) Bei konstanter Geschwindigkeit Wirkende Radialbelastung P_n

$$P_{1} = +\frac{W_{1}}{4} - \frac{W_{1} \times \ell_{2}}{2 \times \ell_{0}} + \frac{W_{1} \times \ell_{3}}{2 \times \ell_{1}} + \frac{W_{2}}{4} = +2.891N$$

$$P_{2} = +\frac{W_{1}}{4} + \frac{W_{1} \times \ell_{2}}{2 \times \ell_{0}} + \frac{W_{1} \times \ell_{3}}{2 \times \ell_{1}} + \frac{W_{2}}{4} = +4.459N$$

$$\begin{split} P_3 &= + \frac{W_1}{4} + \frac{W_1 \times \ell_2}{2 \times \ell_0} \\ &= \frac{W_1 \times \ell_3}{2 \times \ell_1} + \frac{W_2}{4} = +3.479 N \end{split}$$

$$\begin{aligned} \mathsf{P}_4 &= + \frac{\mathsf{W}_1}{4} - \frac{\mathsf{W}_1 \! \times \! \ell_2}{2 \! \times \! \ell_0} - \\ &\qquad \frac{\mathsf{W}_1 \! \times \! \ell_3}{2 \! \times \! \ell_1} + \frac{\mathsf{W}_2}{4} = + \, 1.911 \mathsf{N} \end{aligned}$$

2) Bei Beschleunigung nach links Wirkende Radialbelastung $P_{\ell an}$

$$\begin{split} P_{\ell a1} &= P_1 - \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_5}{2 \times \ell_0} - \\ &\qquad \frac{W_2}{g} \times \frac{V}{t_1} \times \frac{\ell_4}{2 \times \ell_0} = -275,6 N \end{split}$$

$$P_{\ell a2} = P_2 + \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_5}{2 \times \ell_0} + \frac{W_2}{g} \times \frac{V}{t_1} \times \frac{\ell_4}{2 \times \ell_0} = +7.625,6N$$

$$\begin{split} P_{\ell a3} &= P_3 + \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_5}{2 \times \ell_0} + \\ &\frac{W_2}{g} \times \frac{V}{t_1} \times \frac{\ell_4}{2 \times \ell_0} = +6.645,6 \, N \end{split}$$

$$\begin{aligned} \mathsf{P}_{\ell a 4} &= \mathsf{P}_{4} - \frac{\mathsf{W}_{1}}{\mathsf{g}} \times \frac{\mathsf{V}}{\mathsf{t}_{1}} \times \frac{\ell_{5}}{2 \times \ell_{0}} - \\ & \frac{\mathsf{W}_{2}}{\mathsf{g}} \times \frac{\mathsf{V}}{\mathsf{t}_{1}} \times \frac{\ell_{4}}{2 \times \ell_{0}} = -1.255,6 \, \mathsf{N} \end{aligned}$$

Wirkende Tangentialbelastung $P_{t\ell an}$

$$P_{t\ell a1} = -\frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_3}{2 \times \ell_0} = -333.3 N$$

$$P_{t\ell a2} = +\frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_3}{2 \times \ell_0} = +333.3 \,\text{N}$$

$$P_{t\ell a3} = + \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_3}{2 \times \ell_0} = +333.3 N$$

$$P_{t\ell a4} = -\frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_3}{2 \times \ell_0} = -333,3 N_1$$

3) Bei Verzögerung nach links Wirkende Radialbelastung $\mathbf{P}_{\ell \mathsf{dn}}$

$$\begin{split} \mathsf{P}_{\ell \, \mathsf{d} 1} &= \mathsf{P}_1 \! + \! \frac{\mathsf{W}_1}{\mathsf{g}} \! \times \! \frac{\mathsf{V}}{\mathsf{t}_3} \! \times \! \frac{\ell_5}{2 \! \times \! \ell_0} \, + \\ & \frac{\mathsf{W}_2}{\mathsf{g}} \! \times \! \frac{\mathsf{V}}{\mathsf{t}_3} \! \times \! \frac{\ell_4}{2 \! \times \! \ell_0} = \! + 3.946,\! 6\, N \end{split}$$

$$\begin{split} P_{\ell d2} &= P_2 - \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_5}{2 \times \ell_0} - \\ &\qquad \frac{W_2}{g} \times \frac{V}{t_3} \times \frac{\ell_4}{2 \times \ell_0} = +3.403,4 \, N \end{split}$$

$$\begin{split} P_{\ell d3} &= P_3 - \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_5}{2 \times \ell_0} - \\ & \frac{W_2}{g} \times \frac{V}{t_3} \times \frac{\ell_4}{2 \times \ell_0} = +2.423,4 \, N \end{split}$$

$$\begin{split} \mathsf{P}_{\ell \, \mathsf{d} 4} &= \mathsf{P}_{4} + \frac{\mathsf{W}_{1}}{\mathsf{g}} \times \frac{\mathsf{V}}{\mathsf{t}_{3}} \times \frac{\ell_{5}}{2 \times \ell_{0}} + \\ & \frac{\mathsf{W}_{2}}{\mathsf{g}} \times \frac{\mathsf{V}}{\mathsf{t}_{3}} \times \frac{\ell_{4}}{2 \times \ell_{0}} = +2.966,\! 6\, \mathsf{N} \end{split}$$

Wirkende Tangentialbelastung Ptedn

$$P_{t\ell d1} = +\frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_3}{2 \times \ell_0} = +111,1N$$

$$P_{t\ell d2} = -\frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_3}{2 \times \ell_0} = -111,1 \text{ N}$$

$$P_{t\ell d3} = -\frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_3}{2 \times \ell_0} = -111,1 N$$

$$P_{t\ell d4} = + \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_3}{2 \times \ell_0} = +111,1 \, N$$

4) Bei Beschleunigung nach rechts Wirkende Radialbelastung P_{ran}

$$P_{ra1} = P_1 + \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_5}{2 \times \ell_0} + \frac{W_2}{g} \times \frac{V}{t_1} \times \frac{\ell_4}{2 \times \ell_0} = +6.057,6 \,\text{N}$$

$$\begin{split} P_{ra2} &= P_2 - \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_5}{2 \times \ell_0} - \\ &\qquad \frac{W_2}{g} \times \frac{V}{t_1} \times \frac{\ell_4}{2 \times \ell_0} = +1.292,\! 4N \end{split}$$

$$P_{ra3} = P_3 - \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_5}{2 \times \ell_0} - \frac{W_2}{g} \times \frac{V}{t_1} \times \frac{\ell_4}{2 \times \ell_0} = +312,4N$$

$$\begin{split} P_{ra4} &= P_4 + \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_5}{2 \times \ell_0} + \\ &\qquad \frac{W_2}{g} \times \frac{V}{t_1} \times \frac{\ell_4}{2 \times \ell_0} = +5.077,\!6\,\text{N} \end{split}$$

Wirkende Tangentialbelastung Ptran

$$P_{tra1} = + \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_3}{2 \times \ell_0} = +333.3 \, N$$

$$P_{tra2} = -\frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_3}{2 \times \ell_0} = -333,3N$$

$$P_{tra3} = -\frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_3}{2 \times \ell_0} = -333,3 N$$

$$P_{tra4} = + \frac{W_1}{g} \times \frac{V}{t_1} \times \frac{\ell_3}{2 \times \ell_0} = +333.3 N$$

5) Bei Beschleunigung nach rechts Wirkende Radialbelastung P_{rdn}

$$\begin{split} P_{rd1} &= P_1 - \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_5}{2 \times \ell_0} - \\ &\qquad \frac{W_2}{g} \times \frac{V}{t_3} \times \frac{\ell_4}{2 \times \ell_0} = +1.835,\!4 \, \text{N} \end{split}$$

$$\begin{split} P_{rd2} &= P_2 + \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_5}{2 \times \ell_0} + \\ & \frac{W_2}{g} \times \frac{V}{t_3} \times \frac{\ell_4}{2 \times \ell_0} = +5.514,6 \, N \end{split}$$

$$\begin{split} P_{rd3} &= P_3 + \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_5}{2 \times \ell_0} + \\ &\qquad \frac{W_2}{g} \times \frac{V}{t_3} \times \frac{\ell_4}{2 \times \ell_0} = +4.534,6 \, N \end{split}$$

$$\begin{split} P_{rd4} &= P_4 - \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_5}{2 \times \ell_0} - \\ &= \frac{W_2}{g} \times \frac{V}{t_3} \times \frac{\ell_4}{2 \times \ell_0} = +855,4 \, N \end{split}$$

Wirkende Tangentialbelastung P_{trdn}

$$P_{trd1} = -\frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_3}{2 \times \ell_0} = -111,1 N$$

$$P_{trd2} = + \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_3}{2 \times \ell_0} = +111,1 \, N$$

$$P_{trd3} = + \frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_3}{2 \times \ell_0} = +111,1 \, N$$

$$P_{trd4} = -\frac{W_1}{g} \times \frac{V}{t_3} \times \frac{\ell_3}{2 \times \ell_0} = -111,1 \text{N}$$

3. Kombinierte Belastung

1) Bei konstanter Geschwindigkeit

$$P_{F1} = P_1 = 2.891 N$$

$$P_{F2} = P_2 = 4.459 \text{ N}$$

$$P_{E3} = P_3 = 3.479 N$$

$$P_{F4} = P_4 = 1.911 N$$

2) Bei Beschleunigung nach links

$$P_{E\ell a1} = |P_{\ell a1}| + |P_{t\ell a1}| = 608,9N$$

$$P_{F\ell a2} = |P_{\ell a2}| + |P_{t\ell a2}| = 7.958,9N$$

$$P_{F\ell a3} = |P_{\ell a3}| + |P_{t\ell a3}| = 6.978,9N$$

$$P_{E\ell a4} = |P_{\ell a4}| + |P_{t\ell a4}| = 1.588,9N$$

3) Bei Verzögerung nach links

$$P_{E\ell d1} = |P_{\ell d1}| + |P_{t\ell d1}| = 4.057,7N$$

$$P_{F\ell d2} = |P_{\ell d2}| + |P_{t\ell d2}| = 3.514,5N$$

$$P_{F\ell d3} = |P_{\ell d3}| + |P_{t\ell d3}| = 2.534,5N$$

$$P_{F\ell d4} = |P_{\ell d4}| + |P_{t\ell d4}| = 3.077,7N$$

4) Bei Beschleunigung nach rechts

$$P_{Fra1} = |P_{ra1}| + |P_{tra1}| = 6.390,9N$$

$$P_{Fra2} = |P_{ra2}| + |P_{tra2}| = 1.625,7N$$

$$P_{Fra3} = |P_{ra3}| + |P_{tra3}| = 645,7N$$

$$P_{Era4} = |P_{ra4}| + |P_{tra4}| = 5.410,9N$$

5) Bei Verzögerung nach rechts

$$P_{Frd1} = |P_{rd1}| + |P_{trd1}| = 1.946,5N$$

$$P_{Erd2} = |P_{rd2}| + |P_{trd2}| = 5.625,7N$$

$$P_{Erd3} = |P_{rd3}| + |P_{trd3}| = 4.645,7N$$

$$P_{\text{Erd4}} = |P_{\text{rd4}}| + |P_{\text{trd4}}| = 966,5N$$

4. Dynamische äquivalente Belastung P_{mn}

Berechnung der dynamischen äquivalenten Belastung pro Führungswagen

$$\begin{split} P_{m1} &= \sqrt[3]{\frac{1}{2 \cdot \ell_s} (P_E \ell a_1^3 \times s_1 + P_{E1}^3 \times s_2 + P_E \ell d_1^3 \times s_3 + P_E r a_1^3 \times s_1 + P_{E1}^3 \times s_2 + P_E r d_1^3 \times s_3)} \\ &= \sqrt[3]{\frac{1}{2 \times 1.450}} \left(608, 9^3 \times 12, 5 + 2.891^3 \times 1.400 + 4.057, 7^3 \times 37, 5 + 6.390, 9^3 \times 12, 5 + 2.891^3 \times 1.400 + 1.946, 5^3 \times 37, 5\right) \\ &= 2940.1 \text{N} \end{split}$$

$$\begin{split} P_{m2} &= \sqrt[3]{\frac{1}{2 \cdot \ell_s} (P_E \ell a_2^{3} \times s_1 + P_{E2}^{3} \times s_2 + P_E \ell d_2^{3} \times s_3 + P_E r a_2^{3} \times s_1 + P_{E2}^{3} \times s_2 + P_E r d_2^{3} \times s_3)} \\ &= \sqrt[3]{\frac{1}{2 \times 1.450} (7.958, 9^3 \times 12.5 + 4.459^3 \times 1.400 + 3.514, 5^3 \times 37.5 + 1.625, 7^3 \times 12.5 + 4.459^3 \times 1.400 + 5.625, 7^3 \times 37.5)} \\ &= 4492.2N \end{split}$$

$$\begin{split} P_{m3} &= \sqrt[3]{\frac{1}{2 \cdot \ell_s} (P_E \ell a_3^{3} \times s_1 + P_{E3}^{3} \times s_2 + P_E \ell d_3^{3} \times s_3 + P_E r a_3^{3} \times s_1 + P_{E3}^{3} \times s_2 + P_E r d_3^{3} \times s_3)} \\ &= \sqrt[3]{\frac{1}{2 \times 1.450}} \ (6.978.9^{3} \times 12.5 + 3.479^{3} \times 1.400 + 2.534.5^{3} \times 37.5 + 645.7^{3} \times 12.5 + 3.479^{3} \times 1.400 + 4.645.7^{3} \times 37.5)} \\ &= 3520.4 \ N \end{split}$$

$$\begin{split} P_{m4} &= \sqrt[3]{\frac{1}{2 \cdot \ell_s} (P_E \ell a_4{}^3 \times s_1 + P_{E4}{}^3 \times s_2 + P_E \ell d_4{}^3 \times s_3 + P_E r a_4{}^3 \times s_1 + P_{E4}{}^3 \times s_2 + P_E r d_4{}^3 \times s_3)} \\ &= \sqrt[3]{\frac{1}{2 \times 1.450}} \ (1.588.9{}^3 \times 12.5 + 1.911{}^3 \times 1.400 + 3.077.7{}^3 \times 37.5 + 5.410.9{}^3 \times 12.5 + 1.911{}^3 \times 1.400 + 966.5{}^3 \times 37.5)} \\ &= 1985.5 \, N \end{split}$$

5. Nominelle Lebensdauer L_n

Nach der Formel zur Berechnung der nominellen Lebensdauer wird die Lebensdauer jeder Linearführung wie folgt berechnet:

$$\begin{split} &L_1 \!=\! \Big(\frac{C}{f_w \!\times\! P_{m1}}\Big)^3 \times 50 = 73.700 \text{ km} \\ &L_2 \!=\! \Big(\frac{C}{f_w \!\times\! P_{m2}}\Big)^3 \times 50 = 20.600 \text{ km} \\ &L_3 \!=\! \Big(\frac{C}{f_w \!\times\! P_{m3}}\Big)^3 \times 50 = 43.000 \text{ km} \\ &L_4 \!=\! \Big(\frac{C}{f_w \!\times\! P_{m4}}\Big)^3 \times 50 = 239.000 \text{ km} \end{split}$$

(angenommen $f_w = 1,5$)

Bezogen auf den Führungswagen Nr. 2 beträgt die Lebensdauer in der oben beschriebenen Anwendung 20.600 km.

6. Statischer Sicherheitsfaktor

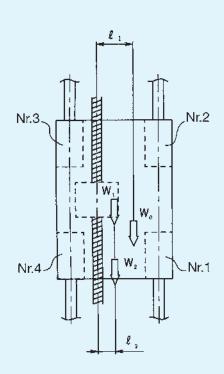
Nach der oben aufgeführten Berechnung liegt die maximale Belastung am Führungswagen Nr. 2 bei der Beschleunigung nach links an.

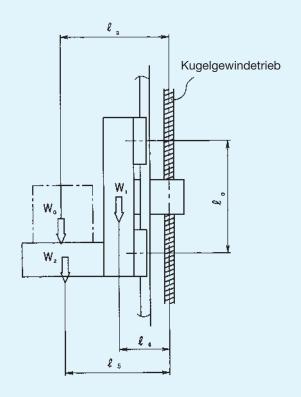
$$f_s = \frac{C_0}{P_F \ell a_2} = \frac{81.4 \times 10^3 \text{ N}}{7.958.9 \text{ N}} = 10.2$$

Berechnungsbeispiel 4

Vertikaler Einbau mit sehr geringer Dynamik.

1. Anwendungsbedingungen


Verwendeter Typ: HSR25LA2SS+1500LP


(dynamische Tragzahl: C=19,9 kN) (statische Tragzahl: $C_0=34,4 \text{ kN}$) Belastung $W_0 = 980 \text{ N}$ Abstand $\ell_0 = 300 \text{ mm}$

 $\begin{array}{lll} {\rm W_1 = 1.960\;N} & & & \ell_1 = 80\;{\rm mm} \\ {\rm W_2 = 980\;N} & & & \ell_2 = 50\;{\rm mm} \\ & & \ell_3 = 280\;{\rm mm} \\ & & \ell_4 = 150\;{\rm mm} \\ & & \ell_5 = 250\;{\rm mm} \end{array}$

Hublänge $\ell_{\rm s}$ = 1.000 mm

Bei Aufwärtsbewegung des Tisches liegt die Belastung $\rm W_0$ an. Bei Abwärtsbewegung liegt die Belastung $\rm W_0$ nicht an.

2. Belastung der Führungswagen

1) Aufwärtsbewegung Wirkende Radialbelastung P_{un}

$$\begin{split} \mathsf{P}_{\mathsf{u}1} = & + \frac{\mathsf{W}_1 \!\!\times\! \ell_4}{2 \!\!\times\! \ell_0} \!\!+\! \frac{\mathsf{W}_2 \!\!\times\! \ell_5}{2 \!\!\times\! \ell_0} \!\!+\! \\ & \frac{\mathsf{W}_0 \!\!\times\! \ell_3}{2 \!\!\times\! \ell_0} \!\!=\! +1.355,\! 6\,\mathsf{N} \end{split}$$

$$\begin{split} \mathsf{P}_{\mathsf{u2}} &= -\frac{\mathsf{W}_1 \!\!\times\! \ell_4}{2 \!\times\! \ell_0} \!\!-\! \frac{\mathsf{W}_2 \!\!\times\! \ell_5}{2 \!\times\! \ell_0} \!\!-\! \\ &\qquad \qquad \frac{\mathsf{W}_0 \!\!\times\! \ell_3}{2 \!\times\! \ell_0} \!=\! -1.355,\! 6\, \mathsf{N} \end{split}$$

$$\begin{split} \mathsf{P}_{\mathsf{u3}} = & -\frac{\mathsf{W}_1 \!\!\times\! \ell_4}{2 \!\times\! \ell_0} \!\!-\! \frac{\mathsf{W}_2 \!\!\times\! \ell_5}{2 \!\times\! \ell_0} \!\!-\! \\ & \frac{\mathsf{W}_0 \!\!\times\! \ell_3}{2 \!\times\! \ell_0} \!=\! -1.355,\! 6\,\mathsf{N} \end{split}$$

$$\begin{aligned} \mathsf{P}_{\mathsf{u4}} &= +\frac{\mathsf{W}_{\mathsf{1}} \! \! \times \! \ell_{\mathsf{0}}}{2 \! \! \times \! \ell_{\mathsf{0}}} \! \! + \frac{\mathsf{W}_{\mathsf{2}} \! \! \times \! \ell_{\mathsf{5}}}{2 \! \! \times \! \ell_{\mathsf{0}}} + \\ & \frac{\mathsf{W}_{\mathsf{0}} \! \! \times \! \ell_{\mathsf{3}}}{2 \! \! \times \! \ell_{\mathsf{0}}} = +1.355,\! 6\,\mathsf{N} \end{aligned}$$

Wirkende Tangentialbelastung Ptun

$$\begin{split} P_{tu1} = & + \frac{W_1 \!\!\times\! \ell_2}{2 \!\!\times\! \ell_0} \!\!+\! \frac{W_2 \!\!\times\! \ell_2}{2 \!\!\times\! \ell_0} \!\!+\! \\ & \frac{W_0 \!\!\times\! \ell_1}{2 \!\!\times\! \ell_0} \!=\! +375,\! 7\, N \end{split}$$

$$\begin{aligned} \mathsf{P}_{\mathsf{tu2}} &= -\frac{\mathsf{W}_1 \!\!\times\! \ell_2}{2 \!\!\times\! \ell_0} \!-\! \frac{\mathsf{W}_2 \!\!\times\! \ell_2}{2 \!\!\times\! \ell_0} \!-\! \\ &\qquad \qquad \frac{\mathsf{W}_0 \!\!\times\! \ell_1}{2 \!\!\times\! \ell_0} \!=\! -375,\! 7\,\mathsf{N} \end{aligned}$$

$$\begin{aligned} \mathsf{P}_{\mathsf{tu3}} = & -\frac{\mathsf{W}_1 \!\!\times\! \ell_2}{2 \!\!\times\! \ell_0} \!\!-\! \frac{\mathsf{W}_2 \!\!\times\! \ell_2}{2 \!\!\times\! \ell_0} \!\!-\! \\ & \frac{\mathsf{W}_0 \!\!\times\! \ell_1}{2 \!\!\times\! \ell_0} \!=\! -375,\! 7\, \mathsf{N} \end{aligned}$$

$$\begin{split} P_{tu4} = & + \frac{W_1 \!\!\times\! \ell_2}{2 \!\!\times\! \ell_0} \!\!+\! \frac{W_2 \!\!\times\! \ell_2}{2 \!\!\times\! \ell_0} \!\!+\! \\ & \frac{W_0 \!\!\times\! \ell_1}{2 \!\!\times\! \ell_0} \!=\! +375,\! 7\, N \end{split}$$

2) Abwärtsbewegung Wirkende Radialbelastung P_{dn}

$$\begin{aligned} P_{d1} &= + \frac{W_1 \times \ell_4}{2 \times \ell_0} + \frac{W_2 \times \ell_5}{2 \times \ell_0} \\ &= + 898.3 \, N \end{aligned}$$

$$\begin{aligned} P_{d2} &= -\frac{W_1 \times \ell_4}{2 \times \ell_0} - \frac{W_2 \times \ell_5}{2 \times \ell_0} \\ &= -898.3 \, \text{N} \end{aligned}$$

$$\begin{aligned} \mathsf{P}_{\mathsf{d3}} &= -\frac{\mathsf{W}_1 \!\!\times\! \ell_4}{2 \!\times\! \ell_0} \!-\! \frac{\mathsf{W}_2 \!\!\times\! \ell_5}{2 \!\times\! \ell_0} \\ &= \! -898,\! 3\,\mathsf{N} \end{aligned}$$

$$\begin{aligned} P_{d4} &= +\frac{W_1 \times \ell_4}{2 \times \ell_0} + \frac{W_2 \times \ell_5}{2 \times \ell_0} \\ &= +898.3 \, N \end{aligned}$$

Wirkende Tangentialbelastung Ptdn

$$\begin{aligned} P_{td1} &= +\frac{W_1 \! \times \! \ell_2}{2 \! \times \! \ell_0} \! + \! \frac{W_2 \! \times \! \ell_5}{2 \! \times \! \ell_0} \\ &= +245 \, N \end{aligned}$$

$$\begin{aligned} P_{td2} &= -\frac{W_1 \times \ell_2}{2 \times \ell_0} - \frac{W_2 \times \ell_5}{2 \times \ell_0} \\ &= -245 \, N \end{aligned}$$

$$\begin{aligned} P_{td3} &= -\frac{W_1 \times \ell_2}{2 \times \ell_0} - \frac{W_2 \times \ell_5}{2 \times \ell_0} \\ &= -245 \, N \end{aligned}$$

$$P_{td4} = + \frac{W_1 \times \ell_2}{2 \times \ell_0} + \frac{W_2 \times \ell_5}{2 \times \ell_0}$$
$$= +245 N$$

3. Kombinierte Belastung

1) Bei Aufwärtsbewegung

$$\begin{aligned} &P_{Eu1} = |P_{u1}| + |P_{tu1}| = 1.731,3N \\ &P_{Eu2} = |P_{u2}| + |P_{tu2}| = 1.731,3N \\ &P_{Eu3} = |P_{u3}| + |P_{tu3}| = 1.731,3N \\ &P_{Eu4} = |P_{u4}| + |P_{tu4}| = 1.731,3N \end{aligned}$$

2) Bei Abwärtsbewegung

$$\begin{split} &P_{Ed1} = |P_{d1}| + |P_{td1}| = 1.143,3 \, N \\ &P_{Ed2} = |P_{d2}| + |P_{td2}| = 1.143,3 \, N \\ &P_{Ed3} = |P_{d3}| + |P_{td3}| = 1.143,3 \, N \\ &P_{Ed4} = |P_{d4}| + |P_{td4}| = 1.143,3 \, N \end{split}$$

4. Dynamische äquivalente Belastung

Berechnung der äquivalenten Belastung pro Führungswagen.

$$\begin{aligned} &P_{m1} = \sqrt[3]{\frac{1}{2 \cdot \ell_s} \left(P_E u_1^{3} \times \ell_s + P_E d_1^{3} \times \ell_s \right)} = 1.495,1 \, N \\ &P_{m2} = \sqrt[3]{\frac{1}{2 \cdot \ell_s} \left(P_E u_2^{3} \times \ell_s + P_E d_2^{3} \times \ell_s \right)} = 1.495,1 \, N \end{aligned}$$

$$P_{m3} = \sqrt[3]{\frac{1}{2 \cdot \ell_s} (P_E u_3^3 \times \ell_s + P_E d_3^3 \times \ell_s)} = 1.495,1 \text{ N}$$

$$P_{m4} = \sqrt[3]{\frac{1}{2 \cdot \ell_s} (P_E u_4^3 \times \ell_s + P_E d_4^3 \times \ell_s)} = 1.495,1 \, N$$

5. Nominelle Lebensdauer L_n

Nach der Formel zur Berechnung der nominellen Lebensdauer wird die Lebensdauer jeder Linearführung wie folgt berechnet:

$$L_1 = \left(\frac{C}{f_w \times P_{m1}}\right)^3 \times 50 = 68.200 \text{ km}$$

$$L_2 = \left(\frac{C}{f_w \times P_{m2}}\right)^3 \times 50 = 68.200 \text{ km}$$

$$L_3 = \left(\frac{C}{f_{w} \times P_{m3}}\right)^3 \times 50 = 68.200 \text{ km}$$

$$L_4 = \left(\frac{C}{f_w \times P_{m4}}\right)^3 \times 50 = 68.200 \text{ km}$$

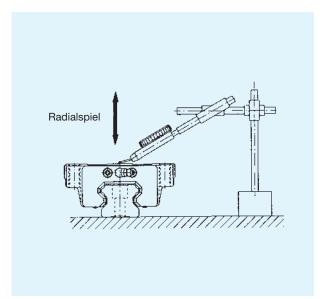
(angenommen $f_w = 1,2$)

Die Lebensdauer der Linearführung beträgt in der oben beschriebenen Anwendung 68.000 km.

6. Statischer Sicherheitsfaktor

Nach der oben beschriebenen Anwendungsbedingung ist der statische Sicherheitsfaktor des Linearführungssystems:

$$f_s = \frac{C_0}{P_{Eu2}} = \frac{34.4 \times 10^3 \text{ N}}{1.731.3 \text{ N}} = 19.9$$

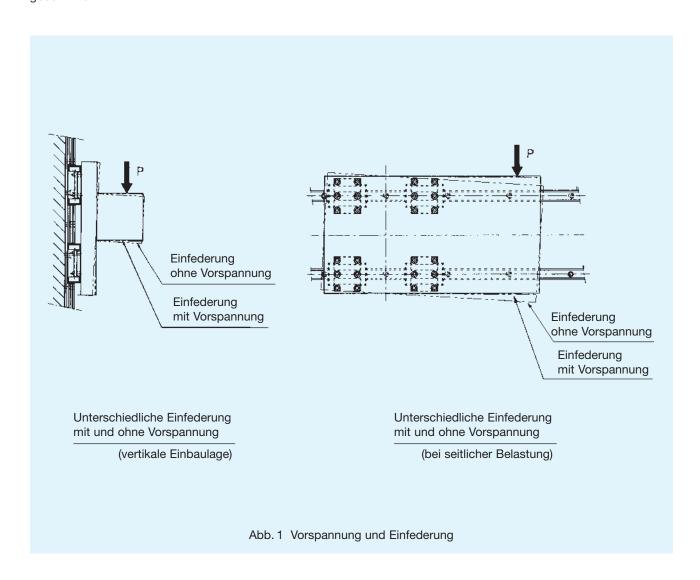

5. Steifigkeit und Vorspannung

- 74 | Radialspiel und Vorspannung
- 76 Steifigkeit
- 78 Belastung und Lebensdauer bei vorgespannten Linearführungen

5.1 Radialspiel und Vorspannung

Radialspiel

Das Radialspiel bei Linearführungen bezeichnet das Spiel innerhalb eines Führungswagens in radialer Richtung. Es wird durch leichte vertikale Bewegungen des Führungswagens, der mittig auf einer befestigten Führungsschiene angeordnet ist, ermittelt.


Die Einteilung des Radialspiels erfolgt in drei Klassen, den sog. Vorspannungsklassen: Normal, leichte Vorspannung C1 und mittlere Vorspannung C0. Ausgewählt wird die Vorspannungsklasse, die den einzelnen Baureihen angepaßt ist, entsprechend der spezifischen Anforderungen des Anwenders. Dabei sollte der unmittelbare Einfluß der Vorspannung auf die Laufgenauigkeit, Belastbarkeit und Steifigkeit des Linearführungssystems unbedingt beachtet werden. Allgemein ist bei Stößen und Vibrationen, wie sie bei Vorwärts- und Rückwärtsbewegungen auftreten können, ein System mit Vorspannung zu empfehlen, weil so die Lebensdauer und die Steifigkeit verbessert werden.

Vorspannung

Die Vorspannung ist eine im Wageninnern auf die Wälzkörper wirkende Belastung, um ein vorhandenes Spiel zu eliminieren und die Steifigkeit des Führungswagens zu erhöhen. Die beiden Vorspannungsklassen C1 und C0 bedeuten, wie bereits oben erwähnt, ein "negatives Spiel", das in den Tabellen mit negativem Vorzeichen wiedergegeben wird.

T대K Linearführungen werden mit Ausnahme der Typen HR und GSR - diese können nur parallel eingesetzt werden - werkseitig mit der vom Kunden gewünschten Vorspannung versehen und ausgeliefert. Bei Fragen zur optimalen Vorspannung für Ihre Anwendung berät Sie T대K gern.

Tab.1 Auswahl der Vorspannungsklasse

	Normal	C1 (leichte Vorspannung)	C0 (mittlere Vorspannung)
Anwen- dungs- bedingung	 geringe Stöße und Vibrationen bei feststehender Belastungsrichtung Genauigkeit ist weniger wichtig als ein geringer Verfahrwiderstand 	 bei Überhangbelastungen und Momenten Einschienen-Anwendungen hohe Genauigkeit bei geringen Belastungen 	 bei Vibrationen und Stößen mit einer geforderten hohen Steifigkeit für Werkzeugmaschinen mit Schwerzerspanung
Anwen- dungs- beispiele	Strahlschweißmaschinen, Buchbindemaschinen, automatische Verpackungsmaschinen, XY-Achsen von allgem. Industriemaschinen, Schweißgeräte, Brennschneidmaschinen, Werkzeugwechsler, Zuführeinrichtungen	Vorschubachsen für Schleif- maschinentische, automatische Lackierautomaten, Industrie- roboter, verschiedene Hochgeschwindigkeits- Materialzuführer, NC-Bohr- maschinen, Z-Achsen für allgem. Industriemaschinen, Leiterplatten-Bohrmaschinen, Erodiermaschinen, Meßmaschinen, Präzisions-XY-Tische	Bearbeitungszentren, NC-Drehmaschinen, Vorschubachsen für Schleif- scheiben, Führungsgestell für Werkzeughalter an Fräs- maschinen, Z-Achsen bei Bearbeitungsmaschinen

5.2 Steifigkeit

Steifigkeitswert

Grundsätzlich wird die Steifigkeit durch eine Vorspannung erhöht. Abbildung 2 zeigt die unterschiedlichen Kennlinien mit dem Vorspannungseffekt bis zum 2,8-fachen des aktuellen Betrages der Vorspannungskraft. Im Vergleich zu einem nicht vorgespannten System wird die Einfederung bei gleicher Belastung deutlich reduziert, was eine wesentliche Erhöhung der Steifigkeit bedeutet. In Abbildung 2 sind die Steifigkeitsunterschiede bei Normal-, C1- und C0-Vorspannung dargestellt. Danach ergibt sich bei einer Belastung von 2,8 x $\rm P_0$ bei C0-Vorspannung die Hälfte der Einfederung als bei normaler Vorspannung.

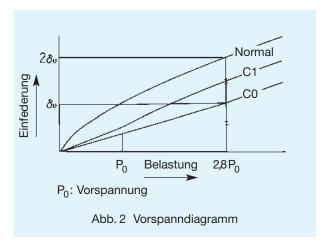
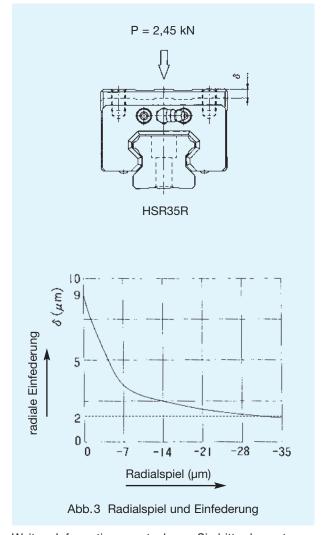
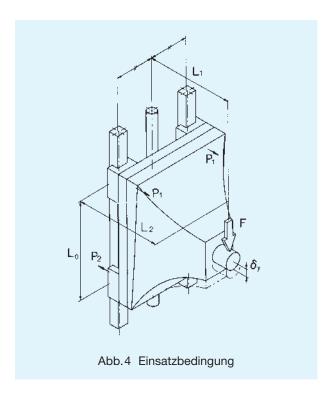



Abb. 3 zeigt den Einfluß der Vorspannung auf die Einfederung bei der Linearführung Typ HSR35R. Bei einer Radialbelastung von 2,45 kN beträgt die Einfederung mit Vorspannung (C0-Klasse, Radialspiel = -31μm) lediglich 2 μm, bei dem gleichen Typ ohne Vorspannung (Normalklasse, ohne Radialspiel) werden 9 μm Einfederung gemessen. Dieser Vergleich demonstriert eine Steifigkeitserhöhung durch Vorspannung um den Faktor 4,5.



Weitere Informationen entnehmen Sie bitte den entsprechenden Ausführungen zu den einzelnen Baureihen.

Beispiel einer Steifigkeitsberechnung

Die Skizze in Abb. 4 dient zur Berechnung der Steifigkeit eines Spindelrahmengestells mit Linearführungen. Aufgrund der Einfederung der Linearführungswagen ist eine geometrische Berechnung der Einfederung des Kraftangriffspunktes erforderlich.

Linearführung: Typ HSR35R mit zwei Wagen pro

Schiene;

einwirkende Kraft L₂

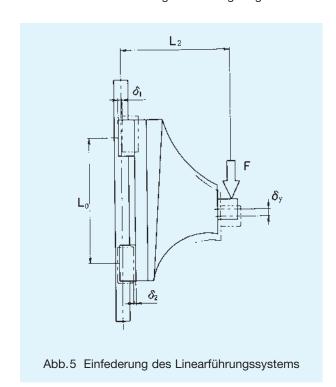
Paralleleinsatz zweier Schienen;

(mm)

Vorspannungsklasse: C0

Steifigkeit der Linearführung: gegenradiale Steifigkeit K_L zu P_1 (N/ μ m) radiale Steifigkeit K_R zu P_2 (N/ μ m) einwirkende Kraft F (N) Abstand der Führungswagen L_0 (mm) Abstand Kugelgewindetrieb zur einwirkende Kraft L_1 (mm) Abstand Mittelpunkt Führungswagen zur

Zuerst werden die an der Linearführung wirkenden Belastungen ermittelt.


$$P_1 = \frac{F}{2} \frac{L_1}{L_0}$$

(N) (gegenradiale Richtung)

$$P_2 = \frac{F}{2} \frac{L_1}{L_0}$$

(N) (radiale Richtung)

Danach wird die Einfederung der Führungswagen ermittelt:

$$\begin{array}{ll} \delta_1 = P_1/K_L & (\mu m) \\ \delta_2 = P_2/K_R & (\mu m) \end{array}$$

Die Einfederung am Kraftangriffspunkt wird wie folgt berechnet:

$$\delta_y = (\delta_1 + \delta_2) \times \frac{L_2}{L_0} \qquad \text{(μm)}$$

Die Steifigkeit K am Kraftangriffspunkt kann wie folgt überschlagen werden:

$$K = F/\delta y$$
 (N/ μ m)

Für die tatsächliche Einfederung sollte zusätzlich noch die Einfederung des Kugelgewindetriebs deren Lagereinheiten und der Anschlusskonstruktion bedacht werden.

Die einzelnen Steifigkeitswerte sind in den Ausführungen zu den einzelnen Linearführungen angegeben.

5.3 Belastung und Lebensdauer bei vorgespannten Linearführungen

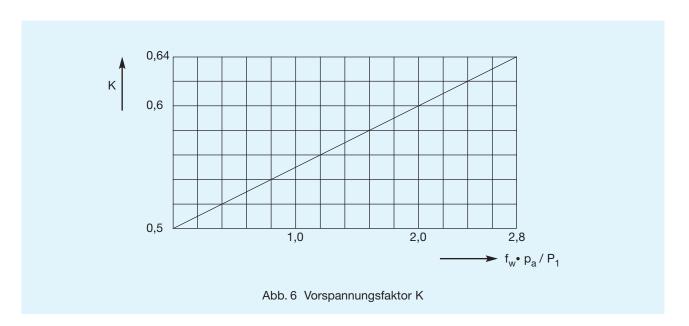
Bei vorgespannten THK Linearführungen liegt innerhalb des Führungswagens eine Kraft an, die bei der Berechnung der Lebensdauer berücksichtigt werden muß. Nach Auswahl der Linearführung erkundigen Sie sich bitte bei THK nach der geeigneten Vorspannung.

Vorspannungsfaktor K

Mit der unten aufgeführten Formel wird die wirkende Belastung einer vorgespannten Linearführung ermittelt. Der Vorspannungsfaktor K wird von dem Verhältnis von Vorspannung zur wirkenden Belastung bestimmt und kann aus dem unten aufgeführten Diagramm ermittelt werden (siehe Abb. 6).

Wirkende Belastung einschließlich Vorspannungskraft für die Typen HSR und NRS.

$$\begin{aligned} P_n : & P_1 + K \times (f_w \times p_a) \\ & \text{(bei } f_w \times p_a \leq 2.8 \times P_1) \end{aligned}$$


$$\begin{array}{c} \textbf{P}_{\textbf{n}}: \textbf{f}_{\textbf{w}} \times \textbf{p}_{\textbf{a}} \\ (\text{bei } \textbf{f}_{\textbf{w}} \times \textbf{p}_{\textbf{a}} > 2.8 \times \textbf{P}_{\textbf{1}}) \end{array}$$

P_n : Gesamtbelastung einschließlich Vorspannkraft

(N)

f_w: Belastungsfaktor

K : Faktor abhängig vom Verhältnis $f_w \times p_a / P_1$

Berechnung der Belastung einschließlich Vorspannung

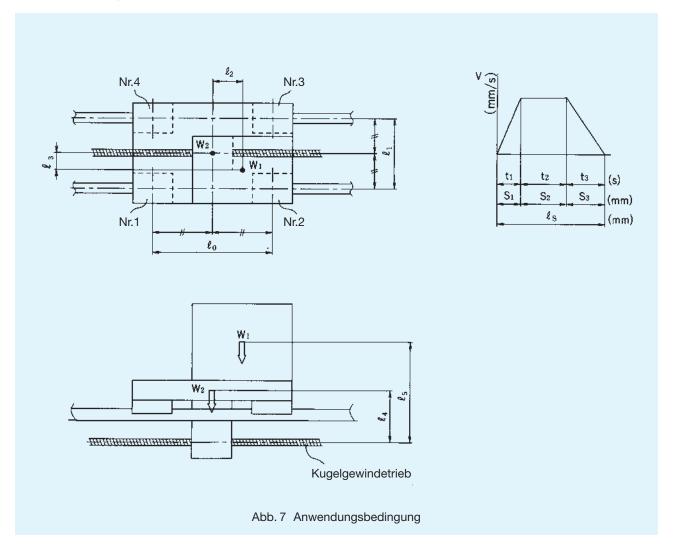
(Horizontaler Einbau der Linearführung mit hoher Beschleunigung und Verzögerung)

1. Anwendungsbedingung

Typ: HSR35LA2SSC0 +2500LP

(dynamische Tragzahl: C = 50,2 kN) (statische Tragzahl : C₀= 81,4 kN) : 3.900 N) (Vorspannung

Belastung $W_1 = 7840 \text{ N}$ Abstand ℓ_0 =600 mm


 ℓ_1 =400 mm

 $W_2 = 4900 \text{ N}$ Geschwindigkeit V = 500 mm/s ℓ_2^{\cdot} =120 mm

 $\ell_3^- = 50 \text{ mm}$ $t_1 = 0.05 s$ $t_2 = 2.8 \text{ s}$ $t_3 = 0.15 \text{ s}$ $\ell_s = 1.450 \text{ mm}$ ℓ_4° =200 mm

 ℓ_5 =350 mm

Hublänge

2. Kombinierte Belastungen für einzelne Führungswagen

In Tab. 2 sind die kombinierten Belastungen für einzelne Führungswagen entsprechend der auf S. 69 aufgeführten Belastungen angegeben.

Tab.2 Kombinierte Belastungen

	n	h	e	1+•	Ν
ட		ш		ı.	٠.

Bewegung	Nummer des Führungswagens			
	1	2	3	4
bei konst. Geschwindigkeit	2.891	4.459	3.479	1.911
bei Beschleunigung nach links	608,9	7.959	6.979	1.589
bei Verzögerung nach links	4.058	3.515	2.535	3.078
bei Beschleunigung nach rechts	6.391	1.626	645,7	5.411
bei Verzögerung nach rechts	1.947	5.626	4.646	966,5

3. Belastungen unter Berücksichtigung der Vorspannung

Bei konstanter Geschwindigkeit

 $P_1 = 3.900 + 0.56 \times (1.5 \times 2.891) = 6.348.4 \text{ N} \text{ (f}_w = 1.5)$

 $P_2 = 3.900 + 0.59 \times (1.5 \times 4.459) = 7.866,2 \text{ N}$

 $P_3 = 3.900 + 0.57 \times (1.5 \times 3.479) = 6.894.5 \text{ N}$

 $P_A = 3.900 + 0.54 \times (1.5 \times 1.911) = 5.467.9 \text{ N}$

Bei Beschleunigung nach links

 $P_{\ell a1} = 3.900 + 0.51 \times (1.5 \times 608.9) = 4.385.8 \text{ N}$

 $P_{\ell a2} = 1.5 \times 7.959 = 11.938,5N$

 $P_{\ell a3} = 3.900 + 0.63 \times (1.5 \times 6.979) = 10.515.2 \text{ N}$

 $P_{\ell a4} = 3.900 + 0.53 \times (1.5 \times 1.589) = 5.183.3 \text{ N}$

Bei Verzögerung nach links

 $P_{\ell d1} = 3.900 + 0.58 \times (1.5 \times 4.058) = 7.450.5 \text{ N}$

 $P_{\ell d2} = 3.900 + 0.57 \times (1.5 \times 3.515) = 6.925.3 \text{ N}$

 $P_{\ell d3} = 3.900 + 0.55 \times (1.5 \times 2.535) = 6.011.4 \text{ N}$

 $P_{\ell d4} = 3.900 + 0.56 \times (1.5 \times 3.078) = 6.505.5 \text{ N}$

Bei Beschleunigung nach rechts

 $P_{ra1} = 3.900 + 0.62 \times (1.5 \times 6.391) = 9.863.6 \text{ N}$

 $P_{ra2} = 3.900 + 0.53 \times (1.5 \times 1.626) = 5.212.7 \text{ N}$

 $P_{ra3} = 3.900 + 0.51 \times (1.5 \times 645.7) = 4.414.0 \text{ N}$

 $P_{rad} = 3.900 + 0.60 \times (1.5 \times 5.411) = 8.789.9 \text{ N}$

Bei Verzögerung nach rechts

 P_{rd1} =3.900×0,54×(1,5×1.947)=5.497,1 N

 $P_{rd2} = 3.900 \times 0.61 \times (1.5 \times 5.626) = 9.067.8 \text{ N}$

 P_{rd3} =3.900×0,59×(1,5×4.646)=8.031,7 N

 $P_{rd4} = 3.900 \times 0,52 \times (1,5 \times 966,5) = 4.673,9 \text{ N}$

4. Dynamische äquivalente Belastung

$$\begin{aligned} \mathsf{P}_{\mathsf{m}\,\mathsf{1}} &= \sqrt[3]{\frac{1}{2\times1.450}} \; (4.385, 8^3\times12, 5+6.348, 4^3\times1.400+7.450, 3^3\times37, 5+9.863, 6^3\times12, 5+6.348, 4^3\times1.400+5.497, 1^3\times37, 5) \\ &= 6.374, 5 \; \mathsf{N} \end{aligned}$$

$$P_{m2} = \sqrt[3]{\frac{1}{2 \times 1.450}} (11.938,5^3 \times 12,5 + 7.866,2^3 \times 1.400 + 6.925,3^3 \times 37,5 + 5.212,7^3 \times 12,5 + 7.866,2^3 \times 1.400 + 9.067,8^3 \times 37,5)$$

$$= 7.893,6 \text{ N}$$

$$P_{m3} = \sqrt[3]{\frac{1}{2 \times 1.450}} (10.515,2^3 \times 12,5 + 6.894,5^3 \times 1.400 + 6.011,4^3 \times 37,5 + 4.414^3 \times 12,5 + 6.894,5^3 \times 1.400 + 8.031,7^3 \times 37,5)$$

$$= 6.919,6 \text{ N}$$

$$P_{m4} = \sqrt[3]{\frac{1}{2 \times 1.450}} (5.183,3^3 \times 12,5 + 5.467,9^3 \times 1.400 + 6.505,5^3 \times 37,5 + 8,789,9^3 \times 12,5 + 5.467,9^3 \times 1.400 + 4.673,9^3 \times 37,5)$$

$$= 5.498.6 \text{ N}$$

5. Berechnung der Lebensdauer

Nach der Formel zur Berechnung der Lebensdauer ergeben sich folgende Werte:

$$L_1 = \left(\frac{50,2 \times 10^3}{6.374,5}\right)^3 \times 50 = 24.400 \text{ km}$$

$$L_2 = \left(\frac{50,2 \times 10^3}{7.893.6}\right)^3 \times 50 = 12.900 \text{ km}$$

$$L_3 = \left(\frac{50,2 \times 10^3}{6.919,6}\right)^3 \times 50 = 19.100 \text{ km}$$

$$L_4 = \left(\frac{50,2 \times 10^3}{5.498,6}\right)^3 \times 50 = 38.000 \text{ km}$$

Bezogen auf den Führungswagen Nr. 2 beträgt die Lebensdauer der Führung in der oben beschriebenen Anwendung 12.900 km.

6. Statischer Sicherheitsfaktor

Nach der oben aufgeführten Berechnung liegt die maximale Belastung am Führungswagen Nr. 2 bei Beschleunigung nach links an. Der statische Sicherheitsfaktor wird wie folgt ermittelt:

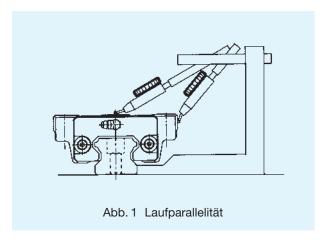
$$f_s = \frac{81.4 \times 10^3 \text{ N}}{11.938.5 \text{ N}} = 6.8$$

6. Auswahl der Genauigkeit

82	Genauigkeitsstandard
84	Auswahl der Genauigkeitsl

gkeitsklassen

Kompensationseffekt

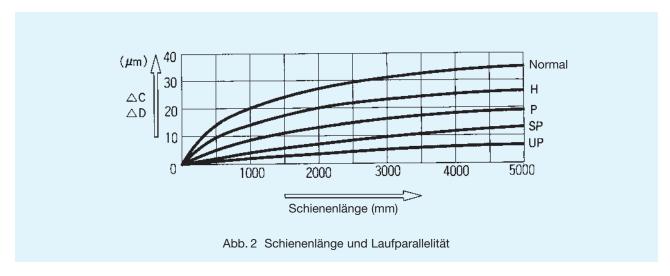

Maschinen und empfohlene Genauigkeitsklassen

6.1 Genauigkeitsstandard

Die Genauigkeit von '미내년' Linearführungen wird nach der Laufparallelität, den Masstoleranzen von Höhe und Breite sowie den Differenzen von Höhe und Breite zwischen Wagenpaaren bei mehreren eingesetzten Führungswagen auf einer Schiene bzw. auf mehreren in einer Ebene parallel verlaufenden Schienen definiert.

Laufparallelität

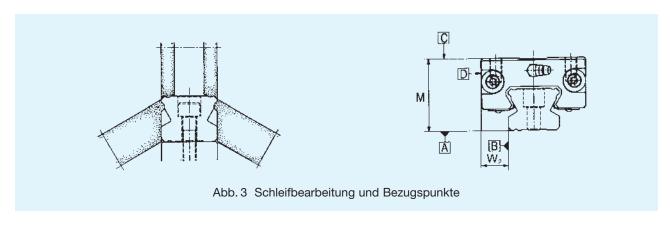
Die Laufparallelität bezeichnet den Parallelitätsfehler zwischen den beiden Bezugsflächen von Führungsschiene und Führungswagen. Bei der Messung wird die Führungsschiene festgeschraubt, dann wird der Führungswagen über der gesamten Schienenlänge verfahren.



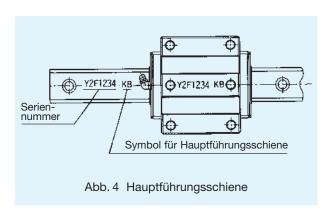
Die Laufparallelität wird als Abweichung bezogen auf den Verfahrweg bestimmt.

Beispiel: Laufparallelität 5µm/1.000 mm

Die einzelnen Genauigkeitsklassen sind von der Normalklasse bis zur Ultrapräzisionsklasse in maximal fünf Klassen unterteilt. Diese werden in den technischen Beschreibungen zu den einzelnen Linearführungen erläu-


Gestoßene Schienen werden so gefertigt, dass kein Versatz an den Stoßstellen ensteht. Die Gesamtlänge sollte deshalb bei der Bestellung angegeben werden. Gestoßene Schienen-Versionen werden bis zu einer Länge von 14 m in einem Arbeitsgang geschliffen. Über Einzelheiten berät 而出 Sie gern.

Abweichung der Höhe M zwischen Paaren


Die Abweichung der Höhe M zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Höhe M, die an jedem der in einer Ebene montierten Führungswagen gemessen worden sind.

Abweichung der Breite W₂ zwischen Paaren

Die Abweichung der Breite W_2 zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Breite W_2 , die an jedem der auf einer Schiene montierten Führungswagen gemessen worden sind.

Anm. 1): Für den parallelen Einbau von zwei oder mehr Schienensets in der gleichen Ebene gelten die Masstoleranzen für die Breite W₂ sowie die Abweichung zwischen Paaren nur für die Schiene der Hauptführungsseite (Kennzeichen KB am Ende der Seriennummer; siehe Abb.4).

Anm. 2): Der Genauigkeitswert bezieht sich auf den Mittelpunkt des Führungswagens bzw. auf den Durchschnittswert der Mittelpunkte.

Anm. 3): Die Führungsschienen werden so gefertigt, dass sich die entsprechende Genauigkeit erst im montierten Zustand ergibt. Wenn Führungsschienen auf weniger steifen Unterkonstruktionen montiert werden, aber trotzdem eine hohe Genauigkeit verlangt wird, sollte die Schienengeradheit im voraus definiert werden. Fragen Sie bitte dazu

6.2 Auswahl der Genauigkeitsklassen

Bei der Auswahl der Genauigkeitsklasse eines Linearführungssystems sind die gegebenen Anwendungsbedingungen zu berücksichtigen.

Die Endenauigkeit von Maschinen und Anlagen basiert nicht nur auf der Genauigkeit des eingesetzten Linearführungssystems, sondern auch auf der Genauigkeit der Montageflächen und der Anschlußkonstruktionen.

Kugelgelagerte THK Linearführungssysteme können Montagefehler kompensieren und damit die Endgenauigkeit verbessern. Aufgrund dieser besonderen Eigenschaft kann eine Linearbewegung mit einer Genauigkeit erzielt werden, die höher liegt als die Genauigkeit der Montagefläche (siehe dazu das Beispiel auf der folgenden Seite).

지내는 Linearführungen sind überwiegend in fünf Genauigkeitsklassen lieferbar:

- Normal (kein Kennzeichen in der Bestellbezeichnung)
- Hochgenau (H)
- Präzision (P)
- Superpräzision (SP)
- Ultrapräzision (UP)

Siehe auch Tabelle "Genauigkeitsklassen" bei den technischen Angaben der jeweiligen Baureihen.

6.3 Kompensationseffekt

TIHK Linearführungen sind spielfreie, hochbelastbare Konstruktionselemente mit Präzisionskugeln. Beim Einbau von mehreren parallel verlaufenden Führungsschienen in einer Ebene erhöhen sich deutlich die Leistungsmerkmale der Führungskonstruktion. Etwaige Abweichungen in der Parallelität, der Geradheit und der Ebenheit, die durch die Bearbeitung der Unterkonstruktion bzw. während der Montage entstanden sind, können so durch die besonderen Merkmale der Linearführungen kompensiert werden.

Diese Kompensierung, der sogenannte Kompensationseffekt, ist abhängig von der Größe des Versatzes oder der Abweichung, der Vorspannung, der Anzahl der eingebauten Elemente u.a. Die Abb. 5 zeigt eine Versuchsanordnung zur Darstellung des Parallelitätsfehlers und die Auswirkung auf die Laufgenauigkeit des Tisches (oder die horizontale Geradheit) bei einer bewußt versetzten Führungsschiene. In Abb. 6 werden die Ergebnisse wiedergegeben. Aufgrund dieses Kompensationseffekts können Führungssysteme mit einer hohen Laufgenauigkeit einfach realisiert werden.

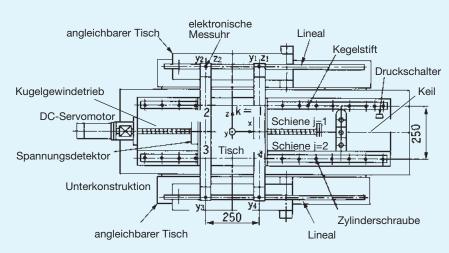
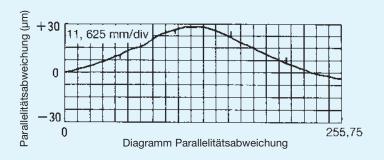



Abb. 5

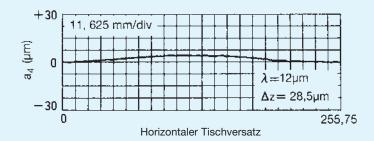


Abb. 6

Quelle: Prof. Shigeo Shimizu: "Studien zur Genauigkeit des Kompensationseffekts bei kugelgelagerten Linearführungen" (1990)

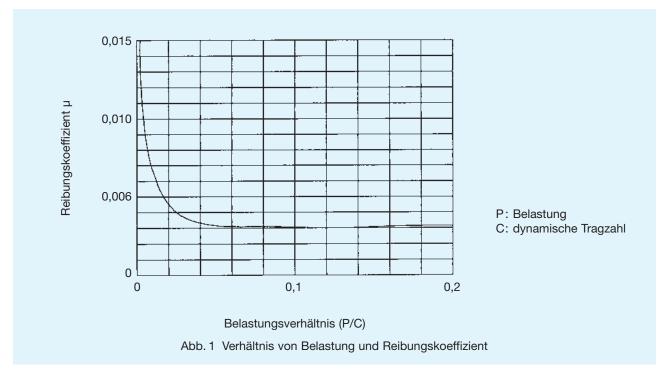
6.4 Maschinen und empfohlene Genauigkeitsklassen

Tabelle 1 zeigt die Richtlinien für die zu wählende Genauigkeitsklasse bei verschiedenen Anwendungen.

Tab.1 Richtlinien für die Genauigkeitsklassen bei verschiedenen Anwendungen

Maschinen			Genauigkeitsklassen			
Masc	ninen	Normal	Н	Р	SP	UP
	Bearbeitungszentrum			0	0	
	Drehmaschine			0	0	
	Fräsmaschine			0	0	
	Bohrmaschine			0	0	
	Bohrwerk				0	0
	Schleifmaschine				0	0
	Erodiermaschine			0	0	0
Werkzeugmaschinen	Stanzpresse		\circ	0	0	
Werkzeugmaschinen	Laser-Schneidmaschine		0	0		
	Holzbearbeitungsmaschine	0	\circ	0		
	NC-Bohrmaschine		0	0		
	Gewinde-Schneidmaschine		0	0		
	Palettenwechsler	0				
	Werkzeugwechsler	0				
	Draht-Erodiermaschine			0	0	
	Abrichteinrichtungen				0	0
Industrieroboter	Koordinatentyp	0	0	0		
	Scararoboter	0	0			
	Drahtverbinder			0	0	
Halbleiter-	Tastkopf				0	0
Fertigungseinrichtungen	Bestückungsautomat		0	0		
	Leiterplatten-Bohrmaschine		0	0	0	
	Spritzgußmaschine	0	0			
	3D-Messmaschine				0	0
	Büromaschinen	0	0			
	Transporteinrichtungen	0	0			
Andere	XY-Tisch		0	0	0	
Fertigungseinrichtungen	Plotter	0	0			
	Schweißmaschinen	0	0			
	Medizinische Geräte	0	0			
	Digitalisierer		0	0	0	
	Prüfeinrichtungen			0	0	0

7. Berechnung der Antriebskraft


- 87 | Verschiebewiderstand
- 88 Antriebskraft
- 88 Berechnungsbeispiel
- 88 Steifigkeit der Antriebskonstruktion

7.1 Verschiebewiderstand

In den Linearführungssystemen rollen Wälzkörper zwischen den Laufbahnen ab. Diese ermöglichen bei Rollbewegungen einen Verschiebewiderstand, der nur 1/20 bis 1/40 des Widerstandes von Gleitführungen beträgt. Dazu ist die Anfahrreibung besonders gering und fast identisch mit der Verfahrreibung, so dass kein Stick-Slip-Effekt auftritt und ein Verfahren im Submikronbereich möglich ist.

Der Verschiebewiderstand eines Linearführungssystems ändert sich je nach dem verwendeten Typ, der Vorspannung, dem Schmierstoff mit seiner Viskosität, der einwirkenden Belastung und anderen Faktoren. Vor allem eine aufgebrachte Vorspannung zur Steifigkeitsverbesserung oder eine Momentaufnahme können den Verschiebewiderstand deutlich erhöhen.

Allgemeine Reibungskoeffizienten zu den einzelnen Linearführungssystemen sind in Tabelle 1 angegeben.

Tab. 1 Reibungskoeffizienten

Linearführungssysteme	Baureihe	Reibungskoeffizient μ
Linearführungen	SSR, SR, SNR, SHW, SRS, NR, SHS, HSR, HRW, HR, RSR	0,002 ~ 0,003
Rollenführungen	SRG, SRN, SRW	0,001 ~ 0,002
Keil- und Nutwellen	LBS, LBF, LT, LF	0,002 ~ 0,003
Kugelbuchsen	LM, LME	0,001 ~ 0,003
Buchsen mit Kugelkäfig	MST, ST	0,0006 ~ 0,0012
Rollenumlaufschuhe	LR, LRA	0,005 ~ 0,010
Nadelflachrollen	FT, FTW	0,001 ~ 0,0025
Kreuzrollenführungen	VR, VRU	0,001 ~ 0,0025
Linear-Kugelschlitten	LS	0,0006 ~ 0,0012

7.2 Antriebskraft

Der Verschiebewiderstand kann mit folgender Formel ermittelt werden:

$$F = \mu \times W + f$$

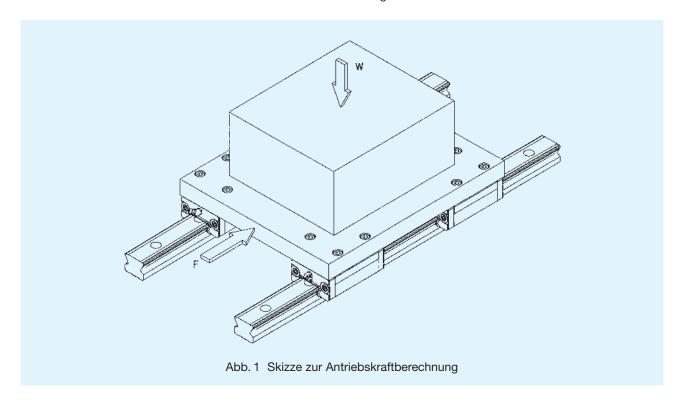
F: Verschiebewiderstand	(N)
W: Belastung	(N)
u · Reibungskoeffizient	

μ : Reibungskoeπizient

f : Spezifischer Verschiebewiderstand von Linearführungssystemen (N)

Der spezifische Verschiebewiderstand von Linearführungssystemen ist unabhängig von der Belastung, aber je nach Abdichtung, Vorspannung, Viskosität des Schmierstoffs etc. unterschiedlich.

7.3 Berechnungsbeispiel


Ein Führungssystem bestehend aus vier fettgefüllten Führungswagen des Typs SR25W-UU mit Dichtungen ist auf einer ebenen Fläche montiert und mit einer Last von 1.200 kg beaufschlagt. Der spezifische Verschiebewiderstand der vier Führungswagen beträgt insgesamt 17,6 N. Mit der Formel und dem Reibungskoeffizient aus Tabelle 1 wird der gesamte Verschiebewiderstand wie folgt ermittelt:

$$F = \mu \times W + f = 0,003 \times 1200 \times 9,8 + 17,6 = 53N$$

Dies bedeutet, dass selbst eine Last von 1.200 kg mit geringem Kraftaufwand bewegt werden kann.

7.4 Steifigkeit der Antriebskonstruktion

Bei einer geringen Steifigkeit der Antriebskonstruktion tritt der sogenannte Totgang auf. Um bei Werkzeugmaschinen und anderen Präzisionsmaschinen eine hohe Positioniergenauigkeit zu erzielen, sind die einzelnen Elemente der Antriebskonstruktion bezüglich der axialen Steifigkeit sorgfältig aufeinander abzustimmen.

8. Schmierung und Schutzvorrichtungen

8.1 Schmierung

Für die zuverlässige Funktion des Linearführungssystems ist eine ausreichende Schmierung unerläßlich. Eine unzureichende Schmierung erhöht nicht nur den Verschleiß, sondern sie verkürzt zudem erheblich die Lebensdauer. Die Schmierung

- vermindert den Verschleiß und den Reibungswiderstand sowie das Festfressen der laufenden Teile.
- bildet einen gleichmäßigen Fettfilm über die Laufbahnen, wodurch die Beanspruchung abnimmt und die Lebensdauer verlängert wird.
- schützt die metallischen Oberflächen vor Korrosion.

Damit die Funktion des Linearführungssystems nicht beeinträchtigt wird und über einen langen Zeitraum erhalten bleibt, ist eine Schmierung entsprechend der Umgebungsbedingungen und der spezifischen Anforderungen unbedingt durchzuführen.

Bei Betrieb der Führungssysteme über lange Verfahrwege oder mit hohen Geschwindigkeiten ist eine Nachschmierung mit dem gleichen Schmierstoff in kurzen Intervallen - vor und während des Betriebs - vorzunehmen. Als Richtlinie sollte eine Nachschmierung unter normalen Betrebsbedingungen und bei einem konventionellen Führungssystem alle sechs Monate oder nach 100 km Verfahrweg erfolgen. Bei einem Führungssystem mit integrierter Kugelkette verbessem sich diese Werte unter gleichen Bedingungen deutlich.

Weitere Faktoren, die bei der Schmierung und den Schmierintervallen berücksichtigt werden müssen, sind beispielsweise:

- extreme Betriebstemperaturen
- · Kondens- und Spritzwassereinwirkung
- hohe Schwingungsbeanspruchung
- Einsatz im Vakuum oder in Reinräumen
- Beaufschlagung mit speziellen Medien (z.B. Dämpfe, Säuren und Kohlenwasserstoffe)
- · hochdynamischer Betrieb
- permanent kleine Hubbewegungen (Hubweg < 2 Wagen-/Mutterlängen)

Die Verwendung von speziell additivierten bzw. synthetischen Schmierstoffen kann die Lebensdauer wesentlich erhöhen. Auch kann der Einsatz eines Linearführungssystems mit integrierter Kugelkette den Wartungsaufwand deutlich minimieren, und sogar unter bestimmten Betriebsbedingungen eine Nachschmierung überflüssig machen.

Eine weitere Möglichkeit den Wartungsaufwand zu minimieren und die Leistungsfähigkeit des Führungssystems zu erhöhen, ist die Anbringung von speziellen Schmieradaptern an die Führungswagen, die während der Verfahrbewegungen kontinuierlich den Schmierstoff abgeben.

Bei Fragen zu diesem Thema steht Ihnen '미네너' gerne zur Verfügung.

Für den Einsatz unter normalen Betriebsbedingungen empfehlen wir Schmierstoffe mit den folgenden Mindestanforderungen:

Schmierstoff	DIN Kennzeichen	DIN-Nummer	Bemerkung
Schmierfett	KP 2 - K	51502/51825	Lithium- seifenfett
Schmieröl	CLP32 - 100	51517 Teil 3	ISO VG 32- 100

Achtung: Schmierstoffe mit Festschmierstoffzusätzen (z.B. MoS₂, Graphit und PTFE) sind für den Einsatz in '미네氏' Führungssystemen ungeeignet.

Schmierung bei Kühlwassereinwirkung

Durch die direkte Beaufschlagung des Linearführungssystems mit flüssigen Medien, besonders mit Wasser mischbaren Kühlschmierstoffen und Reinigern, kann durch deren emulgierendem und reinigendem Verhalten ein "Aus- und Abwaschen" des Schmierstoffs im Führungssystem mit einer Beeinträchtigung der Betriebssicherheit erfolgen.

Deshalb sollte bei Einsatz von Führungssystemen in Maschinen und Anlagen, in denen Kühlschmierstoffe verwendet werden, das direkte Beaufschlagen der Kühlflüssigkeit auf das Führungssystem vermieden werden. Unter diesen Bedingungen muß das Führungssystem durch eine Abdeckung geschützt werden, oder Schmierstoff und Kühlflüssigkeit müssen aufeinander abgestimmt werden.

Schmierung unter besonderen Bedingungen

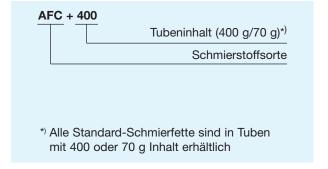
Bei Betrieb des Linearführungssystems unter ständigen Vibrationen, bei hohen oder niedrigen Temperaturen bzw. im Reinraum oder Vakuum müssen spezielle Schmierfette, wie beispielsweise die THK Schmierfette, verwendet werden.

AFC-Schmierfett

Bei Maschinen, die feinen Vibrationen, wiederholten Vibrationen mit niedriger Amplitude oder bei Vibrationen von außen, wie z.B. bei einem langen Transport, ausgesetzt sind, kann Tribokorrosion auftreten. Diesbezüglich wird die Schmierung mit AFC-Schmierfett empfohlen, da dieses hervorragende Eigenschaften gegen Tribokorrosion besitzt.

Das AFC-Fett besteht aus einer synthetischen, kohlenstoffhaltigen Ölmischung, der organische Verbindungen auf Urea-Basis beigemengt sind. Der Temperatureinsatzbereich ist unter Beibehaltung der guten Schmiereigenschaften mit -54 °C bis +177 °C sehr breit, und die Gebrauchsdauer ist um ein vielfaches länger als bei herkömmlichen Schmierfetten.

8.2 THK-Schmierfette


In Tabelle 1 sind die Spezifikationen der \fill Schmierfette aufgeführt.

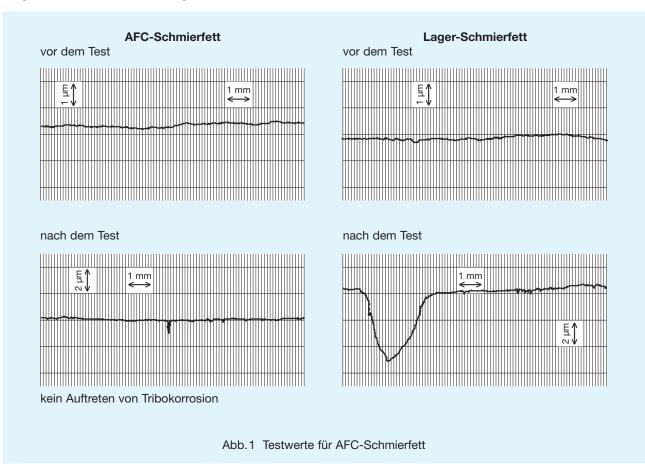
Tab. 1 T⊓HK Schmierfette

THK-	Dickungs-	Konsistenz-	Walk-	Einsatz-		
Fett-	mittel	klasse	penetration	Temperatur-	Anwendungsbereich	Besondere Eigenschaften
Typen	(Seife)	DIN 51 818	DIN ISO 2137	bereich		
					Für besonders hohe	=> Geringer innerer Reibungswiderstand
AFA	Urea	1 ~ 2	280~320 1/10mm	-45°∼+160°C	Verfahrgeschwindigkeit	=> Hohe Oxidationsbeständigkeit
7 7 .	0.00		200 020 1, 1011111		und Einsatz im "Low	=> Hohe Gebrauchsdauer
					noise"-Bereich.	=> Weiter Einsatztemperaturbereich
					Für alle "normalen"	=> Anti-Verschleiß und EP-Additive
AFB	Lithium	2	265~295 1/10mm	-10°∼+110°C	Anwendungen	=> Hohe Oxidationsbeständigkeit
ALD	Littiidiii	2	203 - 293 1/10111111	-10 * +110 0	(Mehrzweckfett).	=> Hohe Gebrauchsdauer
					(Menizweckiett).	=> Hohe mechanische Stabilität
					Für Anwendungen mit	=> Hohe Gebrauchsdauer
AFC	Urea	2	270~310 1/10mm	-54°∼+177°C	hochfrequentierten	=> Hohe Oxidationsbeständigkeit
AIC	Olea	2	270,~310 1/10111111	-34 **+177 0	Schwingungen und	=> Anti-Tribokorrosions-Additive
					kurzen Hüben.	=> Weiter Einsatztemperaturbereich
						=> Extrem geringer Staubausstoß
AFE	Urea	2	280 1/10mm	-40°∼+200°C	Für Anwendungen im	=> Hohe Resistenz gegen Radioaktivität
ALL	Olea	2	200 1/10111111	Reinraum.	Reinraum.	=> Hohe Stabilität gegen Chemikalien
					=> Hohe Gebrauchsdauer	
						=> Anti-Tribokorrosions-Additive
						=> Geringer innerer Reibungswiderstand
AFF	Lithium	1	315 1/10mm	-40°∼+120°C	Für Anwendungen im	=> Extrem geringer Staubausstoß
AFF	Littiiuiii	'	313 1/10111111	-40 ~+120 C	Reinraum	=> Hohe Resistenz gegen Radioaktivität
						=> Hohe Stabilität gegen Chemikalien
						=> Hohe Gebrauchsdauer
					Für Kugelgewindetriebe	=> für hohe Geschwindigkeiten
AFG	Urea	2	285 1/10mm	-45°∼+160°C	mit	=> Geringer innerer Reibungswiderstand
					Kugelkettentechnologie	=> Geringe Wärmeerzeugung

Anmerkung: Die THK Linearführungssysteme werden werksseitig mit AFB-Schmierfett befettet, wenn keine besondere Vorgabe gemacht wird.

Aufbau der Bestellbezeichnung

Gefahr durch Tribokorrosion


Bei besonderer Beanspruchung des Linearführungssystems durch Stöße, Kurzhübe und Schwingungen im Hochfrequenzbereich, Vibrationen mit niedrigen Amplituden oder Vibrationen von außen, wie sie beispielsweise bei langen Transporten auftreten könnenn, kann Tribokorrosion auftreten. Hier wird besonders die Schmierung mit AFC-Schmierfett empfohlen, da dieses ein besonderes Additiv gegen Tribokorrosion besitzt.

Vergleichstest bei Tribokorrosion

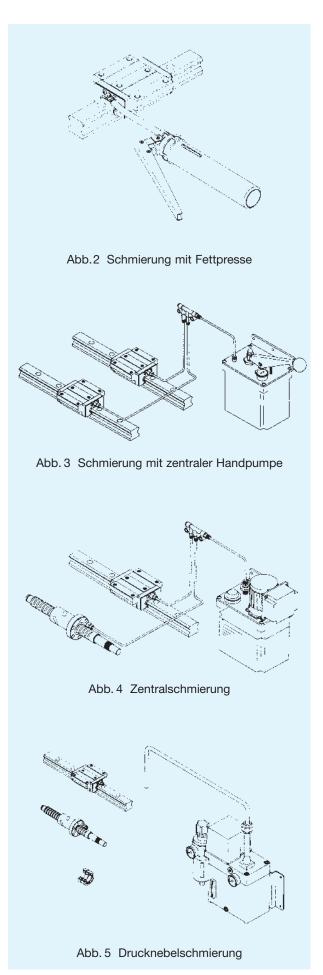
Nach einem unter genau definierten Bedingungen durchgeführten Vergleichstest mit marktüblichen Schmierfetten wurden folgende Ergebnisse bezüglich der Oberflächenrauhigkeit der Laufbahnen festgestellt:

Testbedingungen			
Hublänge	3 mm		
Anzahl der Hübe/Minute	200 min ⁻¹		
Gesamtanzahl der Hübe	2,88 ×10 ⁵ (24 h)		
Lagerdruck	1118 MPa		
Fett-Füllmenge	12 g (Nachschmierung alle 8 h)		

Vergleich der Oberflächenrauhigkeit

8.3 Abschmiermethoden

Linearführungssysteme können entweder manuell (Fettpresse, Handpumpe etc.) oder mittels einer Zentralschmierung abgeschmiert werden. Letztere Methode wird vor allem in Werkzeugmaschinen angewendet, bei denen das Linearführungssystem über eine bereits vorhandene Ölumlauf- oder Ölbadschmierung mitversorgt wird.


Nachfolgend sind vier Beispiele zur Abschmierung aufgezählt: Die manuelle Abschmierung mittels Fettpresse ist wohl die geläufigste Schmiermethode (siehe Abb. 2).

Bei der manuellen Zentralschmierung werden mittels einer Handpumpe und einem Schmierstoffreservoir mehrere Schmierstellen an einer Maschineneinheit gleichzeitig versorgt (siehe Abb. 3).

Die automatische Zentralschmierung gewährleistet im allgemeinen eine gleichmäßige und konstante Schmierstoffversorgung (siehe Abb.4).

Besonders hohe Anforderungen erfüllt das elektronisch gesteuerte Drucknebel-Schmiersystem (siehe Abb. 5). Hierbei wird mittels Druckluft Öl in feinst verteilten Tropfen zu den Schmierstellen befördert. Dadurch wird eine Minimalschmierung, hohe Wärmeabfuhr und konstante Schmiermittelzuführung gewährleistet. Zusätzlich wird durch den aufgebauten Überdruck im Führungselement das Eindringen von Fremdstoffen, wie z.B. Schmutz, Späne und Kühlflüssigkeiten, erschwert. Dieses Schmiersystem eignet sich vor allem für Anwendungen mit hohen Verfahrgeschwindigkeiten.

Ausführliche Details über verschiedene Schmieradapter zum Anschluß an eine Zentralschmierung finden Sie auf S. 95.

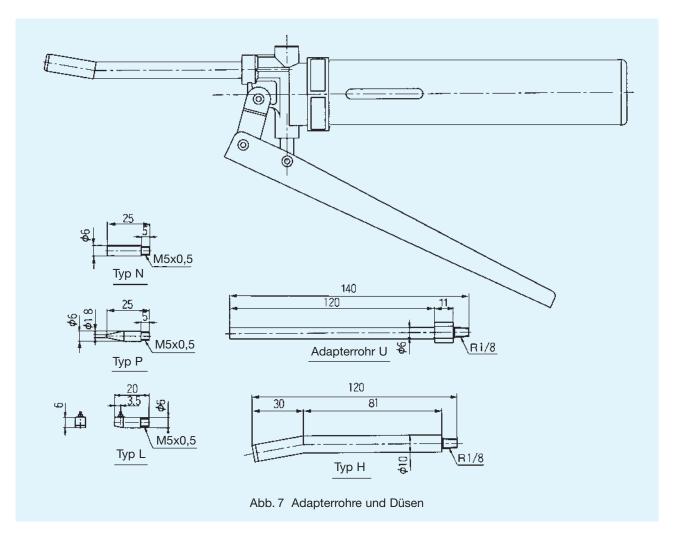
8.4 Schmierzubehör

Mit der Fettpresse Typ MG70 und den mitgelieferten Adapterrohren und Düsen können alle Baugrößen der Linearführungen abgeschmiert werden. Für die Miniaturführungen sind spezielle Düsen enthalten, so daß auch bei schwer zugänglichen Stellen abgeschmiert werden kann.

Am Sichtfenster in der Fettpresse ist die verbleibende Fettmenge zu erkennen. Das Fett selbst kann in 70 g-Kartuschen problemlos und sauber gewechselt werden. Beachten Sie bitte bei der Bestellung, daß die Einwegkartuschen extra bestellt werden müssen.

Tab. 2 Anwendbare Baureihen

Düsentyp	Linearführungen
Typ N	HSR12, HSR15, SHS15, SR15, SSR15, HRW17, RSR15V, RSR15WV, KR33
Тур Р	RSR12V, HSR8, HSR10
Typ L	RSR12V, HSR8, HSR10
Тур Н	Linearführungen (mit Schmiernippel M6F und PT 1/8), Kugelgewindetriebe


Neben den aufgeführten Modellen können mit Hilfe der Typen P und L auch Laufrillen an schwer zugänglichen Stellen geschmiert werden.

Tab.3 Ausführung der Fettpresse

Auspreßdruck	max. 19,6 MPa
Auspreßmenge	0,6 ccm/Hub
Schmierfett	Faltenbalg-Kartusche mit 70 g
Gesamtlänge	235 mm (ohne Düse)
Gewicht	480 g (mit Düse ohne Fett)

Abb. 6 Fettpresse Typ MG70 mit Abschmieradaptern (Bestellset ist ohne Fett-Einwegkartusche)

8.5 Ölschmierung

Sollte eine Ölschmierung geplant sein, liefert THK die gewünschte Kompakfführung nur mit Konservierungsöl versehen aus. Geben Sie bitte dies bei der Bestellung mit an.

Um bei Ölschmierung eine ausreichende Versorgung der einzelnen Kugelreihen gewährleisten zu können, wird werksseitig je nach konstruktiver Einbaulage der Linearführung der Führungswagen modifiziert. Dabei werden die Schmierkanäle in den Endplatten aufeinander abgestimmt. Darüber hinaus werden die Endplatten am Wagenblock teilweise mit einer speziellen Papierdichtung versehen. Bei geplanter Ölschmierung ist daher das Symbol für die Einbaulage und der Neigungswinkel θ bei der Bestellung mit anzugeben.

Tab. 4 Symbol der Einbaulage

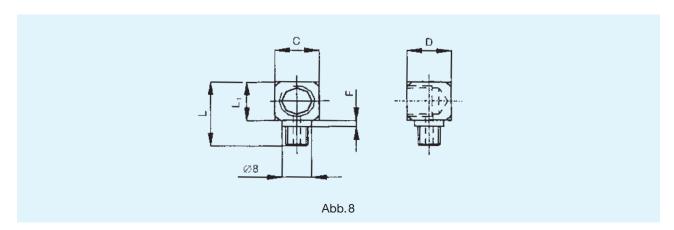
Lage	horizontal	vertikal	quer (wandmontage)	umgekehrt horizontal
Symbol	Н	V	K	R
		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
Lage	Vertikal geneigt	quer geneigt	umgekehrt vertikal geneigt	
Symbol	HV	HK	RV	RK
	$\theta = (^{\circ})$	$\theta = ($ $^{\circ})$	$\theta = ($ $^{\circ})$	$\theta = ($ $^{\circ})$

Empfohlene Schmieröle

Ein besonders emulsionsbeständiges Gleitöl (dynamische Viskosität: ca. 68 cSt) ist z.B.: Mobil Vactra Oil No. 2S.

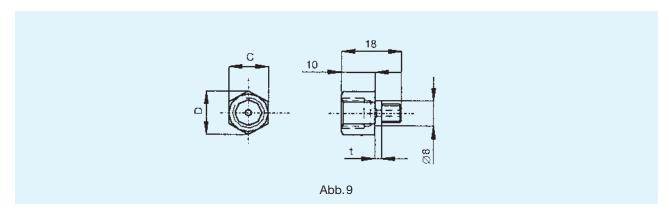
- Die Schmierstoffmenge ist abhängig von der Hublänge. Bei besonders langen Hüben sind kürzere Schmierintervalle oder eine größere Schmierstoffmenge erforderlich, damit der Ölfilm über die ganze Länge der Laufbahnen nicht abreißt.
- Sind die Linearführungen Kühlmitteln ausgesetzt, kann der Schmierstoff vom Kühlmittel durchsetzt und abgewaschen werden oder auch emulgieren. Damit die Schmiereigenschaft des Schmierstoffes in diesen Fällen nicht wesentlich beeinträchtigt wird, sollte ein Schmierstoff mit einer dynamischen Viskosität von ca. 68 cSt oder ein besonders emulsionsbeständiger Schmierstoff verwendet werden. Außerdem ist in kürzeren Intervallen und größeren Mengen nachzuschmieren. Eine Ölschmierung ist für Linearführungen, die mit hohen Belastungen und Geschwindigkeiten verfahren werden und dazu sehr steif sein müssen, wie z.B. in Werkzeugmaschinen, zu empfehlen.
- Die Ölversorgungsleitungen sind wagenseitig auf den erforderlichen Öldruck zu überprüfen.

Tab. 5 Thik Schmieröle


Technische Daten	Norm	Einheit	「元光 LM OIL VG32	הואלג LM OIL VG68
Dichte bei 15°C	DIN 51 757	g/cm ³	0,869	0,88
ISO-Viskostätsklasse	DIN 51 519	_	VG32	VG68
Viskosität bei 40°C	DIN 51 562	mm ² /s (cSt)	30,29	64,16
Viskositätsindex	DIN 51 563	_	110	108
Flammpunkt	DIN 51 375	°C	220	248
Pourpoint	DIN 51 597	°C	-32,5	-30
Neutralisationszahl (TAN)	DIN 51 558 T1	mg KOH/g	1,65	1,65
Kupfer-Korrosionstest 168h/70°C		Korrosionsgrad	0	0

Spezielle Schmieradapter

Für eine Zentralschmierung mit Schmieröl oder -fett sind spezielle Schmieranschlüsse erhältlich. THK liefert die Kompaktführungen zusammen mit den montierten Schmieranschlüssen aus, wenn Sie bei der Bestellung den Typ des Schmieradapters sowie die Einbaulage und Fließrichtung des Schmierstoffs angeben.

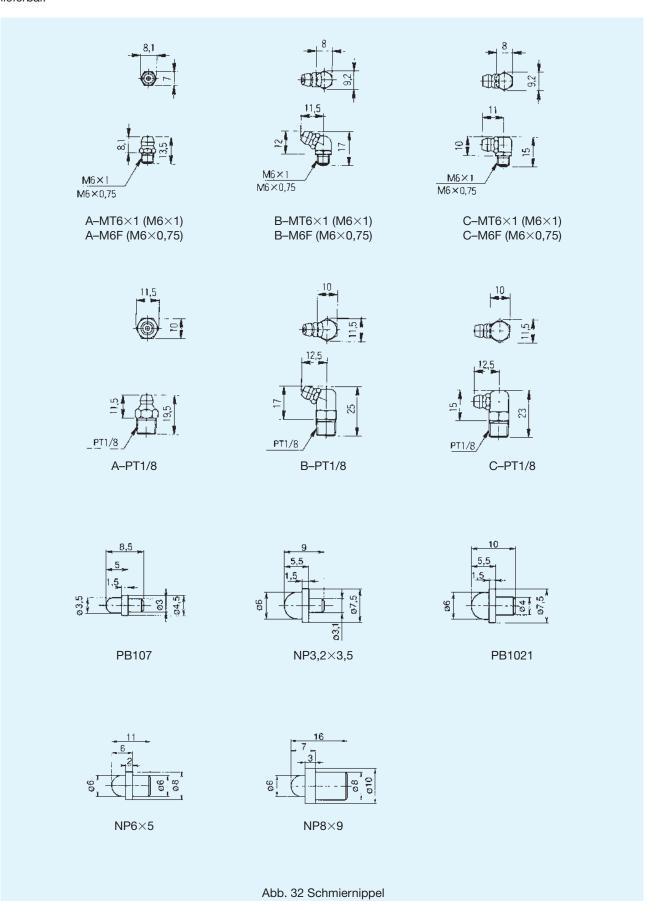

Anm.: Die Länge der Schmiernippel oder Schmieradapter kann je nach Dichtungsoption unterschiedlich sein. Bei Rückfragen wenden Sie sich bitte an האואל.

Tab. 6

	Masstabelle für die Adaptertypen LF							
Adapter	Einschraub-	Anschluß-	I [mm]	L ₁ [mm]	F [mm]	C [mm]	D [mm]	
Typen	Aussengewinde	Innengewinde	L [mm]					
LF-A	M6×0,75	R1/8*	20	12	2	12	12	
LF-B	M6×0,75	M8×1	18,5	10	2,5	9,5	18	
LF-C	R1/8*	R1/8*	20	12	0	12	12	
LF-D	R1/8*	M8×1	18	10	0	10	18	
LF-E	116	R1/8*	20	12	2	12	12	

^{*} Whitworth-Rohrgewinde R1/8 mit zylindrischem Innen- und kegeligem Außengewinde (entspricht PT1/8 nach JIS-Norm).

Tab. 7


Masstabelle für die Adaptertypen SF						
Adapter	Einschraub-	Anschluss-	C [mm]	D [mm]	+ [mm]	
Typen	Aussengewinde	Innengewinde	C [iiiiii]	ן וווווון ט	t [mm]	
SF-A	M6×0,75	R1/8*	12	13,8	2	
SF-B	M6×0,75	M8×1	10	11,5	2	
SF-C	R1/8*	R1/8*	12	13,8	0	
SF-D	R1/8*	M8×1	10	11,5	0	
SF-E	116	R1/8*	12	13,8	2	

^{*} Whitworth-Rohrgewinde R1/8 mit zylindrischem Innen- und kegeligem Außengewinde (entspricht PT1/8 nach JIS-Norm).

Schmiernippel

Die Schmiernippel zur erforderlichen Schmierung der Linearsysteme sind in verschiedenen Ausführungen ab Lager lieferbar

8.6 Schutzvorrichtung und Abdichtung

Materialauswahl

Linearführungssysteme sind im allgemeinen den Umgebungsbedingungen anzupassen. Vor allem bei korrosionsgefährdender Umgebung sollten auch korrosionsbeständige Ausführungen eingesetzt werden.

Linearführungen können aus Martensit-Stahl, der sich durch Korrosionsbeständigkeit auszeichnet, geliefert werden. Für korrosionsbeständige Linearführungen aus diesem Material ist das Symbol M in derBestellbezeichnung anzugeben.

Oberflächenbehandlung

Eine Oberflächenbehandlung der Führungssysteme kann aus Gründen der Korrosionsbeständigkeit oder der Ästhetik durchgeführt werden.

Zur Verbesserung der Korrosionsbeständigkeit empfiehlt sich der THK Korrosionsschutz AP, der am besten für Linearführungssysteme geeignet ist.

1. AP-CF

Die AP-CF-Beschichtung besteht aus Schwarzverchromung mit Fluorizierung. Besonders geeignet bei aggresiven Umgebungsbedingungen. Diese Oberflächenbehandlung eignet sich besonders für Umgebungsbedingungen, die einen hohen Korrosionschutz erfordern.

2. AP-C

Die AP-C-Beschichtung besteht aus Schwarzverchromung. Diese Schwarz-Chrom-Beschichtung für industrielle Anwendungen bietet bessere Korrosionsbeständigkeit als ein allgemeiner Schwarz-Chrom-Überzug für Dekorationszwecke.

3. AP-HC

Die Hartverchromung in industriellen Anwendungen verhindert das Abplatzen der Beschichtung im Schwerlastbetrieb und weist gute Haftungseigenschaften, eine hohe Härte der Beschichtung und eine exzellente Abriebfestigkeit auf.

Zusätzlich können auf Anfrage aus ästhetischen Gründen farbige Aluminiumbeschichtungen oder alkalische Färbungen aufgebracht werden. Die Lauflbahnflächen bleiben dabei ausgespart. - Für oberflächenbeschichtete Linearführungssysteme ist ein höherer Sicherheitsfaktor zu beachten.

Staubschutz

Der Staubschutz ist ein sehr wichtiger Punkt bei Linearführungssystemen, denn ein Eindringen von Staub und anderen Fremdpartikeln führt zu erhöhtem Verschleiß und verkürzter Lebensdauer. Um dies bei entsprechenden Umgebungsbedingungen zu vermeiden, ist eine effektive Abdichtung oder eine andere SchutzMassnahme erforderlich.

1) Spezialdichtungen für Linearführungssysteme

Für alle Linearführungssysteme von THK sind abriebfeste Dichtungen aus hochwertigem, synthetischem Gummi erhältlich. Das entsprechende Kennzeichen für die Bestellbezeichnung finden Sie in den technischen Beschreibugen zu den einzelnen Baureihen.

2) Spezial-Abdeckungen

Für Linearführungen sind Faltenbälge in Standardversionen lieferbar. Außerdem sind spezielle Faltenbälge, wie z.B. für Kugelgewindetriebe und Keilwellen, auf Anfrage lieferbar.

Bei Spanbefall oder bei Einwirkung von Kühlflüssigkeit sollte der ganze Führungsmechanismus, d.h. die Linearführung und der Kugelgewindetrieb, mit einer Teleskopabdeckung oder einem passenden Faltenbalg geschützt werden.

Die Tabelle auf den nächsten Seiten gibt eine Übersicht über die verschiedenen Staubschutzmöglichkeiten.

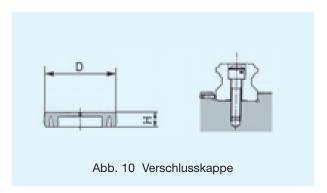
Tab. 8

Dichtungsart	Schnittzeichnung und Einbauposition	Geeignet für Umgebungsbedingung
Enddichtung	Enddichtungen Enddichtungen	Bei Staubbefall.
Seitendichtung ¹⁾	Seitendichtung Seitendichtungen	Schmutzbefall ist auch von der Seite oder von unten möglich, da die Linearführung in seitlicher oder umgekehrter Lage eingebaut ist.
Metallabstreifer ¹⁾	Enddichtung Metallabstreifer Metallabstreifer Innensechskant- Schrauben	Schiene ist Spänebefall ausgesetzt.
Doppeldichtung 1)	Enddichtungen Zwischenblech Enddichtung Innensechskant- Schrauben	Faltenbälge oder Abdeckungen können nicht eingesetzt werden, da der Staub- bzw. Spänebefall zu groß ist.

Tab. 9

Innendichtung ¹⁾	Innendichtung	Bei sehr starkem Befall von Schmutzpartikeln und Metallspänen.
Spezialgefertigte Faltenbälge ¹⁾	Faltenbalg	Bei starkem Befall von Schmutz- partikeln und Metallspänen.
Spezialgefertigte Abdeckungen 1)	Teleskopabdeckung	Bei starkem Befall von Schmutz- partikeln und Metallspänen, die zudem noch glühend sind.

¹⁾ Diese Abdichtungen oder Abdeckungen sind nicht für alle Linearführungen verfügbar. Näheres dazu finden Sie in den technischen Erläuterungen zu den einzelnen Produkten.

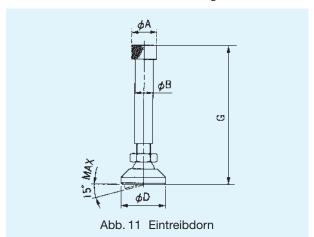


Zubehörteile für Staubschutz

Verschlusskappe Typ C und Eintreibdorn

Späne und andere Fremdstoffe können sich in den Befestigungsbohrungen der Schienen sammeln und darüber in die Führungswagen gelangen. Deswegen werden spezielle Verschlusskappen für die Befestigungsbohrungen bündig zur Schienenoberfläche eingesetzt.

Die Verschlusskappen Typ C bestehen aus einem verschleißfesten und gegen Öl widerstandsfähigem Kunststoff. Zur Abdeckung der Schienen-Befestigungsbohrungen für Innensechskantschrauben von M3 bis M22 sind die Verschlusskappen ab Lager lieferbar.



Tab. 10 Verschlusskappengröße

Die Verschlusskappe ist so in die Befestigungsbohrung einzusetzen, dass sie bündig mit der Schienenoberfläche abschließt (siehe Abb. 10).

Für den Einbau der Verschlusskappen ist als Sonderzubehör ein Eintreibdorn erhältlich (siehe Abb. 11)

Speziell für den Einsatz in Werkzeugmaschinen bieten sich Messingstopfen oder Stahl-Abdeckbänder zum Verschließen der Befestigungsbohrungen an. Setzen Sie sich dazu bitte mit THK in Verbindung.

D "0	Schrauben-	Abmessur	ngen (mm)			G	eeignet für	Linearführu	ngen		
Baugröße	größe	D	Н	SR, SSR	HSR, SHS	HCR	HRW	HR	GSR	RSR, RSH	NR, NRS SNR, SNS
C3	M 3	6,3	1,2	15	_	_	_	1123 1530	_	12 15	_
C 4	M 4	7,8	1,0	15-Y	15	15	17,21 27	_	15	_	_
C 5	M 5	9,8	2,4	20 25	20	_	_	2042	20	20	25x
C 6	M 6	11,4	2,7	25-Y 30	25	25	35	_	25	_	30
C 8	M 8	14,4	3,7	35	30 35	35	50	2555 3065	30	_	35
C 10	M 10	18,0	3,7	45	_	_	60	3575	35	_	_
C 12	M 12	20,5	4,7	55	45	45	_	4085	_	_	45
C 14	M 14	23,5	5,7	_	55	_	_		1	_	55
C 16	M 16	26,5	5,7	70	65	65	_	50105	_	_	65
C 22	M 22	35,5	5,7	_	85	_	_	_	_	_	85

Tab. 11 Eintreibdorn für Verschlusskappen Einheit: mm

Baugröße	Α	В	D	G	Geeignet für Verschlusskappen			
U20	13	8	20	69	C3, C4, C5, C6, C8			
U32	18	13	32	99	C10, C12, C14			
U40	24	16	40	117	C16, C22			

9. Vorsichtsmaßnahmen und Montageanleitung

103 | Allgemeine Vorsichtsmaßnahmen

104 | Allgemeine Montageanleitung

108 | Messen der Endgenauigkeit

108 Empfohlene Anzugsdrehmomente

9.1 Allgemeine Vorsichtsmaßnahmen

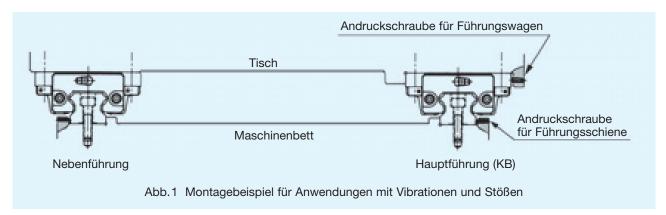
① TIHK Linearführungen werden in einer sachgerechten Verpackung geliefert und sind für den Transport geschützt. Vor dem Auspacken ist die Verpackung auf Beschädigungen zu prüfen. Danach muß die ausgepackte Linearführung auf Vollständigkeit überprüft werden.

Achtung: Beim Auspacken darf die Linearführung niemals schräg gelagert oder gehalten werden, da sonst die Führungsschiene oder der Führungswagen herausgleiten kann.

- ② Vor dem Verpacken werden THK Linearführungen mit einem speziellen Korrosionsschutz beschichtet. Dieser Überzug muß vor dem Gebrauch mit einem geeigneten Reiniger und einem sauberen Tuch entfernt werden.
- ③ Standard-Linearführungen sind mit einem hochwertigen Lithium-Seifenfett vorgefettet. Nach dem Einfahren der Führungswagen, jedoch vor der eigentlichen Inbetriebnahme, müssen die Führungswagen nachgeschmiert werden.
- Bei Fettschmierung dürfen keine unterschiedlichen Fette verwendet werden.

- ⑤ Beim Abziehen vorgespannter Führungswagen von der Schiene muß der Wagen direkt auf eine entsprechende Montageschiene gezogen werden. Diese Montageschiene ist auf Anfrage erhältlich. Bitte fragen Sie dazu Ihren ☐☐☐☐ Kundendienst.
- ⑥ Die Führungswagen der Baureihen HCR, NR, HSR-Mini, HRW-Mini und RSR dürfen nicht von der Schiene entfernt werden, da sonst die Kugeln herausfallen.
- ② Gelangen Fremdstoffe in den Führungswagen, können die Führungen dauerhaft beschädigt werden, dazu wird die Lebensdauer erheblich verringert. Bei widrigen Umgebungsbedingungen sind daher geeignete Dichtungen oder weitere Schutzmaßnahmen (Faltenbälge oder andere Abdeckungen) vorzusehen.
- ® Für den Einbau und die Montage der Linearführungen sind die nachfolgenden Montagehinweise genauestens zu befolgen.

Hinweis: Es wird empfohlen, bei Fragen zur Handhabung, bei auftretenden Problemen oder zusätzlich benötigten Informationen sich direkt an '미네너 zu wenden.



9.2 Allgemeine Montageanleitung

Montage der ™K Linearführungen

Die Montage der Linearführungen SSR, SR, SNR, SHW, SRS, NR, SHS, HSR, HSR-Mini, HRW, HRW-Mini, NSR und RSR richtet sich nach dem spezifischen Anwendungsfall. Nachfolgend sind einige Montagemöglichkeiten be-schrieben

A. Montage für hohe Steifigkeit und Genauigkeit bei Betrieb mit Stößen und Vibrationen

Befestigung der Führungsschienen

① Die Montagefläche mit einem Ölstein abziehen, sowie Grate, Unebenheiten und Schmutz entfernen (siehe Abb. 2).

Anm.: Werkseitig werden alle THK Linearführungen mit einem Korrosionsschutzöl konserviert. Dieser Schutz muß vor dem Einbau entfernt werden. Dabei ist zu beachten, dass zwecks weiteren Korrosionsschutzes die Flächen mit einem dünnflüssigen Öl beaufschlagt werden müssen.

② Die Führungsschiene vorsichtig auf das Maschinenbett legen, die Befestigungsschrauben einsetzen und leicht anziehen, bis die Führungsschiene an der Montagefläche fest anliegt. Dabei muß die Markierung der Führungsschiene zu der Bezugsseite des Maschinenbettes weisen (siehe Abb. 3).

Anm.: Zur Befestigung der Führungsschiene sind neue und saubere Schrauben der Festigkeitsklasse 12.9 zu verwenden. Vor dem Einsetzen der Befestigungsschrauben sind die Montagelöcher im Maschinenbett zu entgraten. Schrauben von Hand in die Gewindegänge eindrehen und auf Gängigkeit prüfen (siehe Abb. 4). Durch gewaltsames Eindrehen einer nicht richtig greifenden Schraube kann die Genauigkeit beeinträchtigt werden.

- ③ Die Andruckschrauben an der Führungsschiene anziehen, bis enger Kontakt an der seitlichen Anschlagfläche besteht (siehe Abb. 5).
- ④ Die Befestigungsschrauben mit einem Drehmomentschlüssel auf das vorgeschriebene Drehmoment festziehen (siehe Abb. 6 und Tab. 1 und 2).
- Anm.: Für eine hohe Genauigkeit sind die Befestigungsschrauben der Führungsschiene der Reihe nach von der Mitte nach außen festzuziehen.
- ⑤ Alle weiteren Führungsschienen werden wie beschrieben montiert.

Montage der Führungswagen

- ① Den Tisch vorsichtig auf die Führungswagen aufsetzen. Anschließend Befestigungsschrauben einsetzen und provisorisch anziehen.
- ② Die Führungswagen auf der Hauptführungsseite mit den Andruckschrauben gegen die Bezugsseite des Tisches drücken und den Tisch ausrichten (s. Abb. 1).
- ③ Die Befestigungsschrauben der Führungswagen an Haupt- und Nebenführungen vollständig festziehen.

Anm.: Durch Anziehen der Befestigungsschrauben über Kreuz, wie in Abb. 7 gezeigt, wird der Tisch gleichmäßig befestigt. Bei dieser zeitsparenden Methode kann auf eine Verstiftung zur Erleichterung der Montage verzichtet werden.

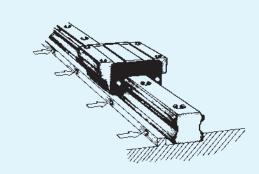


Abb. 5 Anziehen der Andruckschrauben

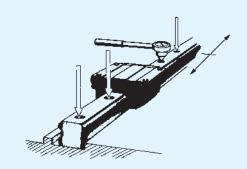


Abb. 6 Festziehen der Befestigungsschrauben

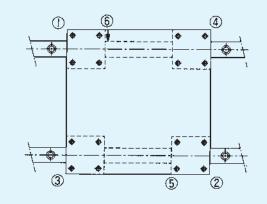


Abb. 7 Anzugsreihenfolge bei Führungswagen

B. Montage ohne Andruckschrauben auf der Hauptführungsseite

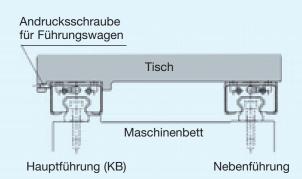


Abb. 8 Beispiel für Montage ohne Andruckschrauben für Führungsschienen auf der Hauptführungsseite

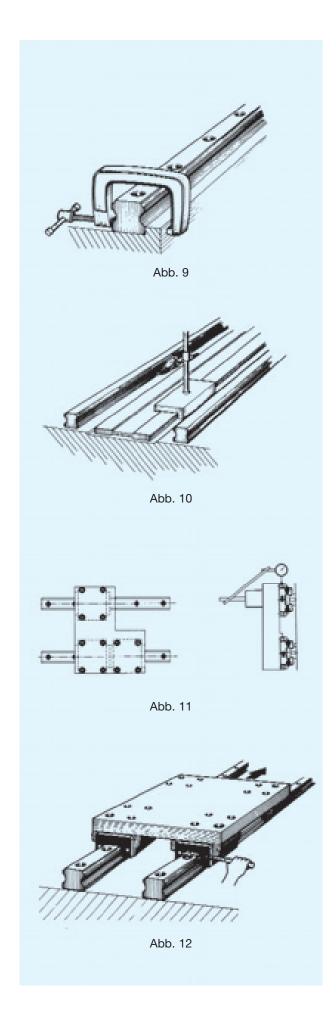
Montage der Hauptführungsschiene

Befestigungsschrauben provisorisch anziehen. Die Führungsschiene im Bereich der anzuziehenden Befestigungsschraube mit einer kleinen Schraubzwinge oder ähnlichem gegen die Bezugsseite pressen, dann die Schraube fest anziehen. Dieser Vorgang wird bei jeder Befestigungsschraube wiederholt (siehe Abb. 9).

Montage der Nebenführungsschiene

Zur Montage der Nebenführungsschiene parallel zur bereits korrekt montierten Hauptführungsschiene werden folgende Methoden empfohlen:

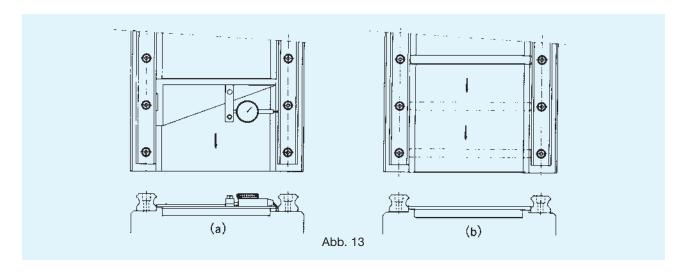
→ Montage mit Ausrichtlineal

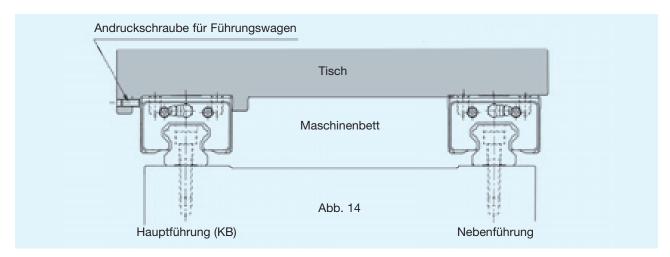

Ein Richtlineal wird mit Hilfe einer Messuhr zwischen den Schienen parallel zur Seitenbezugsfläche der Hauptführungsschiene ausgerichtet. Die Nebenführungsschiene mit der Messuhr und dem Richtlineal ausrichten. Anschließend die Befestigungsschrauben der Reihe nach von einem Schienenende mit dem vorgeschriebenen Anzugsdrehmoment festziehen (siehe Abb. 10).

→ Montage mit Tischlehre

Zwei Führungswagen auf der Hauptführungsseite am Tisch bzw. einer provisorischen Tischplatte für Messzwecke befestigen. Auf der Nebenführungsseite die Führungsschiene mit einem Wagen provisorisch am Maschinenbett bzw. am Tisch befestigen. Eine Messuhr mit Stativ auf dem Tisch fixieren und den Messtaster gegen die Bezugsfläche des Wagens setzen. Dann den Tisch über die gesamte Führungslänge verfahren und unter Kontrolle der Messuhr die Nebenführungsschiene ausrichten. Dabei die Befestigungsschrauben der Reihe nach in mehreren Stufen auf das vorgeschriebene Anzugsdrehmoment festziehen (siehe Abb. 11).

→ Montage und Ausrichten mit Führungsschiene

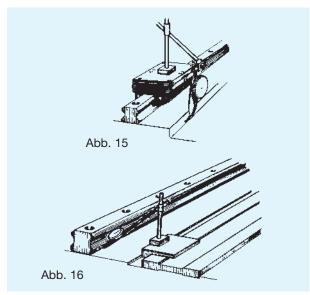

Einen Tisch auf die Führungswagen der korrekt befestigten Hauptführungsschiene und auf die Führungswagen der provisorisch befestigten Nebenführungsschiene auflegen. Die beiden Führungswagen auf der Hauptführungsschiene und einen Führungswagen auf der Nebenführungsschiene vollständig befestigen. Den zweiten Führungswagen auf der Nebenführungsschiene provisorisch montieren. Den Tisch über die gesamte Führungslänge verfahren und mittels einer Federwaage die Nebenführungsschiene auf gleichmäßigen Verschiebewiderstand hin ausrichten. Die Befestigungsschrauben auf der Nebenführungsschiene nacheinander vollständig festziehen (s. Abb. 12).



→ Montage mit Montagelehre

Die Parallelität der Nebenführungsschiene zur Bezugsseite der Hauptführungsschiene mit einer Ausrichthilfe nach Abb. 13 (a) und (b) von Bohrung zu Bohrung auf Parallelität prüfen und die Befestigungsschrauben auf das vorgeschriebene Anzugsdrehmoment festziehen.

C. Montage der Führungsschiene ohne Anschlagschulter am Maschinenbett

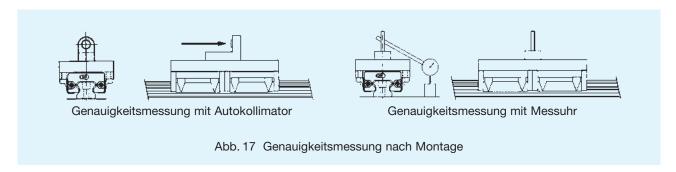

Ausrichten der Hauptführungsschiene

→ Montage mit Bezugsfläche

Eine Bezugsfläche in der Nähe der Montagestelle der Führungsschiene wird zum geraden Ausrichten verwendet. Bei dieser Methode werden zwei aneinandergesetzte Führungswagen mit Messtisch eingesetzt (siehe Abb. 15).

→ Montage mit Lineal

Nach provisorischem Anziehen der Befestigungsschrauben wird die Geradheit der Führungsschiene zwischen Bezugsfläche und Lineal mit einer Messuhr überprüft (siehe Abb. 16). Die Befestigungsschrauben werden nacheinander in mehreren Schritten auf das vorgeschriebene Anzugsmoment angezogen.



9.3 Messen der Endgenauigkeit

Messung der Laufgenauigkeit einer Schiene

Bei der Messung der Laufgenauigkeit der Führungswagen werden sichere Ergebnisse erzielt, wenn zwei aneinandergesetzte Führungswagen mit einer Messplatte verwendet werden (siehe Abb. 17). Bei Messungen mit einer Messuhr sind die Ergebnisse um so genauer, je näher die Richtschiene an den Führungswagen liegt.

9.4 Empfohlene Anzugsdrehmomente

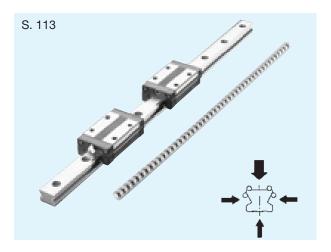
Die Führungsschienen der höheren Genauigkeitsklassen sind während des Schleifens der Laufrillen und der Genauigkeitsmessung mit Schrauben fixiert. Die für die Montage empfohlenen Anzugsdrehmomente der Befestigungsschrauben (Schraubenqualität 12.9) sind in Tab. 2 angegeben.

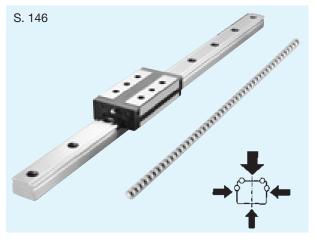
Tab.1 Anzugsdrehmomente für Schrauben mit erhobenem Kopf Einheit: Ncm

Schrauben-	Anzugsdrehmomente				
größe	Schrauben normaler Festigkeitsklasse	Schrauben höherer Festigkeitsklasse			
M 2,0	17,6	21,6			
M 2,3	29,4	35,3			
M 2,6	44,1	52,9			

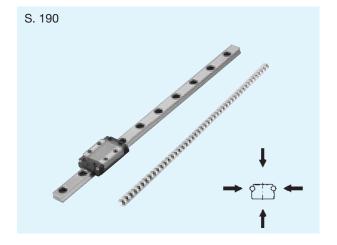
Tab. 2 Anzugsdrehmomente für Innensechskantschrauben

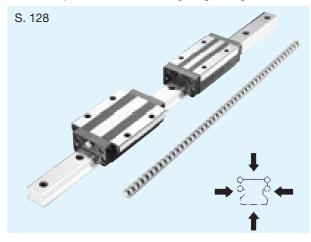
	Anzı	ugsdrehmom	ente
Schraubengröße	Stahl	Gußeisen	Aluminium
M 2	58,8	39,2	29,4
M 2,3	78,4	53,9	39,2
M 2,6	118	78,4	58,8
M 3	196	127	98,0
M 4	412	274	206
M 5	882	588	441
M 6	1.370	921	686
M 8	3.040	2.010	1.470
M 10	6.760	4.510	3.330
M 12	11.800	7.840	5.880
M 14	15.700	10.500	7.840
M 16	19.600	13.100	9.800
M 20	38.200	25.500	19.100
M 22	51.900	34.800	26.000
M 24	65.700	44.100	32.800
M 30	130.000	87.200	65.200

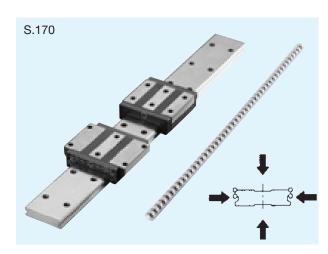

Einheit: Ncm


THK Linearführungen mit Kugelkette

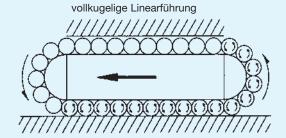
Die Linearführung der zweiten Generation mit integrierter Kugelkette: für höchste Anforderungen an Leistung, Wirtschaftlichkeit und Laufkultur.

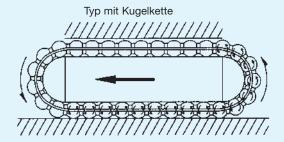

SSR: Radialtyp mit hervorragendem Handling durch große Fehlerkompensation von Montageungenauigkeiten.

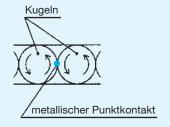

SNR/SNS: Linearführung mit höchster Steifigkeit und Belastbarkeit

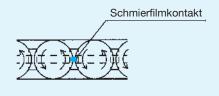

SRS: Miniaturführung mit Kugelkette

SHS: Linearführung mit gleichen Tragzahlen in allen vier Hauptrichtungen mit weltweit standardisierten Abmessungen. Ausgezeichnetes Handling durch große Fehlerkompensation von Montageungenauigkeiten.

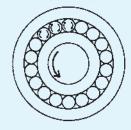

SHW: Linearführung mit Kugelkette in breiter Ausführung

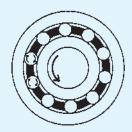





Vorteile der Linearführung mit Kugelkette

Linearführung





Effekt des Kugelkäfigs bei Kugellagern

Ursprüngliches Prinzip (vollkugelig)

- Punktkontakt der Kugeln untereinander
- Erhöhte Schmierstoffbelastung
- Abrieb der Walzkörper durch Metallkontakt
- Reduzierung der Lebensdauer
- Erhöhte Reibungswärme
- Hoher Geräuschpegel durch Aneinanderstoßen der Kugeln

Heutiges Prinzip mit Wälzlagerkäfig

- Kugeln mit konstantem Abstand
- Käfigtaschen mit Schmiermittelkammern
- Gleichmäßiger Lauf der Kugeln
- Hohe Lebensdauer
- Geringe Wärmeentwicklung
- Hohe Drehzahlen
- Niedrige Geräuschentwicklung

Das 1881 entwickelte Kugellager war in seiner ursprünglichen Form vollkugelig, d.h. ohne Wälzlagerkäfig. Der industrielle Einsatzbereich war anfangs durch folgende Faktoren begrenzt:

- Hoher Geräuschpegel
- Niedriger Drehzahlbereich
- Kurze Lebensdauer

Acht Jahre später begann mit der Vorstellung eines Kugellagers mit Käfig die eigentliche Ära des Kugellagers, denn erst der Käfig ermöglichte eine Verminderung des

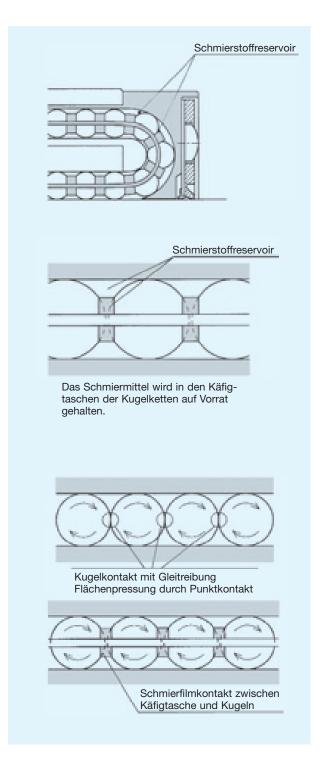
Geräuschpegels bei gleichzeitiger Erweiterung des Drehzahlbereiches. Zusätzlich erhöhte sich die Lebensdauer trotz der Reduzierung der tragenden Kugeln.

Der Einsatz der Kugelkette in den Linearführungen verhindert den gegenseitigen metallischen Punktkontakt der Kugeln untereinander, der im Normalfall einhergehend mit hoher Flächenpressung auftritt. Ferner entfällt die entgegengesetzte Rotation der Kugeln am Berührungspunkt, so daß der Verschleiß abnimmt und die Lebensdauer verlängert wird.

Niedriger Geräuschpegel - komfortabler Sound

Die Kugelkette hält die Wälzkörper konstant auf Abstand. Die typischen Geräusche durch das Kollidieren und Aneinanderreiben der Kugeln entfallen, so dass die Geräuschentwicklung erheblich verringert wird.

Langzeitwartungsfrei


Dadurch, dass die Kugeln in einem konstanten Abstand gehalten werden, wird eine metallische Kontaktreibung und somit der Verschleiß verhindert. Auch verringert sich die Verschmutzung des Schmiermittels. Die Käfigtaschen zwischen den einzelnen Kugeln bilden ein Schmierstoffreservoir zur permanenten Fettabgabe während der Bewegungsabläufe. Dadurch werden extrem lange Nachschmierfristen erzielt.

Hohe Geschwindigkeit und lange Lebensdauer

Die Kugelkette verhindert den direkten Kontakt der Wälzkörper untereinander. Im Gegensatz zu Führungen ohne Abstandshalter ist hier nur die einfache Umfangsgeschwindigkeit wirksam. Die Wälzkörper werden durch die Flächen des Käfigs geführt. Dabei lässt der Spezialkunststoff nur geringe Reibungswärme entstehen und ermöglicht höhere Geschwindigkeiten bzw. eine hohe Lebensdauer.

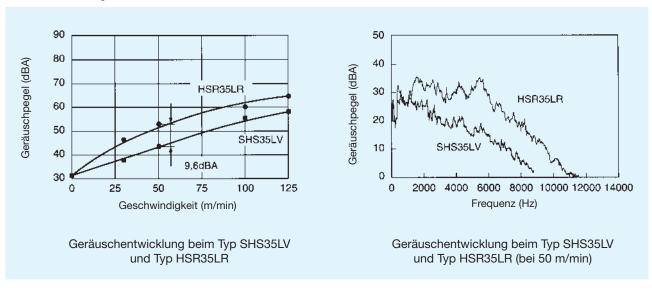
Optimale Laufeigenschaften

Die Wälzkörper werden durch die Kugelkette in einem konstanten Abstand gehalten und beim Eintritt und Verlassen der belasteten Zone exakt geführt. Die Varianz des Verschiebewiderstandes wird auf 10% der bisherigen Werte reduziert. Dadurch wird eine hohe Laufkultur mit extrem geringen Schwingungen erreicht.

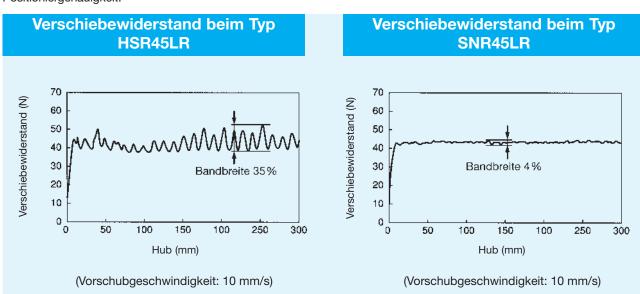
Dauertest zur Langzeitwartung

Der Typ SSR hat mit einer einmaligen Abschmierung bei Testbeginn eine Laufstrecke von 40.000 km problemlos zurückgelegt. Ein zweiter Test unter Belastung verlief ebenfalls erfolgreich.

Test 1 Test 2


: SSR25XWUU : SSR25XWUUC1 Der Testtyp Der Testtyp Geschwindigkeit: 300 m/min Geschwindigkeit: 300 m/min Hublänge : 2.800 mm Hublänge : 2.800 mm : AFA-Fett Schmierfett : AFA-Fett Schmierfett Erstbefettung : 2 cm³ Erstbefettung : 2 cm³ : 1kN Belastung : keine Belastung

Erreichte Strecke: 40.000 km (Test beendet) Erreichte Strecke: 30.000 km (Test beendet)


Messung zur Geräuschentwicklung

Zur effektiven Vermeidung metallischer Laufgeräusche sind die Kugel-Rückführkanäle im Wagen mit Kunststoff beschichtet. Dazu hält die Kugelkette die Kugeln konstant auf Abstand, so dass die einzelnen Kugeln nicht mehr aneinanderreiben und -stoßen können. Als Ergebnis nimmt selbst bei hoher Verfahrgeschwindigkeit weder die Geräusch- noch die Wärmeentwicklung wesentlich zu.

Messung zum Verschiebewiderstand

Durch die Kugelkette werden die Kugeln konstant auf Abstand gehalten und kontrolliert im Kugelumlauf des Wagens geführt. Dies ermöglicht in jeder Einbaulage ein hervorragendes Laufverhalten mit konstantem Verschiebewiderstand und hoher Positioniergenauigkeit.

Ţ

Vorsichtsmaßnahmen

• Einsatz von Kühlflüssigkeit

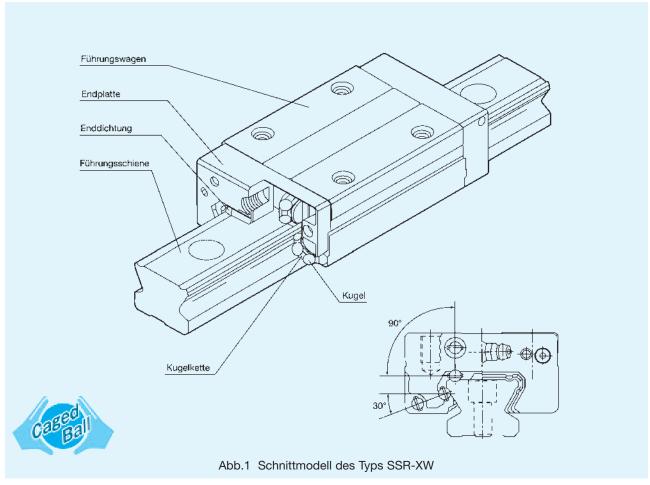
Bei Kühlmitteleinsatz ist zu beachten, daß bestimmte Kühlflüssigkeiten die Funktion der Führungswagen beeinträchtigen können, wenn sie in das Innere des Wagens gelangen. Bei Auswahl der Kühlflüssigkeit fragen Sie bitte THK.

Einsatztemperatur

Teile des Führungswagens bestehen aus einem speziellen Kunststoff. Daher beträgt die maximale Einsatztemperatur 80 °C.

Schmierung

Schmierfette müssen den Umgebungsbedingungen angepaßt werden. Bei besonderen Umgebungsbedingungen wie extreme Temperaturen, kontinuierliche Vibrationen, Einsatz in Reinräumen oder im Vakuum können daher keine normalen Schmierfette verwendet werden. Bei Fragen hierzu wenden Sie sich bitte an THK.


Montage

Der Führungswagen besteht teilweise aus präzisionsgefertigten Kunststoffelementen. Schützen Sie ihn deshalb vor harten Stößen und Schlägen.

THK Linearführung SSR

mit integrierter Kugelkette

Die neu entwickelten Linearführungen der S-Serie mit integrierter Kugelkette sind äußerst laufruhig und wartungsfrei über lange Zeit auch bei hohen Geschwindigkeiten. Der Typ SSR aus dieser Serie ist besonders geeignet für große Radialbelastungen.

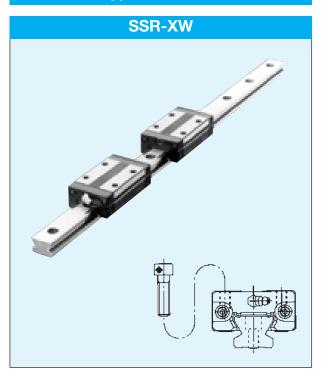
Niedriger Geräuschpegel - komfortabler Sound

Die Kugelkette hält die Wälzkörper in einem konstanten Abstand. Die typischen Geräusche durch das Kollidieren und Aneinanderreiben der Kugeln entfallen, so daß die Geräuschentwicklung erheblich verringert wird.

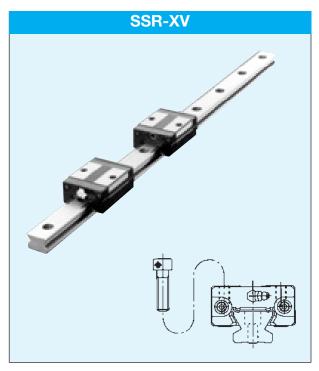
Langzeitwartungsfrei

Dadurch, dass die Kugeln in einem konstanten Abstand gehalten werden, wird eine metallische Kontaktreibung und somit der Verschleiß verhindert. Auch verringert sich die Verschmutzung des Schmiermittels. Die Käfigtaschen zwischen den einzelnen Kugeln bilden ein Schmierstoffreservoir zur permanenten Fettabgabe während der Bewegungsabläufe. Dadurch werden extrem lange Nachschmierfristen erzielt.

Hohe Geschwindigkeit und lange Lebensdauer


Die Kugelkette verhindert den direkten Kontakt der Wälzkörper untereinander. Im Gegensatz zu Führungen ohne Abstandshalter ist hier nur die einfache Umfangsgeschwindigkeit wirksam. Die Wälzkörper werden durch die Flächen des Käfigs geführt. Dabei lässt der Spezialkunststoff nur geringe Reibungswärme entstehen und ermöglicht höhere Geschwindigkeiten bzw. eine hohe Lebensdauer.

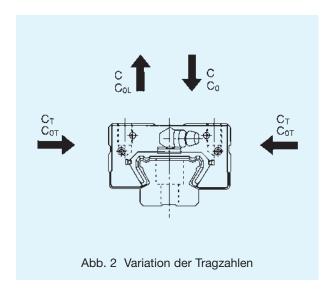
Optimale Laufeigenschaften


Die Wälzkörper werden durch die Kugelkette in einem konstanten Abstand gehalten und beim Eintritt und Verlassen der belasteten Zone exakt geführt. Die Varianz des Verschiebewiderstandes wird auf 10% der bisherigen Werte reduziert. Dadurch wird eine hohe Laufkultur mit extrem geringen Schwingungen erreicht.

Typenübersicht

Kompakter Führungswagen für hohe Radialbelastung bei niedriger Bauhöhe.

Kurzwagen-Version des Typs SSR-XW.


Befestigung des Führungswagens über Durchgangsbohrungen von unten.

Variation der Tragzahlen

Tragzahlen

Linearführungen des Typs SSR können Belastungen aus radialer, gegenradialer und tangentialer Richtung aufnehmen. Die in den Maßtabellen weiter unten angegebenen Tragzahlen beziehen sich auf die Tragzahlen in radialer Richtung. Die Tragzahlen in gegenradialer und tangentialer Richtung werden nach Tabelle 1 bestimmt.

Tab. 1 Verhältnis der Tragzahlen beim Typ SSR

Belastungs- richtungen	Dynamische Tragzahl	Statische Tragzahl
Radial	С	C ₀
Gegenradial	$C_{L} = 0,50C$	$C_{0L} = 0,50C_0$
Tangential	$C_{T} = 0,53C$	$C_{0T} = 0.43C_0$

Äquivalente Belastung

Bei gleichzeitiger Gegenradial- und Tangentialbelastung wird die äquivalente Belastung beim Typ SSR wie folgt berechnet:

$$P_E = X \times P_L + Y \times P_T$$

P_E : Äquivalente Belastung (gegenradial oder tangential) (N)
P_L : Gegenradialbelastung (N)
P_T : Tangentialbelastung (N)
X, Y : Äquivalenzfaktor (siehe Tabelle 2)

Tab. 2 Äquivalenzfaktoren für den Typ SSR

	P _E	Х	Υ
P _L /P _T ≥1	Äquivalente Gegenradialbelastung	1	1,155
$P_L/P_T<1$	Äquivalente Tangentialbelastung	0,866	1

Genauigkeitsklassen

Die Genauigkeit von THK Linearführungen wird, wie Tabelle 3 und Abbildung 4 zeigen, nach der Laufparallelität, den Maßtoleranzen von Höhe und Breite sowie den Differenzen von Höhe und Breite zwischen den Wagenpaaren bei mehreren eingesetzten Führungswagen auf einer Schiene bzw. auf mehreren in einer Ebene parallel verlaufenden Schienen definiert.

Laufparallelität

Die Laufparallelität bezeichnet den Parallelitätsfehler zwischen den beiden Bezugsflächen von Führungsschiene und Führungswagen. Bei der Messung wird die Führungsschiene erst auf der Bezugsfläche festgeschraubt, dann wird der Führungswagen über der gesamten Schienenlänge verfahren.

Abweichung der Höhe M zwischen Paaren

Die Abweichung der Höhe M zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Höhe M, die an jedem der in einer Ebene montierten Führungswagen gemessen worden sind.

Abweichung der Breite W₂ zwischen Paaren

Die Abweichung der Breite W_2 zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Breite W_2 , die an jedem der auf einer Schiene montierten Führungswagen gemessen worden sind.

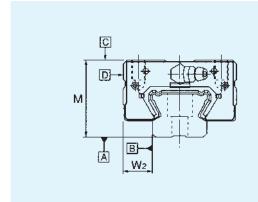
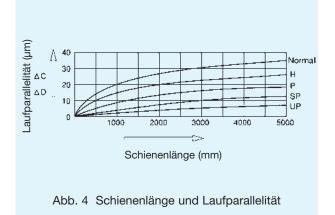



Abb. 3 Bezugsflächen

Tab. 3 Genauigkeitsklassen

Einheit: mm

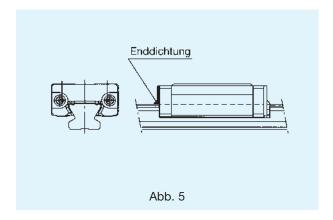
Tab. 6 deriadigiteitsitiasseri Elimett. IIIII									
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse		Ultra- präzisions Klasse			
	Kennzeichen	_	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008			
	Abweichung der Höhe M zwischen den Paaren	0,02	0,01	0,006	0,004	0,003			
SSR 15X	Maßtoleranz der Breite W ₂	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008			
20X	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	0,006	0,004	0,003			
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)							
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)							
	Kennzeichen	_	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01			
	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003			
SSR 25X	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01			
30X 35X	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003			
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)							
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)				

Vorspannungsklassen

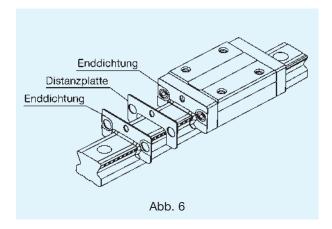
In Tabelle 4 sind die Vorspannungsklassen mit dem entsprechenden Radialspiel aufgeführt. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

Tab. 4 Vorspannungsklassen

Einheit: µm


Baugröße	C1	Normal
SSR15X	-10~-4	-4~+2
SSR20X	-12~-5	-5~+2
SSR25X	-15~-6	−6~ + 3
SSR30X	-18~-7	−7~+4
SSR35X	-20~-8	−8~+4

Abdichtung


Enddichtung

Standardmäßig vorgesehen.

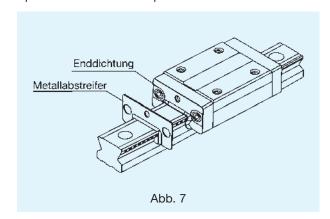
Doppeldichtung

Zum verstärkten Staubschutz.

Lamellen-Kontaktabstreifer LaCS

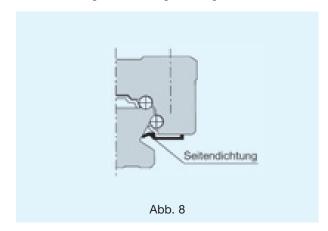
Im Vergleich zum Metallabstreifer liegt der Kontaktabstreifer LaCS eng an der Schiene an und schützt so das Wageninnere selbst vor kleinsten Fremdpartikeln (siehe S. 364). Zulässige Einsatztemperatur: $-20 \sim +80^{\circ}$ C.

Tab. 5 Verschiebewiderstand mit LaCS¹⁾ Einheit: N


Baugröße	Verschiebewiderstand
SSR15X	5,9
SSR20X	6,9
SSR25X	8,1
SSR30X	12,8
SSR35X	15.1

¹⁾ Der Verschiebewiderstand gilt nur für LaCS.

Zur maximalen Geschwindigkeit fragen Sie TIHK.


Metallabstreifer

Der Metallabstreifer schützt die Dichtung gegen heiße Späne und andere Fremdpartikel.

Seitendichtung

Standardmäßige Abdichtung der Wagenunterseite.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Tab. 6 Kennzeichen für Abdichtung

145. 6 116.111	201011011 Tal 7 lb alottalig
Symbol	Abdichtungszubehör
UU	Mit beidseitigen Enddichtungen
SS	Mit End- und Seitendichtung
DD	Mit Doppel- und Seitendichtung
ZZ	Mit End- und Seitendichtung sowie Metallabstreifern
KK	Mit Doppel- und Seitendichtungen sowie Metallabstreifern
SSHH	Mit End- und Seitendichtung sowie Metall- und Kontaktabstreifern LaCS
DDHH	Mit Doppel- und Seitendichtung sowie Metall- und Kontaktabstreifern LaCS
ZZHH	Mit End- und Seitendichtung sowie Metall- und Kontaktabstreifern LaCS
KKHH	Mit Doppel- und Seitendichtung sowie Metall- und Kontaktabstreifern LaCS

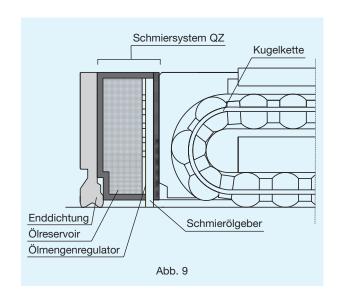
Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 7 mit der Angabe der Variation der Länge L des Führungswagens.

Tab. 7 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör

Einheit: mm

Baugröße	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
SSR 15XVY	40,3	40,3	46,1	44,9	50,7	59,5	65,3	60,7	66,5
SSR 15XWY/XTBY	56,9	56,9	62,7	61,5	67,3	76,1	81,9	77,3	83,1
SSR 20XV	47,7	47,7	54,6	53,4	60,3	67,7	74,6	70,1	77
SSR 20XW/XTB	66,5	66,5	73,4	72,2	79,1	86,5	93,4	88,9	95,8
SSR 25XVY	60	60	67,4	65,7	73,1	80	87,4	82,4	89,8
SSR 25XWY/XTBY	83	83	90,4	88,7	96,1	103	110,4	105,4	112,8
SSR 30XW	97	97	105,1	102,7	110,7	121	129,1	123,4	131,5
SSR 35XW	110,9	110,9	119,9	117,7	126,7	136,9	145,9	139,3	148,3

Dichtungswiderstand


Die Maximalwerte des Dichtungswiderstandes für einen Führungswagen mit Enddichtungen (SSR...UU) sind in Tabelle 8 aufgeführt. Bei diesen Werten sind die Dichtungen leicht befettet.

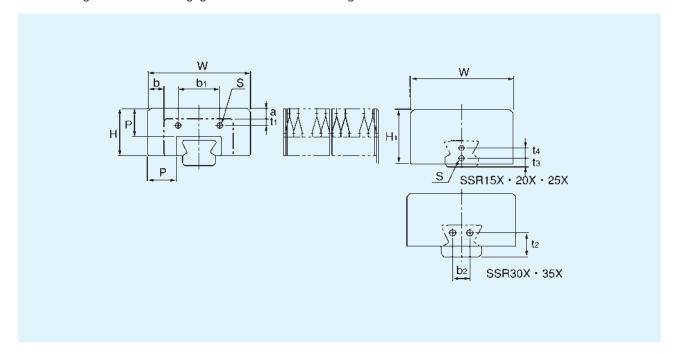
Tab. 8 Max Dichtungswiderstand

Tab. 8 Max Dichtung	swiderstand Einheit: N
Baugröße	Dichtungswiderstand
SSR15X	2,0
SSR20X	2,6
SSR25X	3,5
SSR30X	4,9
SSR35X	6,3

Schmiersystem QZ

Siehe hierzu S. 354.

Tab. 9 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör und QZ


Einheit: mm

Baugröße	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	QZDDHH	QZZZHH	QZKKHH
SSR 15XVY	59,3	59,3	65,1	62,7	68,5	75,5	81,3	76,7	82,5
SSR 15XWY/XTBY	75,9	75,9	81,7	79,3	85,1	92,1	97,9	93,3	99,1
SSR 20XV	66,2	66,2	73,1	72,1	79	83,7	90,6	86,1	93
SSR 20XW/XTB	85	85	91,9	90,9	97,8	102,5	109,4	104,9	111,8
SSR 25XVY	82,6	82,6	90	88,4	95,8	100	107,4	102,4	109,8
SSR 25XWY/XTBY	105,6	105,6	113	111,4	118,8	123	130,4	125,4	132,8
SSR 30XW	119,7	119,7	127,8	125,4	133,4	141	149,1	143,4	151,5
SSR 35XW	134,3	134,3	143,3	141,3	150,3	156,9	165,9	159,3	168,3

Spezialfaltenbälge für SSR

Die Abmessungen für die Spezialfaltenbälge (Baureihe JSSR-X) zum Typ SSR sind weiter unten angegeben. Bei Bestellung berücksichtigen Sie bitte die angegebenen Bestellbezeichnungen.

Tab. 10 Faltenbalgabmessungen

Einheit: mm

						F	bmess	ungen							
Baugröße											Befestigungs-			Α	passende
											schraube			Lmax	Führung
	W	Н	H ₁	Р	b ₁	t ₁	b ₂	t ₂	t ₃	t ₄	S	а	b	Lmax	
JSSR15X	51	24	26	15	20,5	4,7	_	_	8	_	M3 × 5ℓ	5	8,5	5	SSR15X
JSSR20X	58	26	30	15	25	4,2	_	_	6	6	M3 × 5ℓ	4	8	5	SSR20X
JSSR25X	71	33	38	20	29	5	_	_	6	7	M3 × 5ℓ	7	11,5	7	SSR25X
JSSR30X	76	37,5	37,5	20	35	9	12	17	_	_	M4 × 6ℓ	3	8	7	SSR30X
JSSR35X	84	39	39	20	44	7	14	20	_	_	M5 × 10ℓ	2	7	7	SSR35X

- Anm.: 1. Ist der Faltenbalg für eine andere Einbaulage als für die horizontale Lage vorgesehen, sollte dies bei der Bestellung angegeben werden, da sich die Ausdehnungsrate des Balgs ändert.
 - 2. Bei Befestigung des Balgs auf beiden Seiten des Führungswagens wird der Führungswagen ohne Abschmiernippel ausgeliefert.

Bestellbezeichnung

Anm.: Die Faltenbalglänge wird wie folgt berechnet:

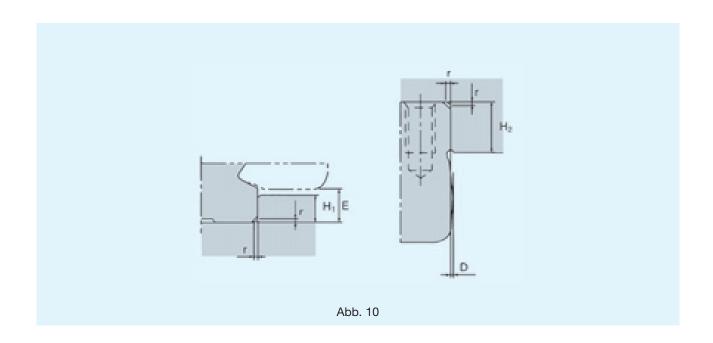
Lmin =
$$\frac{S}{(A-1)}$$
 S: Hublänge (mm)

 $Lmax = Lmin \times A$ A: Ausdehnungsrate

Montagehinweise

Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 11 angegeben. Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, dass Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 11 angegebenen Maximalradien.

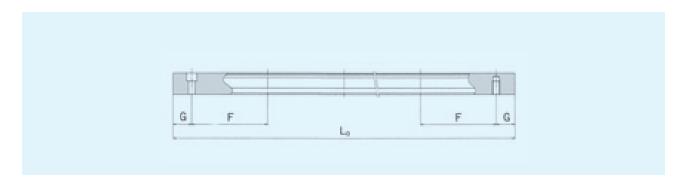

Bitte beachten Sie außerdem die seitlichen Kunststoffelemente, die um das Maß D hervorstehen. Ein Kontakt der Kunststoffelemente mit den Anschlussflächen ist unbedingt zu vermeiden.

- Die Kugelkette besteht aus einem Spezialkunststoff (max. Einsatztemperatur 80°C).
- Der Führungswagen besteht teilweise aus präzisionsgefertigten Kunsstoffelementen. Schützen Sie ihn deshalb vor harten Stößen und Schlägen.
- Liegen besondere Einsatzbedingungen vor, steht Ihnen der Anwendungsservice von ™HK gerne zur Verfügung.

Tab. 11 Schulterhöhen und Ausrundungen

Einheit: mm

Baugröße	Ausrundungs- radius r _(max.)	Schulterhöhe für Führungsschiene H ₁	Schulterhöhe für Führungswagen H ₂	E	D
SSR15X	0,5	3,8	5,5	4,5	0,3
SSR20X	0,5	5	7,5	6	0,3
SSR25X	1,0	5,5	8	6,8	0,4
SSR30X	1,0	8	11,5	9,5	0,4
SSR35X	1,0	9	16	11,5	0,4


Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungschienen sind in Tabelle 12 angegeben. Bei Schienenlängen größer als die angegebenen Maximallängen werden die Führungsschienen mehrteilig als Stoßversion geliefert.

Bei Sonderlängen ist das Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zur Instabilität, wodurch die Endgenauigkeit

beeinträchtigt werden kann. Bei Bestellung von zwei oder mehr Teilstücken eines Schienenstranges ist die Gesamt-Schienenlänge anzugeben.

Bei Führungsschienen, die als Stoßversion geliefert werden, werden die Stoßstellen paßgenau erodiert und nur die Schienenenden mit einer Fase versehen.

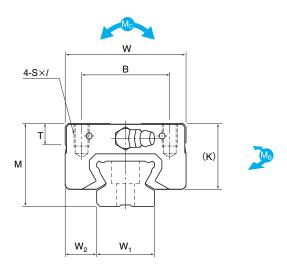
Tab. 12 Standard- und Maximallängen der Führungsschienen

Einheit: mm

Baugröße	SSR15X	SSR20X	SSR25X	SSR30X	SSR35X
Standard- längen (L ₀)	160 220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1300 1360 1420 1480 1540	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1380 1420 1480 1540 1660 1720 1780 1880 1840 1900 1960 2020 2080 2140	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 11240 1300 1360 1420 1480 1540 1600 1660 1720 1780 1840 1900 1960 2020 2080 2140 2200 2260 2320 2380 2440	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1640 1720 1800 1880 1960 2040 2120 2220 2280 2360 2440 2520 2600 2680 2760 2840 2920	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1640 1720 1800 1880 1960 2040 2120 2200 2280 2360 2440 2520 2600 2680 2760 2840 2920
F	60	60	60	80	80
G	20	20	20	20	20
NA	2500	3000	3000	3000	3000
Maximallänge	(1240)	(1480)	(2020)	(2520)	(2520)

Anm.: Sind keine gestoßenen Schienen bei Überlängen einsetzbar, wenden Sie sich bitte an THK.

Die Werte in Klammern sind die Maximallängen für korrosionsbeständige Versionen.



SSR-XW

SSR-XWM

Standardtyp

Korrosionsbeständig¹⁾

	Auß	enmaße	Э			/	Abmess	ungen	Führunç	gswage	n			
Baugröße	Höhe	Breite	Länge											
	М	W	L	В	С	S×ℓ	L ₁	Т	K	N	Е	f ₀	e ₀	D_0
SSR15XWY SSR15XWMY ¹⁾	24	34	56,9	26	26	M4×7	39,9	6,5	19,5	4,5	5,5	2,7	4,5	3
SSR20XW SSR20XWM ¹⁾	28	42	66,5	32	32	M5×8	46,6	8,2	22	5,5	12	2,8	5,2	3
SSR25XWY SSR25XWMY ¹⁾	33	48	83	35	35	M6×9	59,8	8,4	26,2	6	12	3,3	7	3
SSR30XW SSR30XWM¹)	42	60	97	40	40	M8×12	70,7	11,3	32,5	8	12	4,5	7,6	4
SSR35XW	48	70	110,9	50	50	M8×12	80,5	13	36,5	8,5	12	4,7	8,8	4

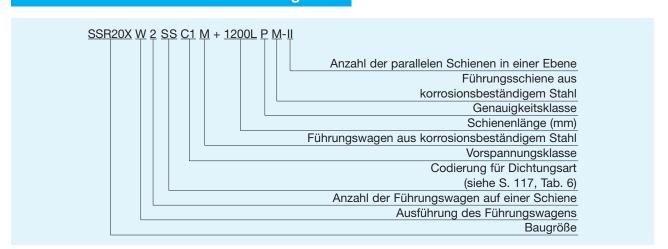
¹⁾ Führungswagen, Führungsschiene und Kugeln können auch aus korrosionsbeständigem Stahl geliefert werden. (Kennzeichnung "M" in der Bestellbezeichnung).

²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Bei Einsatz von seitlichen Abschmiernippeln wenden sie sich bitte an THK.

³⁾ Die Standardschienenlängen sind auf Seite 121 angegeben.

⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

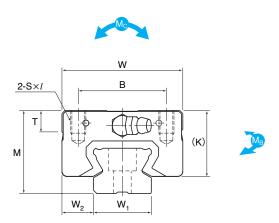
² Wagen: Zulässiges statisches Moment für zwei gestoßene Führungswagen.



Einheit: mm

	Abme	essung	gen Fü	hrungs	sschiene ³⁾	Trac	gzahl			at. Mor			Gewicht	
Schmiernippel ²⁾	Breite W ₁ ±0,05	W ₂	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]		l _A 2 Wagen [kNm]	1 Wagen [kNm]	1 _B 2 Wagen [kNm]	M _C 1 Wagen [kNm]		Schiene [kg/m]
Eintreibnippel PB1021B	15	9,5	12,5	60	4,5×7,5×5,3	14,7	16,5	0,0792	0,44	0,0486	0,274	0,0962	0,15	1,2
B—M6F	20	11	15,5	60	6×9,5×8,5	19,6	23,4	0,138	0,723	0,0847	0,448	0,18	0,25	2,1
B—M6F	23	12,5	18	60	7×11×9	31,5	36,4	0,258	1,42	0,158	0,884	0,33	0,4	2,7
B—M6F	28	16	23	80	7×11×9	46,5	52,7	0,446	2,4	0,274	1,49	0,571	0,8	4,3
B—M6F	34	18	27,5	80	9×14×12	64,6	71,6	0,711	3,72	0,437	2,31	0,936	1,1	6,4

Aufbau der Bestellbezeichnung



SSR-XV

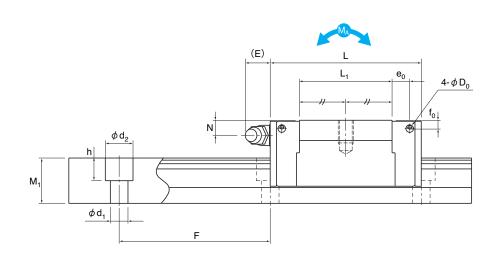
SSR-XVM

Standardtyp

Korrosionsbeständig¹⁾

	Auße	enmaße		Abmessungen Führungswagen										
Baugröße	Höhe M	Breite W	Länge L	В	$S imes \ell$	L ₁	Т	K	N	E	f ₀	\mathbf{e}_{0}	D_0	
SSR15XVY SSR15XVMY¹)	24	34	40,3	26	M4×7	23,3	6,5	19,5	4,5	5,5	2,7	4,5	3	
SSR20XV SSR20XVM ¹⁾	28	42	47,7	32	M5×8	27,8	8,2	22	5,5	12	2,8	5,2	3	
SSR25XVY SSR25XVMY ¹⁾	33	48	60	35	M6×9	36,8	8,4	26,2	6	12	3,3	7	3	

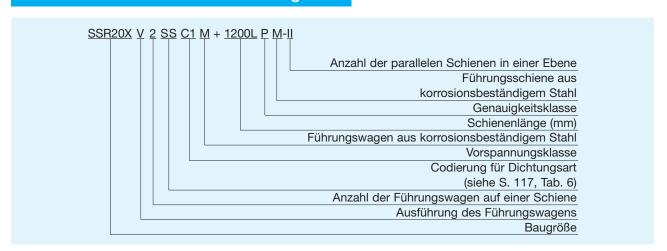
¹⁾ Führungswagen, Führungsschiene und Kugeln können auch aus korrosionsbeständigem Stahl geliefert werden. (Kennzeichnung "M" in der Bestellbezeichnung).


²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Bei Einsatz von seitlichen Abschmiernippeln wenden sie sich bitte an TIHK.

³⁾ Die Standardschienenlängen sind auf Seite 121 angegeben.

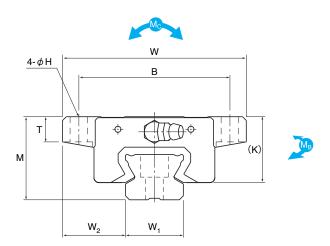
⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei gestoßene Führungswagen.



Einheit: mm

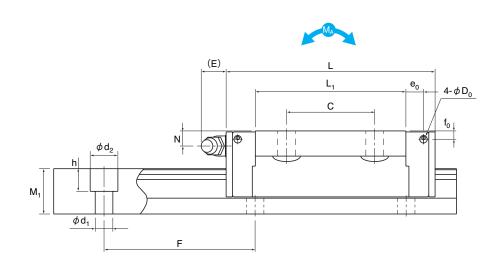
	Abmessungen Führungsschiene ³⁾						Tragzahl		Zul. stat. Momente ⁴⁾					vicht
Schmiernippel ²⁾	Breite		Höhe	Teilung		С	C ₀		I _A 2 Wagen		1 _B 2 Wagen	M _C 1 Wagen	Wagen	Schiene
	W ₁ ±0,05	W ₂	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kg]	[kg/m]
Eintreibnippel PB1021B	15	9,5	12,5	60	4,5×7,5×5,3	9,1	9,7	0,0303	0,192	0,0189	0,122	0,0562	0,08	1,2
B—M6F	20	11	15,5	60	6×9,5×8,5	13,4	14,4	0,0523	0,336	0,0326	0,213	0,111	0,14	2,1
B—M6F	23	12,5	18	60	7×11×9	21,7	22,5	0,104	0,661	0,0652	0,419	0,204	0,23	2,7


Aufbau der Bestellbezeichnung

SSR-XTB

Standardtyp

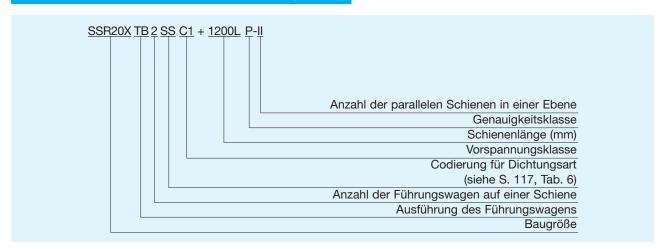
	Auß	enmaße	9	Abmessungen Führungswagen										
Baugröße	Höhe	Breite	Länge											
	М	W	L	В	С	S	L ₁	Т	K	N	Е	f ₀	e ₀	D_0
SSR15XTBY	24	52	56,9	41	26	4,5	39,9	6,1	20	4,5	5,5	2,7	4,5	3
SSR20XTB	28	59	66,5	49	32	5,5	46,6	9	22	5,5	12	2,8	5,2	3
SSR25XTBY	33	73	83	60	35	7	59,8	10	26,2	6	12	3,3	7	3


¹⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Bei Einsatz von seitlichen Abschmiernippeln wenden sie sich bitte an **而出**.

²⁾ Die Standardschienenlängen sind auf Seite 121 angegeben.

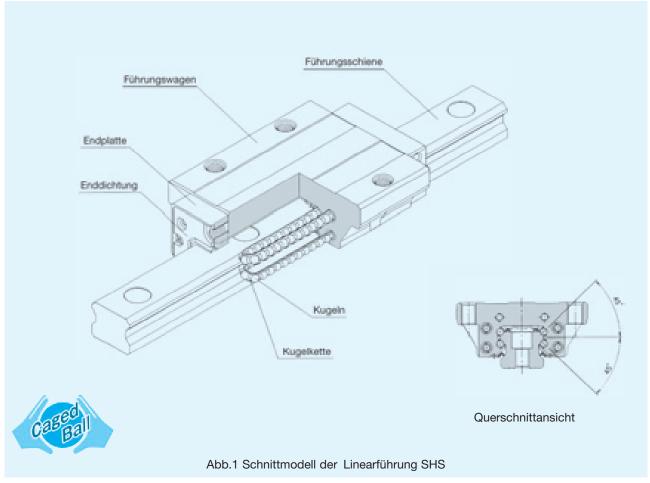
³⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei gestoßene Führungswagen.



Einheit: mm

	Abmessungen Führungsschiene ²⁾					Tragzahl			Zul. stat. Momente ³⁾				Gewicht	
Schmiernippel ¹⁾	Breite W ₁ ±0,05	W ₂	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]		I _A 2 Wagen [kNm]		1 _B 2 Wagen [kNm]	M _C 1 Wagen [kNm]	Wagen [kg]	Schiene [kg/m]
Eintreibnippel PB1021B	15	18,5	12,5	60	4,5×7,5×5,3	14,7	16,5	0,0792	0,44	0,0486	0,274	0,0962	0,19	1,2
B—M6F	20	19,5	15,5	60	6×9,5×8,5	19,6	23,4	0,138	0,723	0,0847	0,448	0,18	0,31	2,1
B—M6F	23	25	18	60	7×11×9	31,5	36,4	0,258	1,42	0,158	0,884	0,33	0,53	2,7


Aufbau der Bestellbezeichnung

THK Linearführung SHS

Linearführung mit Anschlussmaßen nach DIN 645

Linearführung mit gleichen Tragzahlen in allen vier Hauptrichtungen mit weltweit standardisierten Hauptabmessungen. Höchste Kompensationsfähigkeit bei Montageungenauigkeiten.

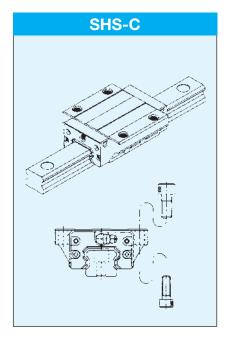
Niedriger Geräuschpegel - komfortabler Sound

Die Kugelkette hält die Wälzkörper in einem konstanten Abstand. Die typischen Geräusche durch das Kollidieren und Aneinanderreiben der Kugeln entfallen, so dass die Geräuschentwicklung erheblich verringert wird.

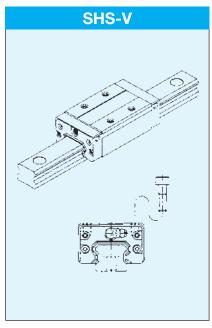
Langzeitwartungsfrei

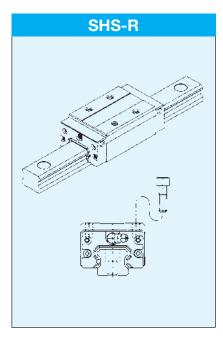
Dadurch, dass die Kugeln in einem konstanten Abstand gehalten werden, wird eine metallische Kontaktreibung und somit der Verschleiß verhindert. Auch verringert sich die Verschmutzung des Schmiermittels. Die Käfigtaschen zwischen den einzelnen Kugeln bilden ein Schmierstoffreservoir zur permanenten Fettabgabe während der Bewegungsabläufe, womit extrem lange Nachschmierfristen erzielt werden.

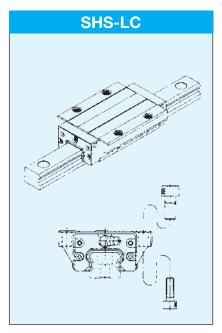
Hohe Geschwindigkeit und lange Lebensdauer


Die Kugelkette verhindert den direkten Kontakt der Wälzkörper untereinander. Im Gegensatz zu Führungen ohne Abstandshalter ist hier nur die einfache Umfangsgeschwindigkeit wirksam. Die Wälzkörper werden durch die Flächen des Käfigs geführt. Dabei lässt der Spezialkunststoff nur geringe Reibungswärme entstehen und ermöglicht höhere Geschwindigkeiten bzw. eine hohe Lebensdauer.

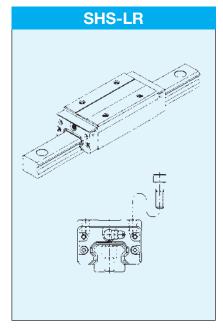
Optimale Laufeigenschaften


Die Wälzkörper werden durch die Kugelkette in einem konstanten Abstand gehalten und beim Eintritt und Verlassen der belasteten Zone exakt geführt. Die Varianz des Verschiebewiderstandes wird auf 10% der bisherigen Werte reduziert. Dadurch wird eine hohe Laufkultur mit extrem geringen Schwingungen erreicht.


Typenübersicht


Der Wagentyp SHS-C hat vier Gewindebohrungen, über die er sowohl von oben als auch von unten montiert werden kann.

Der Wagentyp SHS-V ist ein Schmalwagen-Typ mit vier Sackloch-Gewindebohrungen und geeignet für beengte Einbauverhältnisse.


Der Wagentyp SHS-R ist ein Schmalwagen-Typ mit vier Sackloch-Gewindebohrungen und der gleichen Gesamthöhe wie der Typ HSR-R.

Der Langwagentyp SHS-LC hat die gleiche Querschnittsform wie SHS-C, aber höhere Tragzahlen aufgrund der größeren Anzahl tragender Kugeln.

Der Langwagentyp SHS-LV hat die gleiche Querschnittsform wie SHS-V, aber höhere Tragzahlen aufgrund der größeren Anzahl tragender Kugeln.

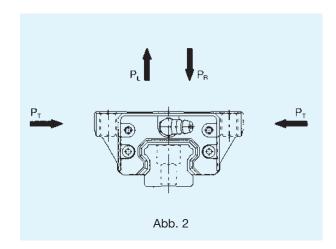
Der Langwagentyp SHS-LR hat die gleiche Querschnittsform wie SHS-R, aber höhere Tragzahlen aufgrund der größeren Anzahl tragender Kugeln.

Berechnung der Lebensdauer

Die Lebensdauer der Linearführung SHS wird nach folgender Formel bestimmt:¹⁾

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_C}\right)^3 \times 50$$

L: Nominelle Lebensdauer (km)
Die nominelle Lebensdauer L ist statistisch als die
Gesamtlaufstrecke definiert, die 90% einer größeren
Menge gleicher Führungen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor erste
Anzeichen einer Werkstoffermüdung auftreten.


 f_{T} : Temperaturfaktor f_{C} : Kontaktfaktor f_{W} : Belastungsfaktor

Aus der errechneten nominellen Lebensdauer L kann die Lebensdauer L_h (in Stunden) nach folgender Formel errechnet werden:

$$L_h = \frac{L \times 10^3}{2 \times \ell_s \times n_1 \times 60}$$

 $L_{\rm h}$: zeitbezogene Lebensdauer (h) $\ell_{\rm s}$: Hublänge (m) $n_{\rm 1}$: Anzahl der Zyklen pro Minute (min-1)

Tragzahlen

Tragzahlen

Der Typ SHS besitzt gleiche Tragzahlen in allen Hauptrichtungen (radial, gegenradial und tangential). Die Tragzahlen sind in den Maßtabellen angegebenen.

Äquivalente Belastung

Bei gleichzeitiger Belastung des Führungswagens aus unterschiedlichen Richtungen wird die äquivalente Belastung wie folgt berechnet:

$$P_E = |P_R - P_L| + P_T$$

P_F : Äquivalente Belastung (N)

- Radial

- Gegenradial

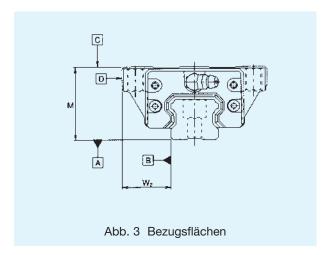
- Tangential

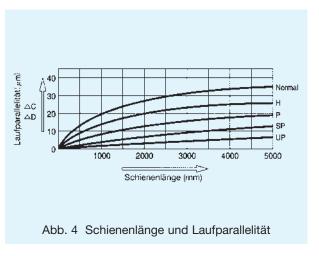
 $^{^{1)}}$ Ausführliche Informationen, insbesondere zu den Faktoren ${\rm f_T},\,{\rm f_C}$ und ${\rm f_W},$ finden Sie im Kapitel zur Lebensdauerberechnung.

Genauigkeitsklassen

Die Genauigkeit von THK Linearführungen wird, wie Tabelle 1 zeigt, nach der Laufparallelität, den Maßtoleranzen von Höhe und Breite sowie den Differenzen von Höhe und Breite zwischen den Wagenpaaren bei mehreren eingesetzten Führungswagen auf einer Schiene bzw. auf mehreren in einer Ebene parallel verlaufenden Schienen definiert.

Laufparallelität


Die Laufparallelität bezeichnet den Parallelitätsfehler zwischen den beiden Bezugsflächen von Führungsschiene und Führungswagen. Bei der Messung wird die Führungsschiene erst auf der Bezugsfläche festgeschraubt, dann wird der Führungswagen über der gesamten Schienenlänge verfahren.


Abweichung der Höhe M zwischen Paaren

Die Abweichung der Höhe M zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Höhe M, die an jedem der in einer Ebene montierten Führungswagen gemessen worden sind.

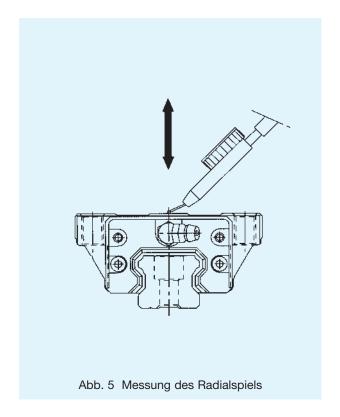
Abweichung der Breite W₂ zwischen Paaren

Die Abweichung der Breite W_2 zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Breite W_2 , die an jedem der auf einer Schiene montierten Führungswagen gemessen worden sind.

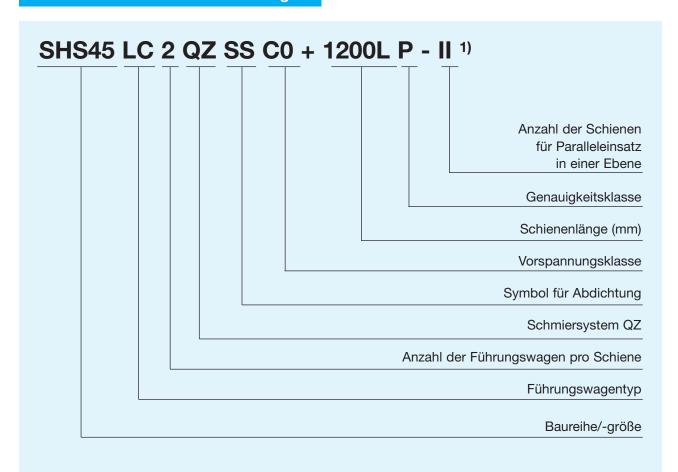
Tab. 1 Genauigkeitsklassen

iab.	1 Genauigkeitsk	Einheit: mm								
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse	Super- präzisions Klasse	Ultra- präzisions Klasse				
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008				
	Abweichung der Höhe M zwischen den Paaren	0,02	0,01	0,006	0,004	0,003				
SHS 15 20	Maßtoleranz der Breite W ₂	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008				
	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	0,006	0,004	0,003				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)								
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)								
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01				
	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003				
SHS 25	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01				
30 35	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)								
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)								
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02				
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003				
SHS 45	Maßtoleranz der Breite W ₂	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02				
55	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02	0,01	0,007	0,005				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)								
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)								
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03				
SHS 65	Abweichung der Höhe M zwischen den Paaren	0,03	0,02	0,01	0,007	0,005				
	Maßtoleranz der Breite W ₂	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03				
	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,025	0,015	0,010	0,007				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)								
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)								

Vorspannung


Tabelle 2 gibt die Vorspannungsklassen mit dem entsprechenden Radialspiel für den Typ SHS an. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

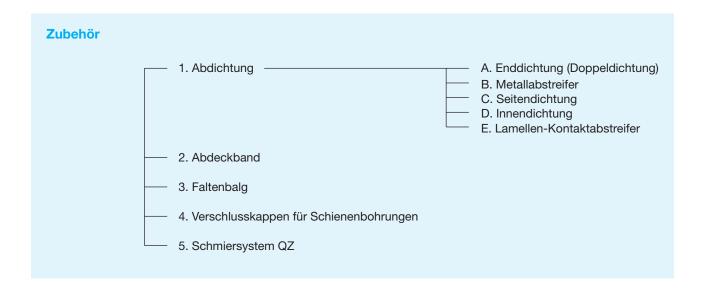
Tab. 2 Vorspannung

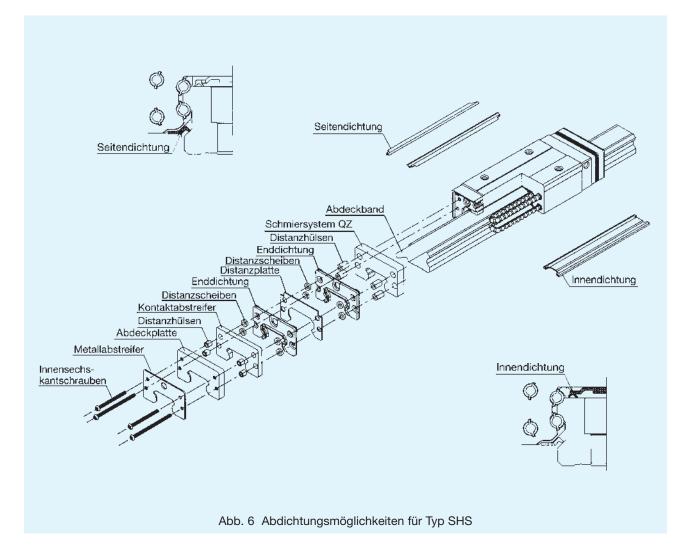

Einheit: µm

Symbol	Normal	Leichte Vorspannung	Mittlere Vorspannung		
Baugröße	_	C1	C0		
SHS15	−5 ~ 0	−12 ~ − 5	_		
SHS20	−6 ~ 0	-12 ~ - 6	−18 ~ −12		
SHS25	−8 ~ 0	−14 ~ − 8	−20 ~ −14		
SHS30	−9 ~ 0	−17 ~ − 9	−27 ~ −17		
SHS35	−11 ~ 0	−19 ~ −11	−29 ~ −19		
SHS45	−12 ~ 0	−22 ~ −12	$-32 \sim -22$		
SHS55	$-15\sim0$	−28 ~ −16	$-38 \sim -28$		
SHS65	$-18\sim0$	$-34 \sim -22$	$-45 \sim -34$		

Anm.: Das Normalspiel wird nicht bezeichnet. Wird leichte Vorspannung C1 oder mittlere Vorspannung C0 gewünscht, muß das entsprechende Symbol in der Bestellbezeichnung angegeben werden (siehe "Aufbau der Bestellbezeichnung").

Aufbau der Bestellbezeichnung




Das Zeichen «II» bezeichnet hier die geplante Montageanordnung zweier parallel verlaufender Führungsschienen.

Zubehör

Staubpartikel und andere Fremdstoffe sowie das Eindringen von Wasser verursachen bei Linearführungssystemen außerordentlichen Verschleiß und eine Verkürzung der Lebensdauer. Daher muß schon bei der Auswahl des Führungssystems eine wirksame Abdichtung oder eine Abdeckung entsprechend den Umgebungsbedingungen ausgewählt werden. Das reichhaltige Zubehörprogramm von THK bietet hierfür optimale Lösungsmöglichkeiten an.

1. Abdichtungen

A. Enddichtung (Doppeldichtung)

Mit den beidseitig am Führungswagen standardmäßig befestigten Enddichtungen wird ein Eindringen von Fremdstoffen und Wasser von der Schiene in den Wagen verhindert. Doppeldichtungen verstärken diesen Schutz.

B. Metallabstreifer (kontaktlos)

Der Metallabstreifer schützt gegen heiße Späne und andere vergleichsweise größere Fremdpartikel, die an der Schiene haften.

C. Seitendichtung

Die Seitendichtung verhindert das Eindringen von Staub und Wasser über die seitliche Wagenunterseite. Zusätzlich wird der Schmierstoff vor dem Ausdringen zurückgehalten.

D. Innendichtung

Innendichtungen schützen effektiv das Wageninnere vor Staub und anderen Fremdstoffen. Dazu wird der Schmierstoff in den Kugelumläufen zurückgehalten.

E. Lamellen-Kontaktabstreifer LaCS

Im Vergleich zum Metallabstreifer liegt der Kontaktabstreifer LaCS eng an der Schiene an und schützt so das Wageninnere selbst vor kleinsten Fremdpartikeln (siehe S. 364). Zulässige Einsatztemperatur: $-20 \sim +80^{\circ}$ C.

Tab. 3 Verschiebewiderstand mit LaCS¹⁾ Einheit: N

Baugröße	Verschiebewiderstand						
SHS 15	5,2						
SHS 20	6,5						
SHS 25	11,7						
SHS 30	18,2						
SHS 35	20,8						
SHS 45	26,0						
SHS 55	32,5						
SHS 65	39,0						

¹⁾ Der Verschiebewiderstand gilt nur für LaCS.

Zur maximalen Geschwindigkeit fragen Sie TIHK.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 5 mit der Angabe der Variation der Länge L des Führungswagens.

Tab. 4 Kennzeichen für Abdichtung

Symbol	Abdichtungszubehör						
UU	Mit beidseitigen Enddichtungen						
SS	Mit End-, Seiten- und Innendichtungen						
DD	Mit Doppel-, Seiten- und Innendichtungen						
ZZ	Mit End-, Seiten- und Innendichtungen sowie Metallabstreifern						
KK	Mit Doppel-, Seiten- und Innendichtungen sowie Metallabstreifern						
SSHH	Mit End-, Seiten- und Innendichtungen sowie Kontaktabstreifern LaCS						
DDHH	Mit Doppel-, Seiten- und Innendichtungen sowie Kontaktabstreifern LaCS						
ZZHH	Mit End-, Seiten- und Innendichtungen sowie Metall- und Kontaktabstreifern LaCS						
KKHH	Mit Doppel-, Seiten- und Innendichtungen sowie Metall- und Kontaktabstreifern LaCS						

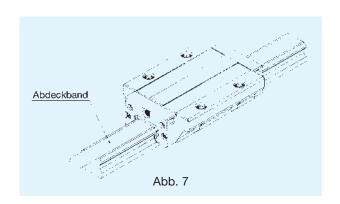
Tab. 5 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör

|--|

Baugröße	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
SHS 15C/V/R	64,4	64,4	69,8	66,8	72,2	78,9	84,4	79,9	85,2
SHS 15LC/LV	79,4	79,4	84,8	81,8	87,2	93,9	99,4	94,9	100,2
SHS 20C/V	79	79	85,4	83	89,4	94	100	96	102,5
SHS 20LC/LV	98	98	104,4	102	108,4	113	119	115	121,5
SHS 25C/V/R	92	92	101,6	100,4	107,6	112	119,2	114,4	121,6
SHS 25LC/LV/LR	109	109	118,6	117,4	124,6	129	136,2	131,4	138,6
SHS 30C/V/R	106	106	116	113,8	122,4	129,4	138	131,8	140,4
SHS 30LC/LV/LR	131	131	141	138,8	147,4	154,4	163	156,8	165,4
SHS 35C/V/R	122	122	134,8	132,4	142,2	148	157,8	150,4	160,2
SHS 35LC/LV/LR	152	152	164,8	162,4	172,2	178	187,8	180,4	190,2
SHS 45C/V/R	140	140	152,8	151,2	161	169	178,8	172,2	182
SHS 45LC/LV/LR	174	174	186,8	185,2	195	203	212,8	206,2	216
SHS 55C/V/R	171	171	186,6	184,2	195,4	202	213,2	205,2	216,4
SHS 55LC/LV/LR	213	213	228,6	226,2	237,4	244	255,2	247,2	258,4
SHS 65C/V	221	221	238,6	236,2	248,6	258	270,4	261,2	273,6
SHS 65LC/LV	272	272	289,6	287,2	299,6	309	321,4	312,2	324,6

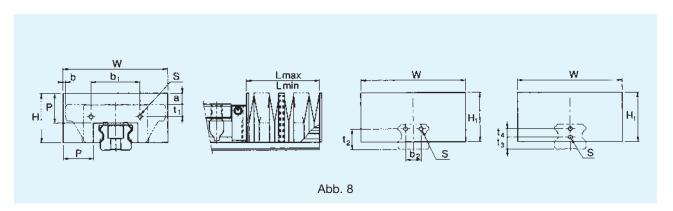
Dichtungswiderstand

Die Maximalwerte des Dichtungswiderstands für einen Führungswagen mit End- und Seitendichtungen (SHS...SS) sind in Tabelle 6 aufgeführt. Bei diesen Werten sind die Dichtungen leicht befettet.


Tab. 6 Max. Dichtungswiderstand

_:	1		• • •	N I
-1	nı	വ	it:	IVI

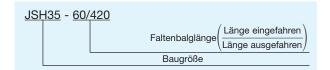
Baugröße	Dichtungswiderstand
SHS 15	4,5
SHS 20	7,0
SHS 25	10,5
SHS 30	17,0
SHS 35	20,5
SHS 45	30,0
SHS 55	31,5
SHS 65	43,0


2. Abdeckband

Das Abdeckband aus dünnem Stahlblech (1.4301) verhindert das Eindringen von Staub und anderen Fremdpartikeln über die Befestigungsbohrungen der Schienen in den Führungswagen.

3. Faltenbalg

Die Abmessungen der Spezial-Faltenbälge für die Linearführung Typ SHS sind in der nachfolgenden Tabelle angegeben. Bei Bestellung verwenden Sie bitte die unten angegebene Bestellbezeichnung.


Tab. 7 Abmessungen Faltenbalg Typ JSH

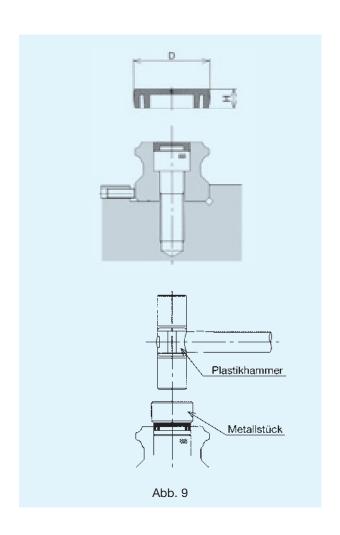
Baugröße	Hauptabmessungen								passende Führung				
	W	Н	H ₁	Р	b ₁	С-Тур	V-Typ	R-Typ	b ₂	t ₂	t ₃	t ₄	
JSH15	53	26	26	15	22,4	4	4	8	_	_	8	_	SHS15
JSH20	60	30	30	17	27,6	7,5	7,5	_	_	_	8	6	SHS20
JSH25	75	36	36	20	38	9,1	9,1	13,1	_	_	9	7	SHS25
JSH30	80	38	38	20	44	11	11	14	_	_	11	8	SHS30
JSH35	86	40,5	40,5	20	50	11	11	18	20	21,5	_	_	SHS35
JSH45	97	46	46	20	64,6	13,5	13,5	23,5	26	26,5	_	_	SHS45
JSH55	105	48	48	20	68	13	13	23	30	31,5	_	_	SHS55
JSH65	126	63	63	25	80	18	18	_	34	45	_	_	SHS65

	Befestigungs-							
	schraube S							Α
Baugröße	oben: Wagen		а			b		/ Lmax \
	unten: Schiene	С-Тур	V-Typ	R-Typ	С-Тур	V-Typ	R-Typ	(L min
SHS15	$egin{array}{cccc} ext{M 2} & imes & 8 ext{ L} \ ext{M 4} & imes & 8 ext{ L} \end{array}$	5	5	1	3	9,5	9,5	5
SHS20	M 2,6 × 8 L M 3 × 6 L	5	5	_	-1,5	8	_	6
SHS25	M3 × 8L M3 × 6L	6	6	2	2,5	13,5	13,5	7
SHS30	M 3 × 10 L M 3 × 6 L	3	3	0	-5	10	10	7
SHS35	M 4 × 10 L M 4 × 8 L	0	0	-7	-7	8	8	7
SHS45	M 4 × 12 L M 4 × 8 L	-5	-5	15	-11,7	5,5	5,5	7
SHS55	M 5 × 12 L M 5 × 10 L	-9	-9	19	-17,5	2,5	2,5	7
SHS65	M 6 × 14 L M 6 × 12 L	-8	-8	_	-22	0	_	9

Bestellbezeichnung

4. Verschlusskappen

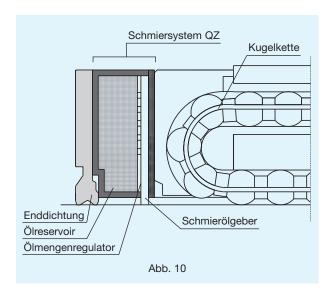
Verschlusskappen Typ C


Späne und andere Fremdstoffe können sich in den Befestigungsbohrungen der Schienen sammeln und darüber in die Führungswagen gelangen. Dagegen können spezielle Verschlusskappen bündig zur Schienenoberfläche eingebaut werden.

Die Verschlusskappen des Typs C bestehen aus einem verschleißfesten und gegen ÖI widerstandsfähigen Kunststoff und sind ab Lager für die Schienen-Befestigungsbohrungen für Innensechskantschrauben von M4 bis M16 lieferbar (siehe Tab. 9).

Die Verschlusskappen sind so in die Befestigungsbohrungen einzusetzen, dass sie bündig mit der Schienenoberfläche abschließen (siehe Abb. 9).

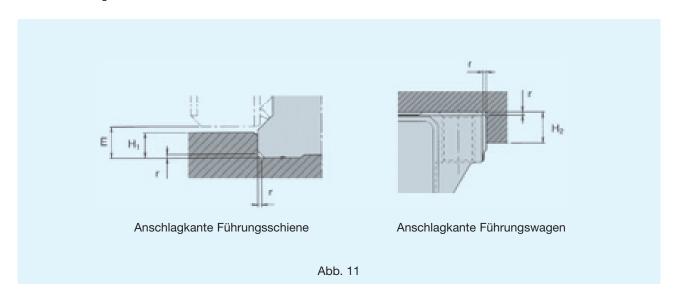
Tab. 9 Verschlusskappe Typ C Einheit: mm


	Hauptabm	nessungen		
Baugröße	Тур	Schraube	D	Н
SHS15	C 4	M 4	7,8	1,0
SHS20	C 5	M 5	9,8	2,4
SHS25	C 6	M 6	11,4	2,7
SHS30	C 8	M 8	14,4	3,7
SHS35	C 8	M 8	14,4	3,7
SHS45	C 12	M 12	20,5	4,7
SHS55	C 14	M 14	23,5	5,7
SHS65	C 16	M 16	26,5	5,7

5. Schmiersystem QZ

Siehe hierzu auch S. 354.

Tab. 10 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör und QZ


•		0 0				0			
Baugröße	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	QZDDHH	QZZZHH	QZKKHH
SHS 15C/V/R	84,4	84,4	89,9	86,8	92,2	100,4	105,4	101,4	106,9
SHS 15LC/LV	99,4	99,4	104,8	101,8	107,2	115,4	120,4	116,4	121,9
SHS 20C/V	99	99	105,4	103	109,4	115,5	122	118	124,5
SHS 20LC/LV	118	118	124,4	122	128,4	134,5	141	137	143,5
SHS 25C/V/R	114,4	114,4	121,6	120,4	127,6	132	139,2	134,4	141,6
SHS 25LC/LV/LR	131,4	131,4	138,6	137,4	144,6	149	156,2	151,4	158,6
SHS 30C/V/R	127,4	127,4	136	133,8	142,4	149,4	158	151,8	160,4
SHS 30LC/LV/LR	152,4	152,4	161	158,8	167,4	174,4	183	176,8	185,4
SHS 35C/V/R	145	145	154,8	152,4	162,2	168	177,8	170,4	180,2
SHS 35LC/LV/LR	175	175	184,8	182,4	192,2	198	207,8	200,4	210,2
SHS 45C/V/R	173	173	182,8	181,2	191	199	208,8	202,2	212
SHS 45LC/LV/LR	207	207	216,8	215,2	225	233	242,8	236,2	246
SHS 55C/V/R	205,4	205,4	216,6	214,2	225,4	232	243,2	235,2	246,4
SHS 55LC/LV/LR	247,4	247,4	258,6	256,2	267,4	274	285,2	277,2	288,4
SHS 65C/V	256,2	256,2	268,6	266,2	278,6	288	300,4	291,2	303,6
SHS 65LC/LV	307,2	307,2	319,6	317,2	329,6	339	351,4	342,2	354,6

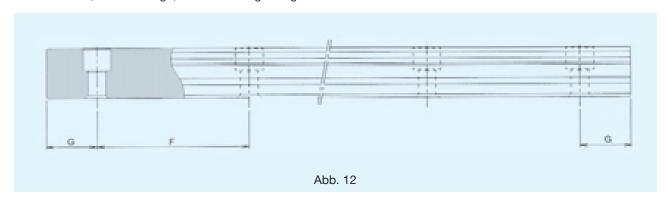
Montagehinweise

Schulterhöhe und Ausrundung

Für eine einfache präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 11 angegeben. Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, dass Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 11 angegebenen Maximalradien.

Tab. 11 Schulterhöhen und Ausrundungen

Baugröße	Ausrundungs- radius	Schulterhöhe für Führungsschiene	Schulterhöhe für Führungswagen	
J	r _(max.)	H ₁	H ₂	Е
SHS15	0,5	2,5	4	3
SHS20	0,5	3,5	5	4,6
SHS25	1	5	5	5,8
SHS30	1	5	5	7
SHS35	1	6	6	7,5
SHS45	1	7,5	8	8,9
SHS55	1,5	10	10	12,7
SHS65	1,5	15	10	19


Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungsschienen für die Linearführung Typ SHS sind in Tabelle 12 angegeben. Bei Schienenlängen größer als die angegebenen Maximallängen werden die Führungsschienen in mehreren Teilstücken geliefert.

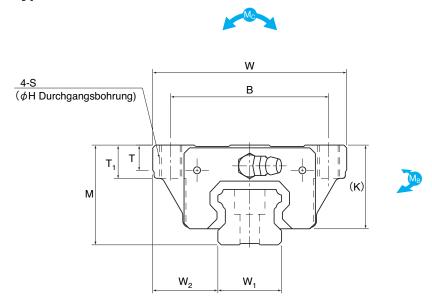
Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zur Instabilität, mit der Folge, dass die Endgenauigkeit

beeinträchtigt werden kann. Sollte jedoch ein anderes Maß genommen werden, müssen das Maß G und dessen Lage definiert sein.

Werden zwei oder mehr Teilstücke eines Schienenstranges bestellt, ist die Gesamt-Schienenlänge anzugeben. Bei Führungsschienen, die als Stoßversion geliefert werden, werden die Stoßstellen der Schienen paßgenau erodiert und die Schienenenden selbst mit einer Fase versehen.

Tab. 12 Standard- und Maximallängen der Führungsschienen vom Typ SHS

Einheit: mm


Baugröße	SHS15	SHS20	SHS25	SHS30	SHS35	SHS45	SHS55	SHS65
Standard- länge der Führungs- schiene (L ₀)	160 220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600 1720 1840 1960 2080 2200	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1300 1360 1420 1480 1540 1600 1720 1840 1960 2080 2200 2320 2440	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620
F	60	60	60	80	80	105	120	150
G	20	20	20	20	20	22,5	30	35
Maximallänge	2500	3000	3000	3000	3000	3090	3060	3000

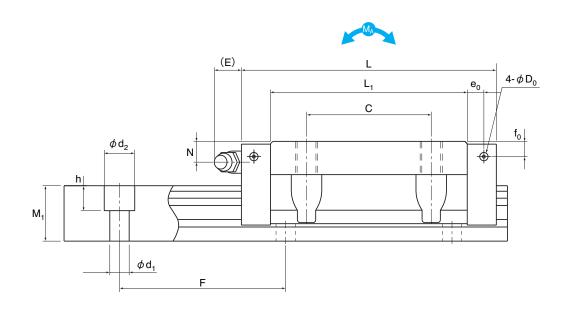
Anm.: Die Maximallängen variieren je nach Genauigkeitsklasse. Sind keine gestoßenen Führungsschienen für Überlängen einsetzbar, wenden Sie sich bitte an THK.

SHS-C (Schwerlasttyp) SHS-LC (Superschwerlasttyp)

Flanschwagentyp

Baugröße 1)	abr	Haupt- nessun					Α	bmess	ungen f	-ührun	gswage	n		
	Höhe		Länge											Schmier-
	М	W	L	В	С	S	Н	L ₁	Т	T ₁	K	N	Е	nippel
SHS15C SHS15LC	24	47	64,4 79,4	38	30	M 5	4,4	48 63	5,9	8	21	5,5	5,5	PB1021B
SHS20C SHS20LC	30	63	79 98	53	40	M 6	5,4	59 78	7,2	10	25,4	6,5	12	B—M6F
SHS25C SHS25LC	36	70	92 109	57	45	M 8	6,8	71 88	9,1	12	30,2	7,5	12	B—M6F
SHS30C SHS30LC	42	90	106 131	72	52	M10	8,5	80 105	11,5	15	35	8	12	B—M6F
SHS35C SHS35LC	48	100	122 152	82	62	M10	8,5	93 123	11,5	15	40,5	8	12	B—M6F
SHS45C SHS45LC	60	120	140 174	100	80	M12	10,5	106 140	14,1	18	51,1	10,5	16	B—PT1/8
SHS55C SHS55LC	70	140	171 213	116	95	M14	12,5	131 173	16	21	57,3	11	16	B—PT1/8
SHS65C SHS65LC	90	170	221 272	142	110	M16	14,5	175 226	18,8	24	71	19	16	B—PT1/8

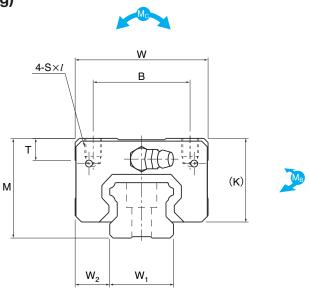
¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 132.


²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Wenden Sie sich bitte an THK, wenn Sie seitliche Abschmiernippel einsetzen wollen.

³⁾ Siehe Seite 139 für Standardschienenlängen.

⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.



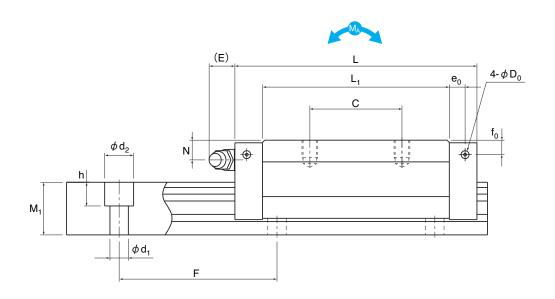
	seitlich nierboh		Abn	nessun	gen Fü	hrungs	schiene ³⁾	Trag	jzahl				nente4)		Gew	icht
			Breite		Höhe	Teilung		С	C ₀		∕I A		∕I B	Mc	Wagen	Schiene
e ₀	f ₀	D_0	W _{1-0,05}	W_2	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]	[kg]	[kg/m]
			4.5	40	40	00		14,2	24,2	0,175	0,898	0,175	0,898	0,16	0,23	
4	4	3	15	16	13	60	4,5×7,5×5,3	17,2	31,9	0,296	1,43	0,296	1,43	0,212	0,29	1,3
4.0				0.4.5	40.5			22,3	38,4	0,334	1,75	0,334	1,75	0,361	0,46	
4,3	5,3	3	20	21,5	16,5	60	6×9,5×8,5	28,1	50,3	0,568	2,8	0,568	2,8	0,473	0,61	2,3
		_		20.5				31,7	52,4	0,566	2,75	0,566	2,75	0,563	0,72	
6	5,5	3	23	23,5	20	60	7×11×9	36,8	64,7	0,848	3,98	0,848	3,98	0,696	0,89	3,2
				0.4				44,8	66,6	0,786	4,08	0,786	4,08	0,865	1,34	4.5
5,5	6	5,2	28	31	23	80	9×14×12	54,2	88,8	1,36	6,6	1,36	6,6	1,15	1,66	4,5
-0.5		5.0	0.4	00	00	00		62,3	96,6	1,38	6,76	1,38	6,76	1,53	1,90	0.0
6,5	5,5	5,2	34	33	26	80	9×14×12	72,9	127	2,34	10,9	2,34	10,9	2,01	2,54	6,2
_		5.0	4.5	07.5		405		82,8	126	2,05	10,1	2,05	10,1	2,68	3,24	40.4
8	8	5,2	45	37,5	32	105	14×20×17	100	166	3,46	16,3	3,46	16,3	3,53	4,19	10,4
4.0				40.5		400		128	197	3,96	19,3	3,96	19,3	4,9	5,35	445
10	8	5,2	53	43,5	38	120	16×23×20	161	259	6,68	31,1	6,68	31,1	6,44	6,97	14,5
10	10	F 0	-00	F0 F		150	400000	205	320	8,26	40,4	8,26	40,4	9,4	10,7	00.7
10	12	5,2	63	53,5	53	150	18×26×22	253	408	13,3	62,6	13,3	62,6	11,9	13,7	23,7

SHS-V (Schwerlasttyp) SHS-LV (Superschwerlasttyp)

Schmalwagentyp (niedrig)

Baugröße 1)		Haupt- nessun				Д	bmessu	ngen Fül	nrungswa	agen		
	Höhe	Breite	Länge									Schmier-
	М	W	L	В	С	$S imes \ell$	L ₁	Т	K	N	Е	nippel
SHS15V	24	34	64,4	26	26	M4×4	48	F 0	21	<i>E E</i>	F	PB1021B
SHS15LV	24	34	79,4	20	34	IVI4×4	63	5,9	21	5,5	5,5	PB1021B
SHS20V	30	44	79	32	36	M5×5	59	8	25,4	6,5	12	B—M6F
SHS20LV	30	44	98	32	50	IVIDAD	78	0	25,4	0,5	12	D—IVIOF
SHS25V	36	48	92	35	35	M6×6,5	71	8	30,2	7,5	12	B—M6F
SHS25LV	30	40	109	33	50	1010 ∧ 0,5	88	0	30,2	7,5	12	D—IVIOF
SHS30V	42	60	106	40	40	M8×8	80	8	35	8	12	B—M6F
SHS30LV	42	60	131	40	60	IVIO∧O	105	0	33	0	12	D—IVIOF
SHS35V	48	70	122	50	50	M8×10	93	14,7	40,5	8	12	B—M6F
SHS35LV	40	70	152	30	72	1010 \ 10	123	14,7	40,5	0	12	D—IVIOI
SHS45V	60	86	140	60	60	M10×15	106	14,9	51,1	10,5	16	B—PT1/8
SHS45LV	00	00	174	00	80	10110/13	140	14,9	31,1	10,5	10	D—F11/6
SHS55V	70	100	171	75	75	M12×15	131	19,4	57,3	11	16	B—PT1/8
SHS55LV	70	100	213	75	95	IVITZATO	173	19,4	57,3	11	10	D—F11/0
SHS65V	90	126	221	76	70	M16×20	175	19,5	71	19	16	B—PT1/8
SHS65LV	90	120	272	70	120	W110^20	226	19,5	/ 1	13	10	D—111/6

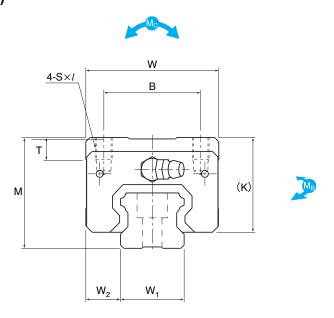
¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 132.


²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Wenden Sie sich bitte an THK, wenn Sie seitliche Abschmiernippel einsetzen wollen.

³⁾ Siehe Seite 139 für Standardschienenlängen.

⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.



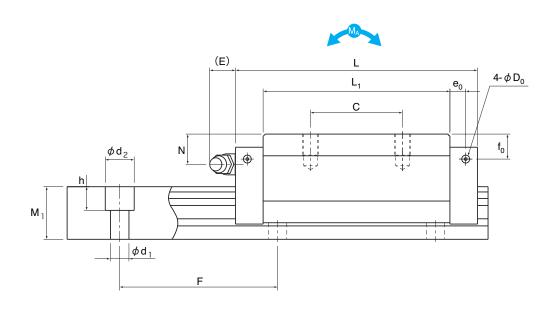
	seitlich nierboh		Abn	nessun	gen Fü	hrungs	schiene ³⁾	Trag	ızahl			at. Mon			Gewicht		
			Breite		Höhe	Teilung		С	C _o		∕I _A		/l _B	M _C	Wagen	Schiene	
e ₀	f ₀	D_0	W _{1-0,05}	W_2	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]	[kg]	[kg/m]	
	_	_	4.5	0.5	40	00	45 75 50	14,2	24,2	0,175	0,898	0,175	0,898	0,16	0,19		
4	4	3	15	9,5	13	60	4,5×7,5×5,3	17,2	31,9	0,296	1,43	0,296	1,43	0,212	0,22	1,3	
4.0	٠,	0	00	10	10.5	0	00505	22,3	38,4	0,334	1,75	0,334	1,75	0,361	0,35	0.0	
4,3	5,3	3	20	12	16,5	60	6×9,5×8,5	28,1	50,3	0,568	2,8	0,568	2,8	0,473	0,46	2,3	
•		0	00	10.5	00	0	7440	31,7	52,4	0,566	2,75	0,566	2,75	0,563	0,54	0	
6	5,5	3	23	12,5	20	60	7×11×9	36,8	64,7	0,848	3,98	0,848	3,98	0,696	0,67	3,2	
5,5	6	5,2	28	16	23	80	0.44.40	44,8	66,6	0,786	4,08	0,786	4,08	0,865	0,94	1 E	
5,5	O	5,2	20	10	23	80	9×14×12	54,2	88,8	1,36	6,6	1,36	6,6	1,15	1,16	4,5	
6,5	E E	E O	34	18	26	00	0.44.40	62,3	96,6	1,38	6,76	1,38	6,76	1,53	1,4	60	
0,5	5,5	5,2	34	10	20	80	9×14×12	72,9	127	2,34	10,9	2,34	10,9	2,01	1,84	6,2	
8	8	5 0	45	20.5	32	105	14200217	82,8	126	2,05	10,1	2,05	10,1	2,68	2,54	10.4	
0	0	5,2	45	20,5	32	105	14×20×17	100	166	3,46	16,3	3,46	16,3	3,53	3,19	10,4	
10	8	5,2	53	23,5	38	120	10,00,00	128	197	3,96	19,3	3,96	19,3	4,9	4,05	14,5	
10	0	5,2	55	23,3	30	120	16×23×20	161	259	6,68	31,1	6,68	31,1	6,44	5,23	14,5	
10	12	5,2	63	31,5	53	150	10,406,400	205	320	8,26	40,4	8,26	40,4	9,4	8,41	23,7	
10	12	5,2	03	31,3	55	150	18×26×22	253	408	13,3	62,6	13,3	62,6	11,9	10,7	20,1	

SHS-R (Schwerlasttyp) SHS-LR (Superschwerlasttyp)

Schmalwagentyp (hoch)

Baugröße 1)	abr	Haupt- nessun		Abmessungen Führungswagen									
	Höhe	Breite	Länge									Schmier-	
	М	W	L	В	С	S×ℓ	L ₁	Т	K	N	Е	nippel	
SHS15R	28	34	64,4	26	26	M4×5	48	5,9	25	9,5	5,5	PB1021B	
SHS25R	40	48	92	35	35	M6×8	71	8	34.2	11.5	12	D MGE	
SHS25LR	40	40	109	33	50	IVIO×o	88	0	34,2	11,5	12	B—M6F	
SHS30R	45	60	106	40	40	M8×10	80	8	38	11	12	B—M6F	
SHS30LR	45	00	131	40	60	IVIO × IU	105	0	50	11	12	D—IVIOF	
SHS35R	55	70	122	50	50	M8×12	93	14,7	47,5	15	12	B—M6F	
SHS35LR	55	70	152	50	72	IVIO A 12	123	14,7	47,5	15	12	D—IVIOF	
SHS45R	70	86	140	60	60	M10×17	106	140	61.1	20.5	16	B—PT1/8	
SHS45LR	70	00	174	60	80	WITUX 17	140	14,9	61,1	20,5	16	B—P11/6	
SHS55R	80	100	171	75	75	M12×18	131	10.4	67.2	21	16	B—PT1/8	
SHS55LR	80	100	213	75	95	IVI12×18	173	19,4	67,3	21	10	D—P11/8	

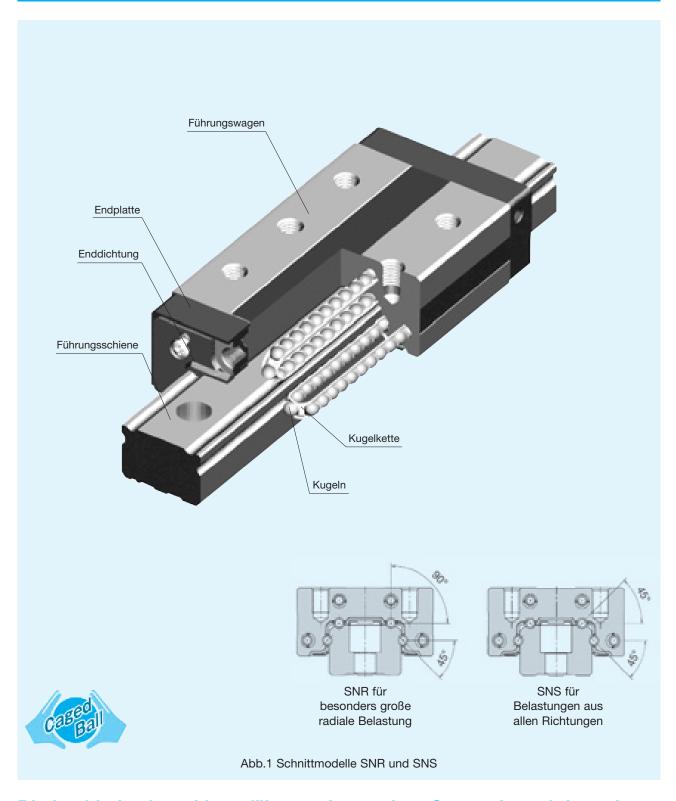
¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 132.


²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Wenden Sie sich bitte an THK, wenn Sie seitliche Abschmiernippel einsetzen wollen.

³⁾ Siehe Seite 139 für Standardschienenlängen.

⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.



	seitlich nierboh		Abn	nessun	gen Fü	hrungs	schiene ³⁾	Trag	ızahl		Zul. sta				Gewicht	
e ₀	f ₀	D ₀	Breite W _{1-0,05}	W_2	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C₀ [kN]	1 Wagen [kNm]	∕I _A 2 Wagen [kNm]	1 Wagen [kNm]	Λ _B 2 Wagen [kNm]	M _C 1 Wagen [kNm]	Wagen [kg]	Schiene [kg/m]
4	8	3	15	9,5	13	60	4,5×7,5×5,3	14,2	24,2	0,175	0,898	0,175	0,898	0,16	0,22	1,3
6	9,5	3	23	12,5	20	60	7×11×9	31,7 36,8	52,4 64,7	0,566 0,848	2,75 3,98	0,566 0,848	2,75 3,98	0,563 0,696	1	3,2
5,5	9	5,2	28	16	23	80	9×14×12	44,8 54,2	66,6 88,8		4,08 6,6	0,786 1,36	4,08 6,6	0,865 1,15	1,04 1,36	4,5
6,5	12,5	5,2	34	18	26	80	9×14×12	62,3 72,9	96,6 127	1,38 2,34	6,76 10,9	1,38 2,34	6,76 10,9	1,53 2,01	1,8 2,34	6,2
8	18	5,2	45	20,5	32	105	14×20×17	82,8 100	126 166	2,05 3,46	10,1 16,3	2,05 3,46	10,1 16,3	2,68 3,53	3,24 4,19	10,4
10	18	5,2	53	23,5	38	120	16×23×20	128 161	197 259	3,96 6,68	19,3 31,1	3,96 6,68	19,3 31,1	4,9 6,44	5,05 6,57	14,5

THK Linearführungen SNR und SNS

Die hochsteife Linearführung mit Kugelkette

Die hochbelastbare Linearführung der zweiten Generation mit integrierter Kugelkette: Hervorragend geeignet für Anwendungen mit hoher Dynamik und für nahezu wartungsfreie Werkzeugmaschinen.

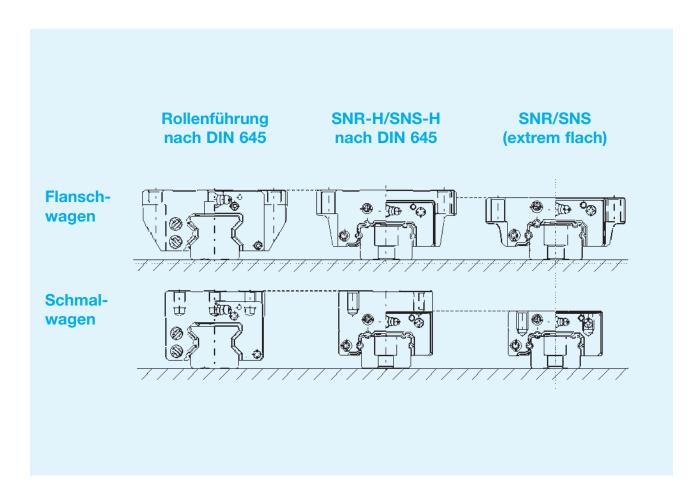
Niedriger Geräuschpegel - komfortabler Sound

Die Kugelkette hält die Wälzkörper in einem konstanten Abstand. Die typischen Geräusche durch das Kollidieren und Aneinanderreiben der Kugeln entfallen, so dass die Geräuschentwicklung erheblich verringert wird.

Langzeitwartungsfrei

Dadurch, dass die Kugeln in einem konstanten Abstand gehalten werden, wird eine metallische Kontaktreibung und somit der Verschleiß verhindert. Auch verringert sich die Verschmutzung des Schmiermittels. Die Käfigtaschen zwischen den einzelnen Kugeln bilden ein Schmierstoffreservoir zur permanenten Fettabgabe während der Bewegungsabläufe. Dadurch werden extrem lange Nachschmierfristen erzielt.

Hohe Geschwindigkeit und lange Lebensdauer

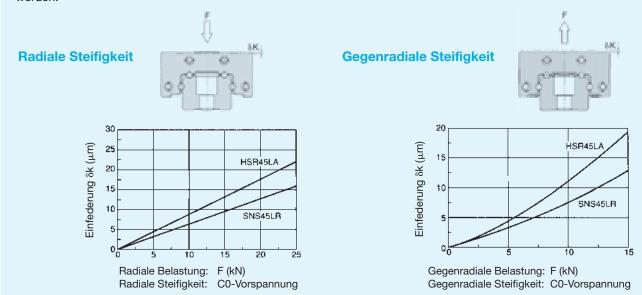

Die Kugelkette verhindert den direkten Kontakt der Wälzkörper untereinander. Im Gegensatz zu Führungen ohne Abstandshalter ist hier nur die einfache Umfangsgeschwindigkeit wirksam. Die Wälzkörper werden durch die Flächen des Käfigs geführt. Dabei lässt der Spezialkunststoff nur geringe Reibungswärme entstehen und ermöglicht höhere Geschwindigkeiten bzw. eine hohe Lebensdauer.

Optimale Laufeigenschaften

Die Wälzkörper werden durch die Kugelkette in einem konstanten Abstand gehalten und beim Eintritt und Verlassen der belasteten Zone exakt geführt. Die Varianz des Verschiebewiderstandes wird auf 10% der bisherigen Werte reduziert. Dadurch wird eine hohe Laufkultur mit extrem geringen Schwingungen erreicht.

Anschlussmaße auch nach DIN 645

Die Anschlussmaße der Baureihen SNR-H und SNS-H entsprechen der DIN 645 und sind daher kompatibel zu anderen marktgängigen Rollen- und Kugelführungen. Für kompakte Konstruktionen bieten sich die Baureihen SNR und SNS mit ihrer extrem flachen Bauweise an.



Besonderheiten der Typen SNR und SNS

Hohe Steifigkeit

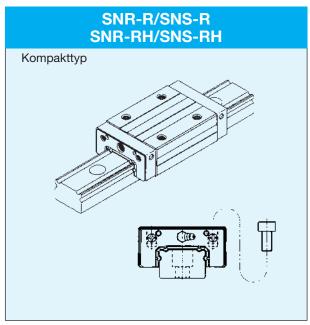
Die Linearführungen der Typen SNR und SNS basieren auf dem Typ NR. Aufgrund der verbesserten radialen, gegenradialen und tangentialen Steifigkeit gehören die beiden Typen SNR und SNS zu den Linearführungen mit Kugelkette, die die höchste Steifigkeit besitzen. Der Radialtyp SNR und der Typ SNS für gleiche Tragzahlen in allen Hauptrichtungen haben die gleichen Abmessungen und können daher entsprechend der Anwendungsbedingungen ausgewählt werden.

Flexible Führungen

Wirken keine Bearbeitungskräfte auf die Linearführung, lässt sich der Typ SNR/SNS sehr leichtgängig verfahren. Hohe Bearbeitungskräfte, wie sie in Werkzeugmaschinen bei der Schwerzerspanung auftreten, erzeugen dagegen eine Vergrößerung der Kontaktflächen zwischen den Kugeln und Laufrillen (Druckellipse). Die hieraus resultierende Bewegung ist eine ideale Kombination aus gleitendem und rollendem Anteil. Dieser sogenannte Differentialschlupf zwischen den Kugeln und Laufrillen erzeugt einen belastungsabhängigen Reibwiderstand, der die Dämpfungseigenschaft der Linearführung steigert.

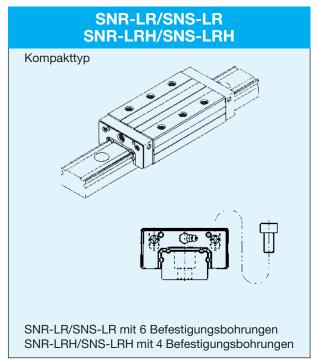
Ultrahohe Tragfähigkeit

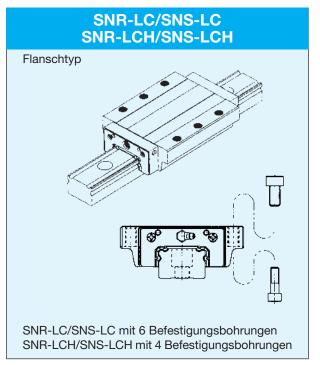
Durch die nahezu identische Form des Tiefrillenprofils zur Kugelkontur ist bei Belastung die Kontaktfläche der Kugel gleich oder größer als die Kontaktfläche einer Rolle. Dieses ermöglicht höhere statische Tragzahlen als bei rollengelagerten Linearführungen. In der Praxis werden rollengelagerte Führungen zusätzlich von den folgenden Faktoren stark beeinflußt:


- 1. Blockadephänomen durch Rollenverkippung.
- 2. Eine Vorspannung zwecks Steifigkeitserhöhung erzeugt Schwergängigkeit und Fluktuation.
- 3. Kantenpressungen an den Rollen, verursacht durch Montagefehler, reduzieren die tatsächliche Tragfähigkeit. Die neue Führungsgeneration mit den Baureihen SNR und SNS ist frei von diesen kritischen Einflüssen und garantiert bei einfacher Montage hohe Maschinenleistungen.

Umfangreiches Zubehör

Für den Einsatz in unterschiedlichen Anwendungen mit weit variierenden Anforderungen steht ein breites Zubehörprogramm wie Enddichtungen, Schienenabdeckungen und Faltenbälgen zur Verfügung.


Typenübersicht


Der Wagentyp SNR-R ist ein Schmalwagen-Typ mit vier Sackloch-Gewindebohrungen für beengte Einbauräume. Beim Wagentyp H ist die Bauhöhe dem weltweiten Standard angepasst.

Der Wagentyp SNR-C hat vier Gewindebohrungen, über die er sowohl von oben als auch von unten montiert werden kann. Beim Wagentyp H ist die Bauhöhe dem weltweiten Standard angepasst.

Der Langwagentyp SNR-LR hat die gleiche Querschnittsform wie SNR-R, aber höhere Tragzahlen aufgrund der größeren Kugelanzahl. Beim Wagentyp H ist die Bauhöhe dem weltweiten Standard angepasst.

Der Langwagentyp SNR-LC hat die gleiche Querschnittsform wie SNR-C, aber höhere Tragzahlen aufgrund der größeren Kugelanzahl. Beim Wagentyp H ist die Bauhöhe dem weltweiten Standard angepasst.

Berechnung der Lebensdauer

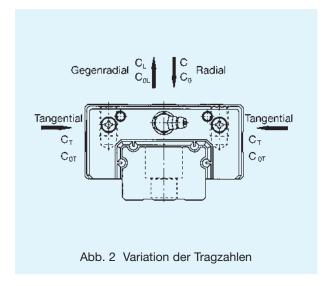
Die Lebensdauer der Linearführung SNR/SNS wird nach folgender Formel bestimmt:1)

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_C}\right)^3 \times 50$$

L: Nominelle Lebensdauer (km)
Die nominelle Lebensdauer L ist statistisch als die
Gesamtlaufstrecke definiert, die 90% einer größeren
Menge gleicher Führungen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor erste
Anzeichen einer Werkstoffermüdung auftreten.

7 WIZOIOTION ONTO TVOING CONTONING CONTO	
C: Dynamische Tragzahl	(N)
P _C : Berechnete Belastung	(N)
f _T : Temperaturfaktor	(siehe S. 44)
f _C : Kontaktfaktor	(siehe S. 44)
f _w : Belastungsfaktor	(siehe S. 44)

Aus der errechneten nominellen Lebensdauer L kann die Lebensdauer L_h (in Stunden) nach folgender Formel errechnet werden:


$$L_h = \frac{L \times 10^3}{2 \times \ell_S \times n_1 \times 60}$$

L _h : Zeitbezogene Lebensdauer	(h)
$\ell_{\rm S}$: Hublänge	(m)
n ₁ : Anzahl der Zyklen pro Minute	(min ⁻¹)

Variation der Tragzahlen

Tragzahlen

Linearführungen der Typen SNR und SNS können Belastungen aus radialer, gegenradialer und tangentialer Richtung aufnehmen. Die in den Maßtabellen weiter unten angegebenen Tragzahlen beziehen sich auf die Tragzahlen in radialer Richtung. Die Tragzahlen in gegenradialer und tangentialer Richtung werden nach Tabelle 1 bestimmt.

Tab. 1 Verhältnis der Tragzahlen bei den Typen SNR/SNS

Belastungs-	AS	NR .	SI	NS
richtungen	Dynamische Tragzahl	Statische Tragzahl	Dynamische Tragzahl	Statische Tragzahl
Radial	С	C ₀	С	C ₀
Gegenradial	C _L =0,64C	C _{0L} =0,64C ₀	C _L =0,84C	C _{0L} =0,84C ₀
Tangential	C _T =0,47C	$C_{0T} = 0.38C_0$	C _T =0,84C	C _{0T} =0,84C ₀

Äquivalente Belastung

Bei gleichzeitiger Gegenradial- und Tangentialbelastung wird die äquivalente Belastung beim Typ SNR wie folgt berechnet:

$$P_E = X \times P_L + Y \times P_T$$

P _E	:	Aquivalente Belastung (gegenradial oder tangential)	(N)
P_L	:	Gegenradialbelastung	(N)
P_T	:	Tangentialbelastung	(N)
X, Y	:	Äquivalenzfaktor	(siehe Tabelle 2)

Tab. 2 Äquivalenzfaktoren für den Typ SNR

	P _E	Χ	Υ
P _L /P _T ≥1	Äquivalente Gegenradialbelastung	1	1,678
P _L /P _T <1	Äquivalente Tangentialbelastung	0,596	1

Bei gleichzeitiger radialer und tangentialer bzw. gegenradialer und tangentialer Belastung des Führungswagens vom Typ SNS wird die äquivalente Belastung wie folgt berechnet:

(N)

(siehe Tabelle 3 und 4)

$$P_E = X \times P_R (P_L) + Y \times P_T$$

· radial

P_F : Äquivalente Belastung

· gegenradial

X, Y: Äquivalenzfaktor

	· tangential	
P_{R}	: Radialbelastung	(N)
$P_{l}^{(i)}$: Gegenradialbelastung	(N)
P_{T}^{-}	: Tangentialbelastung	(N)

Tab. 3 Äquivalenzfaktoren des Typs SNS (bei radialer und tangentialer Belastung)

	P _E	Х	Υ
P _R /P _T ≥1	Äquivalente Radialbelastung	1	0,935
P _R /P _T <1	Äquivalente Tangentialbelastung	1,070	1

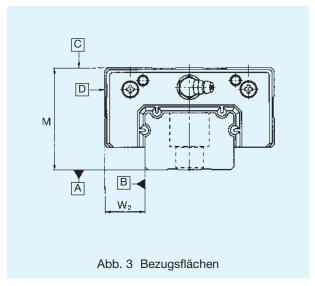
Tab. 4 Äquivalenzfaktoren des Typs SNS (bei gegenradialer und tangentialer Belastung)

	P _E	Х	Υ
P _L /P _T ≥1	Äquivalente Gegenradialbelastung	1	1,020
$P_L/P_T < 1$	Äquivalente Tangentialbelastung	0,986	1

Genauigkeitsklassen

Die Genauigkeit von THK Linearführungen wird, wie Tabelle 5 zeigt, nach der Laufparallelität, den Maßtoleranzen von Höhe und Breite sowie den Differenzen von Höhe und Breite zwischen den Wagenpaaren bei mehreren eingesetzten Führungswagen auf einer Schiene bzw. auf mehreren in einer Ebene parallel verlaufenden Schienen definiert.

Laufparallelität


Die Laufparallelität bezeichnet den Parallelitätsfehler zwischen den beiden Bezugsflächen von Führungsschiene und Führungswagen. Bei der Messung wird die Führungsschiene erst auf der Bezugsfläche festgeschraubt, dann wird der Führungswagen über der gesamten Schienenlänge verfahren.

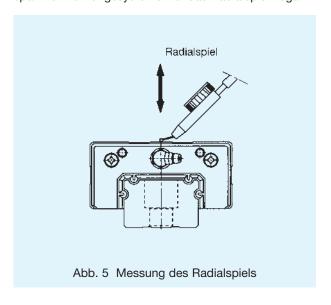
Abweichung der Höhe M zwischen Paaren

Die Abweichung der Höhe M zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Höhe M, die an jedem der in einer Ebene montierten Führungswagen gemessen worden sind.


Abweichung der Breite W₂ zwischen Paaren

Die Abweichung der Breite W_2 zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Breite W_2 , die an jedem der auf einer Schiene montierten Führungswagen gemessen worden sind.

Tab. 5 Genauigkeitsklassen


Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse	Super- präzisions Klasse	Ultra- präzisions Klasse		
	Kennzeichen	Normal	Н	Р	SP	UP		
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01		
SNR	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003		
SNS 25	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01		
30 35	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003		
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)			
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)			
	Kennzeichen	Normal	Н	Р	SP	UP		
	Maßtoleranz der Höhe M	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02		
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003		
SNR	Maßtoleranz der Breite W ₂	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02		
45 55	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02	0,01	0,007	0,005		
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)						
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)			
	Kennzeichen	Normal	Н	Р	SP	UP		
	Maßtoleranz der Höhe M	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03		
	Abweichung der Höhe M zwischen den Paaren	0,03	0,02	0,01	0,007	0,005		
SNR	Maßtoleranz der Breite W ₂	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03		
65	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,025	0,015	0,010	0,007		
	Laufparallelität der Bezugsfläche © zur Fläche A		Δ C	(nach Ab	b. 5)			
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)						

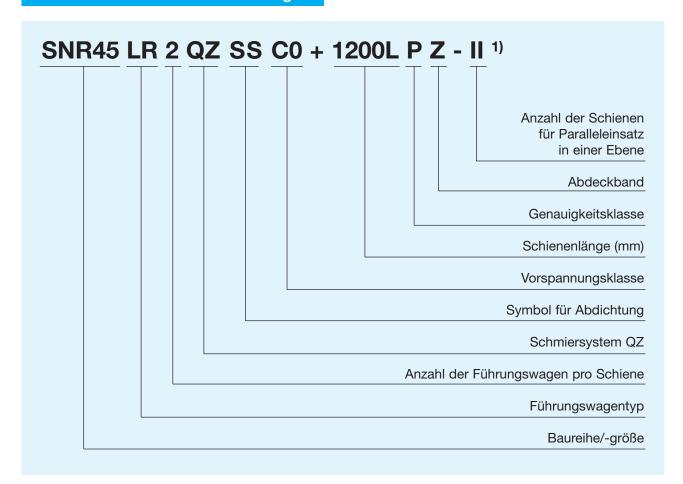
Vorspannung

Tabelle 6 gibt die Vorspannungsklassen mit dem entsprechenden Radialspiel für den Typ SNR/SNS an. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

Tab. 6 Vorspannung

SNR/SNS65

Einheit: µm Symbol Normal Leichte Mittlere Vorspannung Vorspannung Baugröße C1 C₀ -3 ~-6 6~- 9 SNR/SNS25 0 ~- 3 SNR/SNS30 0 ~- 4 8 ~-12 0 ~- 4 **-4** ∼**-** 8 8~-12 SNR/SNS35 **-5** ∼**-10** 0 ~- 5 -10 ~−15 SNR/SNS45 SNR/SNS55 $0 \sim -6$ $-6 \sim -11$ -11 ~-16

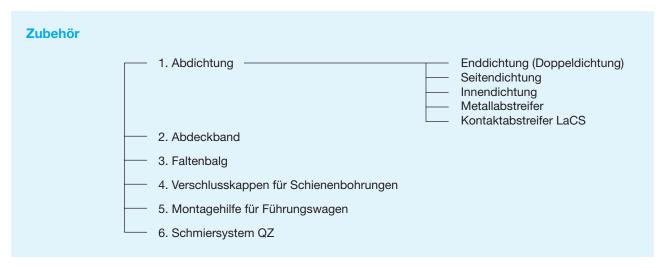

Anm.: Das Normalspiel wird nicht bezeichnet. Wird leichte Vorspannung C1 oder mittlere Vorspannung C0 gewünscht, muß das entsprechende Symbol in der Bestellbezeichnung angegeben werden (siehe "Aufbau der Bestellbezeichnung").

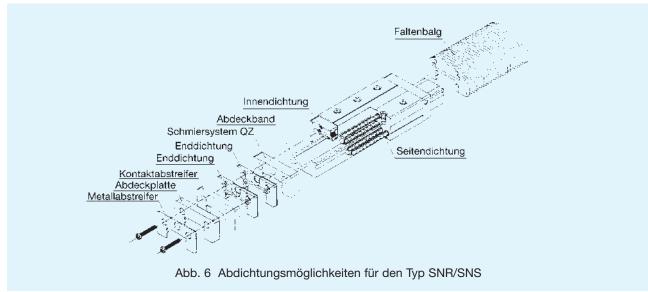
 $-8 \sim -14$

 $-14 \sim -20$

0 ~- 8

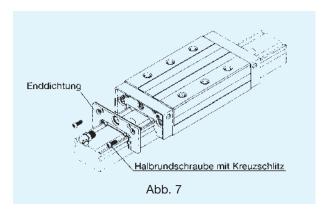
Aufbau der Bestellbezeichnung



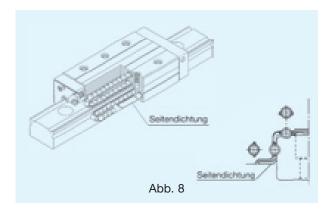

Das Zeichen «II» bezeichnet hier die geplante Montageanordnung zweier parallel verlaufender Führungsschienen.

Zubehör

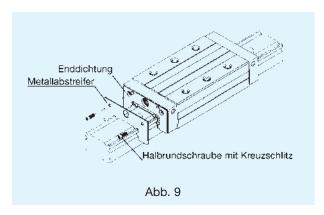
Staubpartikel und andere Fremdstoffe sowie das Eindringen von Wasser verursachen bei Linearführungssystemen außerordentlichen Verschleiß und eine Verkürzung der Lebensdauer. Daher muß schon bei der Auswahl des Führungssystems eine wirksame Abdichtung oder eine Abdeckung entsprechend der Umgebungsbedingungen ausgewählt werden. Das reichhaltige Zubehörprogramm von THK bietet hierfür optimale Lösungsmöglichkeiten an.



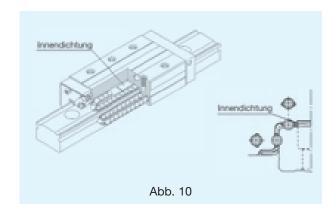
1. Abdichtung


Enddichtung (Doppeldichtung)

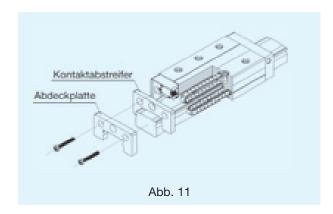
Mit den beidseitig am Führungswagen standardmäßig befestigten Enddichtungen wird ein Eindringen von Fremdstoffen und Wasser von der Schiene in den Wagen verhindert. Doppeldichtungen verstärken diesen Schutz.


Seitendichtung

Die Seitendichtung verhindert das Eindringen von Staub und Wasser über die seitliche Wagenunterseite. Zusätzlich wird der Schmierstoff vor dem Ausdringen zurückgehalten.


Metallabstreifer (kontaktlos)

Der Metallabstreifer schützt gegen heiße Späne und andere vergleichsweise größere Fremdpartikel, die an der Schiene haften.


Innendichtung

Innendichtungen schützen effektiv das Wageninnere vor Staub und anderen Fremdstoffen. Dazu wird der Schmierstoff in den Kugelumläufen zurückgehalten.

Lamellen-Kontaktabstreifer LaCS

Im Vergleich zum Metallabstreifer liegt der Kontaktabstreifer LaCS eng an der Schiene an und schützt so das Wageninnere selbst vor kleinsten Fremdpartikeln (siehe S. 364). Zulässige Einsatztemperatur: -20 ~ +80°C.

Tab. 7 Verschiebewiderstand mit LaCS¹⁾ Einheit: N

Baugröße	Verschiebewiderstand
SNR/SNS 25	8
SNR/SNS 30	14
SNR/SNS 35	14
SNR/SNS 45	16
SNR/SNS 55	20
SNR/SNS 65	25

¹⁾ Der Verschiebewiderstand gilt nur für einen Wagen mit beidseitigem LaCS.

Zur maximalen Geschwindigkeit fragen Sie THK.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu die Tabellen 9 und 10 mit der entsprechenden Länge L des Führungswagens.

Tab. 8 Kennzeichen für Abdichtung

Symbol	Abdichtungszubehör
UU	Mit beidseitigen Enddichtungen
SS	Mit End-, Seiten- und Innendichtungen
DD	Mit Doppel-, Seiten- und Innendichtungen
ZZ	Mit End-, Seiten- und Innendichtungen sowie Metallabstreifern
KK	Mit Doppel-, Seiten- und Innendichtungen sowie Metallabstreifern
SSHH	Mit End-, Seiten- und Innendichtungen sowie Kontaktabstreifern LaCS
DDHH	Mit Doppel-, Seiten- und Innendichtungen sowie Kontaktabstreifern LaCS
ZZHH	Mit End-, Seiten- und Innendichtungen sowie Metall- und Kontaktabstreifern LaCS
ККНН	Mit Doppel-, Seiten- und Innendichtungen sowie Metall- und Kontaktabstreifern LaCS

Dichtungswiderstand

Die Maximalwerte des Dichtungswiderstandes für einen Führungswagen mit Enddichtungen (SNR/SNS...SS) sind in Tabelle 11 aufgeführt. Bei diesen Werten sind die Dichtungen leicht befettet.

Tab. 11 Dichtungswiderstand

Einheit: N

Baugröße	Dichtungswiderstand
SNR/SNS25	8
SNR/SNS30	14
SNR/SNS35	14
SNR/SNS45	16
SNR/SNS55	20
SNR/SNS65	25

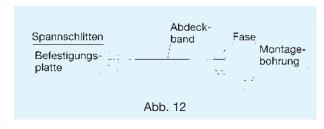
Tab. 9 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör

Einheit: mm

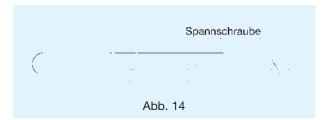
Baugröße	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
SNR/SNS 25R/C	83,6	83,6	91,2	90	97,6	100,1	107,7	102,5	110,1
SNR/SNS 25LR/LC	102,8	102,8	110,4	109,2	116,8	119,3	126,9	121,7	129,3
SNR/SNS 30R/C	98	98	107,8	105,2	115	118,5	128,3	120,9	130,7
SNR/SNS 30LR/LC	120,5	120,5	130,3	127,7	137,5	141	150,8	143,4	153,2
SNR/SNS 35R/C	110,3	110,3	120,5	118,1	128,3	131,1	141,3	133,5	143,7
SNR/SNS 35LR/LC	135,8	135,8	146	143,6	153,8	156,6	166,8	159	169,2
SNR/SNS 45R/C	139	139	149,2	147,6	157,8	163,2	173,4	166,4	176,6
SNR/SNS 45LR/LC	171,8	171,8	182	180,4	190,6	196	206,2	199,2	209,4
SNR/SNS 55R/C	163,3	163,3	173,5	171,9	182,1	187,8	198	191	201,2
SNR/SNS 55LR/LC	200,5	200,5	210,71	209,1	219,3	225	235,2	228,2	238,4
SNR/SNS 65R/C	186,4	186,4	197	195	205,6	214,3	224,9	217,5	228,1
SNR/SNS 65LR/LC	246,4	246,4	257	255	265,6	274,3	284,9	277,5	288,1

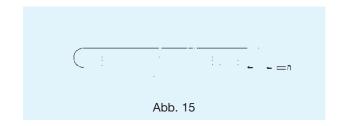
Tab. 10 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör

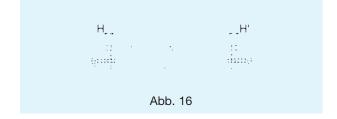
Baugröße	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
SNR/SNS 35RH/CH	110,3	110,3	120,5	118,1	128,3	131,1	141,3	133,5	143,7
SNR/SNS 35LRH/LCH	135,8	135,8	146	143,6	153,8	156,6	166,8	159	169,2
SNR/SNS 45RH/CH	139	139	149,2	147,6	157,8	163,2	173,4	166,4	176,6
SNR/SNS 45LRH/LCH	171,8	171,8	182	180,4	190,6	196	206,2	199,2	209,4
SNR/SNS 55RH/CH	163,3	163,3	173,5	171,9	182,1	187,8	198	191	201,2
SNR/SNS 55LRH/LCH	200,5	200,5	210,7	209,1	219,3	225	235,2	228,2	238,4



2. Abdeckband


Für die Typen SNR und SNS sind Abdeckbänder aus dünnem Stahlblech (1.4301) erhältlich. Mit diesen Abdeckbändern wird das Eindringen von Spänen, Staub, Kühlflüssigkeit und sonstigen Fremdpartikeln über die Befestigungsbohrungen der Führungsschienen in den Führungswagen verhindert.

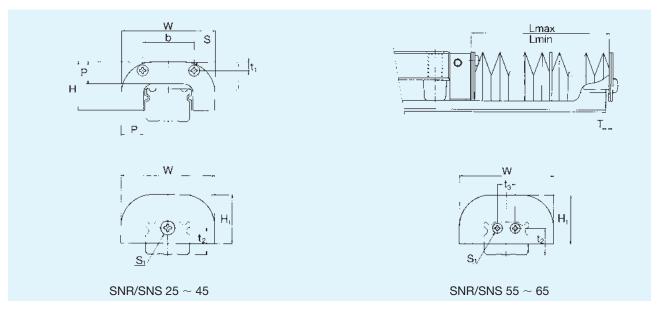

Montage des Abdeckbandes


- 1. Zuerst werden die Spannschlitten an beiden Enden des Abdeckbandes, wie in Abbildung 15 dargestellt, mittels der Befestigungsplatten und Senkkopfschrauben angebracht. Die angefasten Flächen der Spannschlitten müssen dabei nach außen zeigen.
- 2. Anschließend werden die Führungswagen von der Führungsschiene auf entsprechende Montagehilfen gezogen. Dann sind die Spannvorrichtungen mittels Innensechskantschrauben an beiden Schienenenden zu befestigen.
- 3. Jetzt kann ein Spannschlitten in eine Spannvorrichtung eingeführt werden und mit einer Spannschraube provisorisch fixiert werden. Die Spannschraube sollte dabei nicht an der Spannvorrichtung überstehen.
- 4. Der zweite Spannschlitten wird ebenfalls auf die gleiche Weise provisorisch fixiert.
- 5. Über die beiden Spannschrauben wird nun eine passende Auflagespannung des Abdeckbandes eingestellt. Dabei sollte der Spalt zwischen Spannschlitten und Schienenende auf beiden Seiten möglichst gleich sein $(H \approx H')$.
- 6. Nach dem Einstellen einer geeigneten Auflagespannung können die Führungswagen von der Montageschiene wieder auf die Führungsschiene gezogen werden. Dabei ist unbedingt zu beachten, daß die Bezugsseiten von Schiene und Wagen gleich ausgerichtet sind.

Wichtig: • Die Führungswagen sind ohne großen Kraftaufwand auf die Montagehilfen zu ziehen, da sonst die Kugeln herausfallen könnten. Außerdem darf kein Schmutz in den Führungswagen gelangen. Montagehilfen aus Kunst-

stoff können Sie von THK beziehen.

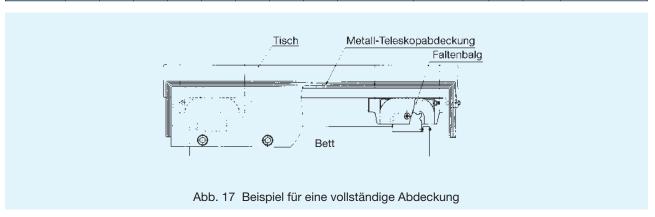
Das Abdeckband besteht aus dünnem Stahlblech (1.4301) und darf nicht geknickt werden.


3. Faltenbälge

Faltenbalg

Für die Linearführung Typ SNR/SNS ist als Zubehör ein einfacher Faltenbalg lieferbar. Der Faltenbalg empfiehlt sich besonders bei kritischen Umgebungsbedingungen (z.B. Spritzwassereinwirkung).

Metall-Teleskopabdeckung


Für einen effektiven Staubschutz empfehlen wir eine Metall-Teleskopabdeckung wie in Abb. 17.

Tab. 12 Faltenbalgabmessungen

Einheit: mm

	Abmessungen												
Baugröße	W	Н	H ₁	Р	b	t ₁	t ₂	t ₃	Befestigungsschraube am Wagen Schraubengröße S × Gewindelänge	Befestigungsschraube an Schiene Schraubengröße S ₁ × Gewindelänge	T	A Lmax Lmin	passende Führung
JSN25	50	25,5	24,5	10	26,6	4,6	13	-	M3 × 5	$M4 \times 4$	1,5	7	SNR/SNS25
JSN30	60	31	30	14	34	5,5	16,5	-	M4 × 8	$M4 \times 4$	1,5	9	SNR/SNS30
JSN35	70	35	34	15	36	6	20	I	M4 × 8	$M5 \times 4$	2	10	SNR/SNS35
JSN45	86	40,5	39,5	17	47	6,5	23,5	_	M5 × 10	M5 × 4	2	10	SNR/SNS45
JSN55	100	49	48	19,5	54	10	30,6	18	M5 × 10	$M5 \times 4$	2	13	SNR/SNS55
JSN65	126	60	59	22	64	13,5	36,1	20	M6 × 12	M6 × 5	3,2	13	SNR/SNS65

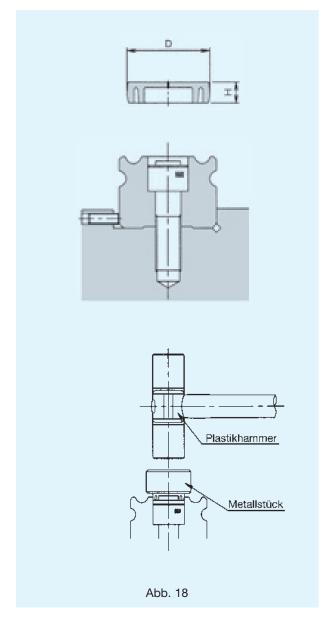
Bestellbezeichnung für Faltenbälge

4. Verschlusskappen

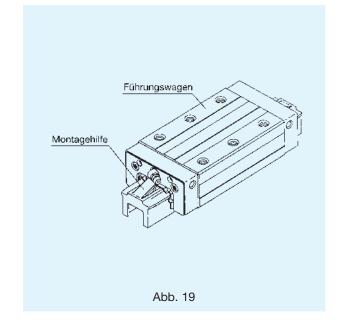
Verschlusskappe Typ C

Späne und andere Fremdstoffe können sich in den Befestigungsbohrungen der Schienen sammeln und darüber in die Führungswagen gelangen. Dagegen können spezielle Verschlusskappen bündig zur Schienenoberfläche eingebaut werden.

Die Verschlusskappen des Typs C bestehen aus einem verschleißfesten und gegen Öl widerstandsfähigen Kunststoff und sind ab Lager lieferbar (siehe Tab. 13).

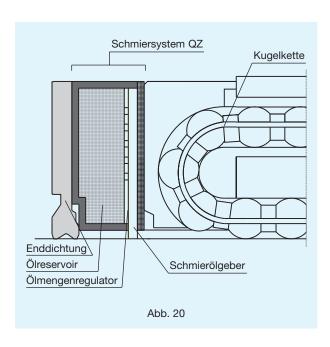

Die Verschlusskappen sind so in die Befestigungsbohrungen einzusetzen, daß sie bündig mit der Schienenoberfläche abschließen (siehe Abb. 18).

Speziell für den Einsatz in Werkzeugmaschinen bieten sich außerdem Verschlusskappen aus Aluminium oder Messing an.


Einheit: mm

		Abmes	sungen	
Тур	Schraube	D	Н	Baugröße
C 5	M 5	9,8	2,4	SNR/SNS25
C 6	M 6	11,4	2,7	SNR/SNS30
C 8	M 8	14,4	3,7	SNR/SNS35
C 12	M 12	20,5	4,7	SNR/SNS45
C 14	M 14	23,5	5,7	SNR/SNS55
C 16	M 16	26,5	5,7	SNR/SNS65

5. Montagehilfe


Die Typen SNR/SNS haben integrierte Kugelketten, die das Herausfallen der Kugeln beim Abziehen des Wagens von der Schiene verhindern. Wenn die Führungswagen vorgespannt sind, empfiehlt es sich aber, die Montagehilfe von 고대부 zu nehmen.

6. Schmiersystem QZ für Linearführung SNR/SNS

Siehe hierzu auch S. 354.

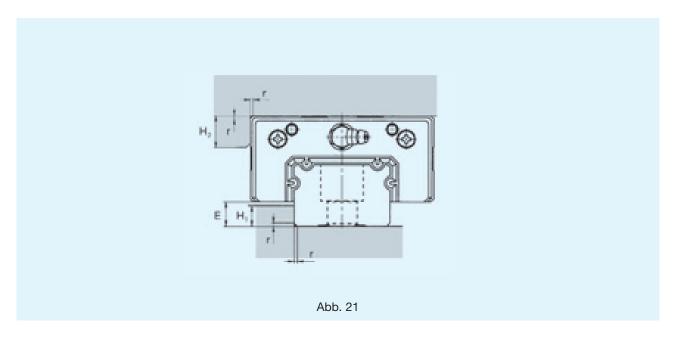
Tab. 14 Länge des Führungswagens mit beidseitiger Abdichtung und QZ

Einheit: mm

Baugröße	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	QZDDHH	QZZZHH	QZKKHH
SNR/SNS 25R/C	105,2	105,2	112,8	110,9	118,5	122,5	130,1	124,9	132,5
SNR/SNS 25LR/LC	124,4	124,4	132	130,1	137,7	141,7	149,3	144,1	151,7
SNR/SNS 30R/C	121,2	121,2	131	126,9	136,7	141,7	151,5	144,1	153,9
SNR/SNS 30LR/LC	143,7	143,7	153,5	149,4	159,2	164,2	174	166,6	176,4
SNR/SNS 35R/C	142,7	142,7	152,9	149,5	159,7	164,3	174,5	166,7	176,9
SNR/SNS 35LR/LC	168,2	168,2	178,4	175	185,2	189,8	200	192,2	202,4
SNR/SNS 45R/C	171,4	171,4	181,6	179	189,2	196,4	206,6	199,6	209,8
SNR/SNS 45LR/LC	204,2	204,2	214,4	211,8	222	229,2	239,4	232,4	242,6
SNR/SNS 55R/C	204,6	204,6	214,8	213,2	223,4	231	241,2	234,2	244,4
SNR/SNS 55LR/LC	241,8	241,8	252	250,4	260,6	268,2	278,4	271,4	281,6
SNR/SNS 65R/C	227,7	227,7	238,3	236,3	246,9	257,5	268,1	260,7	271,3
SNR/SNS 65LR/LC	287,7	287,7	298,3	296,3	306,9	317,5	328,1	320,7	331,3

Tab. 15 Länge des Führungswagens mit beidseitiger Abdichtung und QZ

Baugröße	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	QZDDHH	QZZZHH	QZKKHH
SNR/SNS 35RH/CH	142,7	142,7	152,9	149,5	159,7	164,3	174,5	166,7	176,9
SNR/SNS 35LRH/LCH	168,2	168,2	178,4	175	185,2	189,8	200	192,2	202,4
SNR/SNS 45RH/CH	171,4	171,4	181,6	179	189,2	196,4	206,6	199,6	209,8
SNR/SNS 45LRH/LCH	204,2	204,2	214,4	211,8	222	229,2	239,4	232,4	242,6
SNR/SNS 55RH/CH	204,6	204,6	214,8	213,2	223,4	231	241,2	234,2	244,4
SNR/SNS 55LRH/LCH	241,8	241,8	252	250,4	260,6	268,2	278,4	271,4	281,6



Montagehinweise

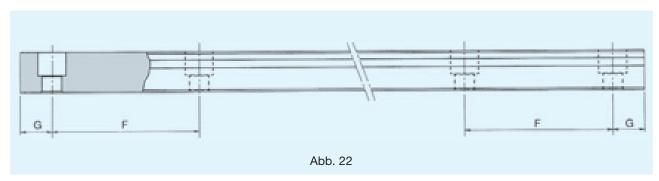
Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 16 angegeben. Die Ausrundungen an den Schultern müssen

dabei so gefertigt sein, daß Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 16 angegebenen Maximalradien.

Tab. 16 Schulterhöhen und Ausrundungen

Baugröße	Ausrundungs- radius	Schulterhöhe für Führungsschiene	Schulterhöhe für Führungswagen	
J	r _(max.)	H ₁	H ₂	Е
SNR/SNS25	0,5	5	5	5,5
SNR/SNS30	1,0	5	5	7
SNR/SNS35	1,0	6	6	9
SNR/SNS45	1,0	8	8	11,5
SNR/SNS55	1,5	10	10	14
SNR/SNS65	1,5	10	10	15


Standard- und Maximallängen der Führungsschienen

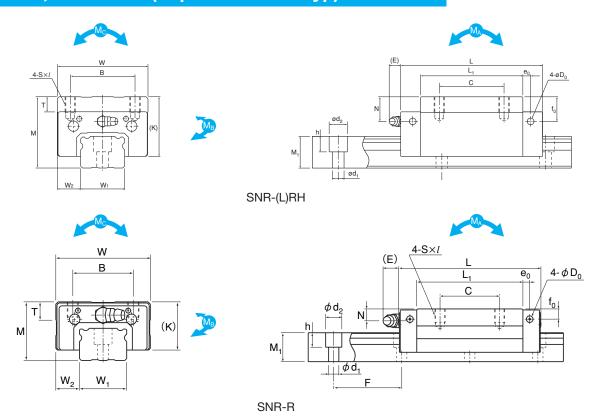
Die Standard- und Maximallängen der Führungsschienen für die Linearführung SNR/SNS sind in Tabelle 17 angegeben. Bei Schienenlängen größer als die angegebenen Maximallängen werden die Führungsschienen in mehreren Teilstücken als Stoßversion geliefert.

Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zur Instabilität, mit der Folge, daß die Endgenauigkeit be-

einträchtigt werden kann. Sollte jedoch ein anderes Maß als das G-Maß verwendet werden, muß das Maß G und dessen Lage definiert sein.

Werden zwei oder mehr Teilstücke eines Schienenstranges bestellt, ist die Gesamt-Schienenlänge anzugeben. Bei Führungsschienen, die als Stoßversion geliefert werden, werden die Stoßstellen der Schienen paßgenau erodiert und die Schienenenden selbst mit einer Fase versehen.

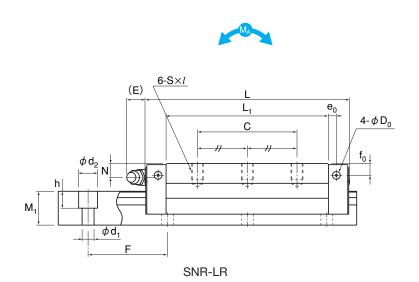
Tab. 17 Standard- und Maximallängen der Führungsschienen


Einheit: mm

Baugröße	SNR/SNS25	SNR/SNS30	SNR/SNS35	SNR/SNS45	SNR/SNS55	SNR/SNS65
Standard- länge der Führungs- schiene (L ₀)	230 270 350 390 470 510 590 630 710 750 830 950 990 1070 1110 1190 1230 1310 1350 1430 1470 1550 1590 1710 1830 1950 2070 2190 2310 2430 2470	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620
F	40	80	80	105	120	150
G	15	20	20	22,5	30	35
Maximallänge	2500	3000	3000	3090	3060	3000

Anm.: Die Maximallängen variieren je nach Genauigkeitsklasse. Sind keine gestoßenen Führungsschienen für Überlängen einsetzbar, wenden Sie sich bitte an THK.

SNR-R, SNR-RH (Schwerlasttyp) SNR-LR, SNR-LRH (Superschwerlasttyp)

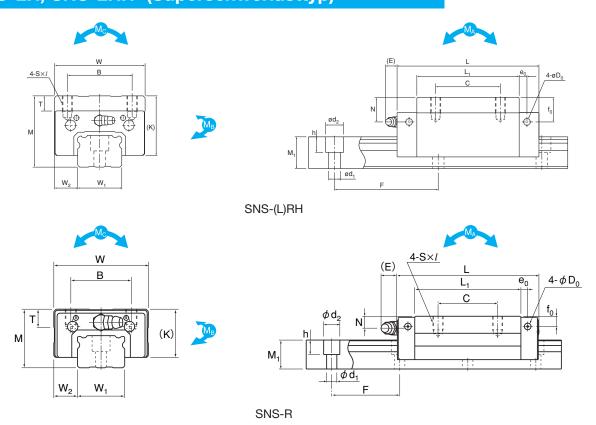


D 110 4)		Haupt-				P	Abmess	ungen	Führun	gswage	en			
Baugröße 1)		nessur	٠		ı		1 1				ı	ı		
			Länge	_				_				_		_
	М	W	L	В	С	$S imes \ell$	L ₁	Т	K	N	f ₀	Е	e ₀	D_0
SNR25R	31	50	83,6	32	35	M6×8	62,4	9,7	25,5	7	6	12	4	3,9
SNR25LR	31	30	102,8	52	50	IVIOAO	81,6	3,1	20,0	,		12	-	5,5
SNR30R	38	60	98	40	40	M8×10	72,1	9,7	31	7	7	12	G E	2.0
SNR30LR	30	60	120,5	40	60	IVIO × IU	94,6	9,7)।	1	/	12	6,5	3,9
SNR35R	44	70	110,3	50	50	M8×12	79	44.7	٥٢	8	8	12	6	
SNR35LR	44	/0	135,8	50	72	1V18×12	104,5	11,7	35	8	8	12	0	5,2
SNR35RH		70	110,3	-	50	Movdo	79	44.7	40	10	40	40	_	г о
SNR35LRH	55	70	135,8	50	72	M8×12	104,5	11,7	46	19	19	12	6	5,2
SNR45R		86	139	60	60	M40V47	105	447	40.4	10	_	4.0	0.5	
SNR45LR	52	86	171,8	60	80	M10×17	137,8	14,7	40,4	10	8	16	8,5	5,2
SNR45RH	70	86	139	60	60	MtOV47	105	447	FO 4	00	00	10	0.5	F 0
SNR45LRH	70	80	171,8	60	80	M10×17	137,8	14,7	58,4	28	26	16	8,5	5,2
SNR55R	00	100	163,3	0.5	75	Maosao	123,6	477	40	4.4	40	4.0	10	г о
SNR55LR	63	100	200,5	65	95	M12×18	160,8	17,7	49	11	10	16	10	5,2
SNR55RH	00	100	163,3	7.5	75	Manyan	123,6	477	00	00	0.7	10	10	- C
SNR55LRH	80	100	200,5	75	95	M12×18	160,8	17,7	66	28	27	16	10	5,2
SNR65R	7.5	100	186,4	70	70	Macyco	143,6	04.0	00	10	4.5	4.0	0	0.0
SNR65LR	75	126	246,4	76	110	M16×20	203,6	21,6	60	16	15	16	9	8,2

¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 153.

²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Bei Einsatz von seitlichen Abschmiernippeln wenden sie sich bitte an THK.

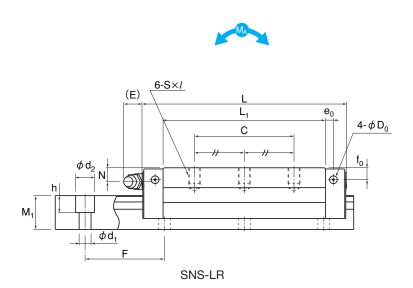
	Abme	essunç	gen Fü	hrungs	sschiene ³⁾	Trag	ızahl		Zul. st	at. Mor	nente ⁴⁾	ı	Gev	vicht
Schmiernippel ²⁾	Breite 0 W ₁ -0,05	W ₂	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C₀ [kN]		1 _A 2 Wagen [kNm]		1 _B 2 Wagen [kNm]	M _C 1 Wagen [kNm]	Wagen [kg]	Schiene [kg/m]
B—M6F	25	12,5	17	40	6×9,5×8,5	48 57	79 101	0,682 1,14		0,427 0,708	2,25 3,4	0,868 1,1	0,4 0,6	3,1
B—M6F	28	16	21	80	7×11×9	68 81	106 138	1,04 1,81		0,653 1,12	3,56 5,47	1,3 1,69	0,7 0,9	4,4
B—M6F	34	18	24,5	80	9×14×12	90 108	144 188	1,61 2,68	8,64 13,6	1,01 1,67	5,39 8,49	2,13 2,79	1,0 1,4	6,2
B—M6F	34	18	24,5	80	9×14×12	90 108	144 188	1,61 2,68	8,64 13,6	1,01 1,67	5,39 8,49	2,13 2,79	1,5 2,0	6,2
B—PT1/8	45	20,5	29	105	14×20×17	132 161	216 288	3,29 5,4	16 26,2	2,03 3,35	9,86 16,2	4,21 5,64	1,9 2,4	9,8
B—PT1/8	45	20,5	29	105	14×20×17	132 161	216 288	3,29 5,4	16 26,2	2,03 3,35	9,86 16,2	4,21 5,64	3,2 4,1	9,8
B—PT1/8	53	23,5	36,5	120	16×23×20	177 214	292 383	4,99 8,41	25,7 40,9	3,11 5,22	16 25,3	6,69 8,78	3,1 4,0	14,5
B—PT1/8	53	23,5	36,5	120	16×23×20	177 214	292 383	4,99 8,41	25,7 40,9	3,11 5,22	16 25,3	6,69 8,78	4,7 6,2	14,5
B—PT1/8	63	31,5	43	150	18×26×22	260 340	409 572	8,05 15,9	41,2 74,5	5,03 9,84	25,6	11 15,4	5,6 8,0	20,5


³⁾ Siehe Seite 161 für Standardschienenlängen.

⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

SNS-R, SNS-RH (Schwerlasttyp) SNS-LR, SNS-LRH (Superschwerlasttyp)

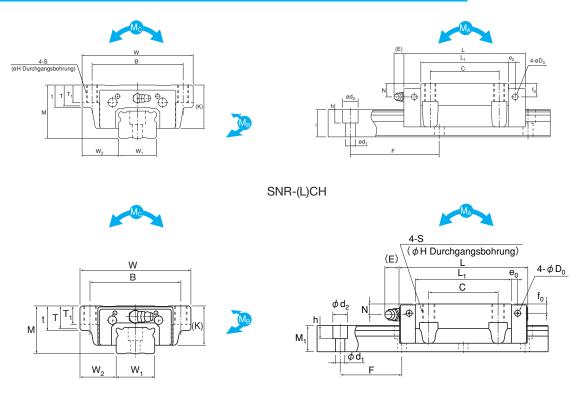


Baugröße 1)		Haupt nessur				F	Abmess	ungen	Führun	gswage	en			
	Höhe	Breite	Länge											
	M	W	L	В	С	S×ℓ	L ₁	Т	K	N	f ₀	Е	e ₀	D_0
SNS25R SNS25LR	31	50	83,6 102,8	32	35 50	M6×8	62,4 81,6	9,7	25,5	7	6	12	4	3,9
SNS30R SNS30LR	38	60	98 120,5	40	40 60	M8×10	72,1 94,6	9,7	31	7	7	12	6,5	3,9
SNS35R SNS35LR	44	70	110,3 135,8	50	50 72	M8×12	79 104,5	11,7	35	8	8	12	6	5,2
SNS35RH SNS35LRH	55	70	110,3 135,8	50	50 72	M8×12	79 104,5	11,7	46	19	19	12	6	5,2
SNS45R SNS45LR	52	86	139 171,8	60	60 80	M10×17	105 137,8	14,7	40,4	10	8	16	8,5	5,2
SNS45RH SNS45LRH	70	86	139 171,8	60	60 80	M10×17	105 137,8	14,7	58,4	28	26	16	8,5	5,2
SNS55R SNS55LR	63	100	163,3 200,5	65	75 95	M12×18	123,6 160,8	17,7	49	11	10	16	10	5,2
SNS55RH SNS55LRH	80	100	163,3 200,5	75	75 95	M12×18	123,6 160,8	17,7	66	28	27	16	10	5,2
SNS65R SNS65LR	75	126	186,4 246,4	76	70 110	M16×20	143,6 203,6	21,6	60	16	15	16	9	8,2

¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 153.

²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Bei Einsatz von seitlichen Abschmiernippeln wenden sie sich bitte an THK.

0 1 1 10	Abme	essunç	gen Fü	hrungs	sschiene ³⁾	Trag	ızahl		Zul. st	at. Mor	nente ⁴⁾		Gev	vicht
Schmiernippel ²⁾	Breite 0 W ₁ -0,05	W ₂	Höhe M₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C₀ [kN]		1 _A 2 Wagen [kNm]		1 _B 2 Wagen [kNm]	M _C 1 Wagen [kNm]	Wagen [kg]	Schiene [kg/m]
B—M6F	25	12,5	17	40	6×9,5×8,5	37 44	61 78	0,544 0,915	'	,		0,648 0,826		3,1
B—M6F	28	16	21	80	7×11×9	52 62	81 106	0,821 1,43	4,5 7,04	0,761 1,33	4,17 6,53	0,962 1,25	0,7 0,9	4,4
B—M6F	34	18	24,5	80	9×14×12	69 83	110 144	1,27 2,11	6,81 10,7	1,17 1,96	6,32 10	1,56 2,05	1,0 1,4	6,2
B—M6F	34	18	24,5	80	9×14×12	69 83	110 144	1,27 2,11	6,81 10,7	1,17 1,96	6,32 10	1,56 2,05	1,5 2,0	6,2
B—PT1/8	45	20,5	29	105	14×20×17	101 123	167 222	2,63 4,29	12,7 20,8	2,43 3,97	11,8 19,3	3,15 4,21	1,9 2,4	9,8
B—PT1/8	45	20,5	29	105	14×20×17	101 123	167 222	2,63 4,29	12,7 20,8	2,43 3,97	11,8 19,3	3,15 4,21	3,2 4,1	9,8
B—PT1/8	53	23,5	36,5	120	16×23×20	136 164	225 295	3,96 6,66	20,4 32,4	3,67 6,17	19 30	4,97 6,52	3,1 4,0	14,5
B—PT1/8	53	23,5	36,5	120	16×23×20	136 164	225 295	3,96 6,66	20,4 32,4	3,67 6,17	19 30	4,97 6,52	4,7 6,2	14,5
B—PT1/8	63	31,5	43	150	18×26×22	199 261	315 441	6,4 12,7	32,7 59,1	5,93 11,7	30,3 54,8	8,24 11,5	5,6 8,0	20,5

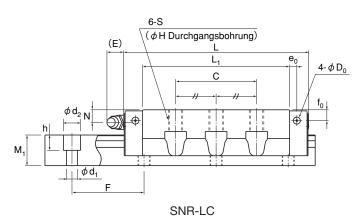

³⁾ Siehe Seite 161 für Standardschienenlängen.

⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

SNR-C, SNR-CH (Schwerlasttyp) SNR-LC, SNR-LCH (Superschwerlasttyp)

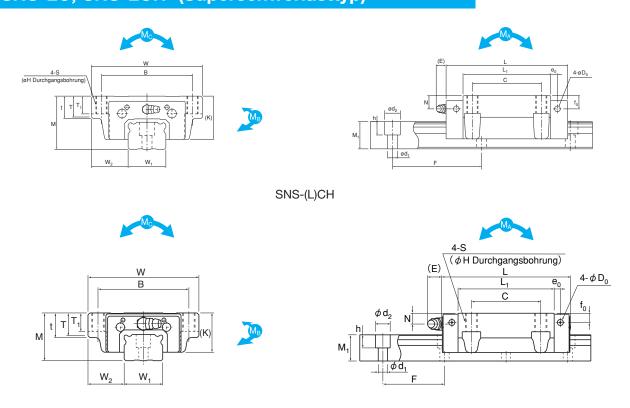
SNR-C


Baugröße 1)		Haupt- nessur					A	bmessı	unger	n Führ	ungsv	vagen					
	Höhe	Breite	Länge														
	М	W	L	В	С	S	Н	L ₁	t	Т	T ₁	K	N	f ₀	Е	e ₀	D_0
SNR25C SNR25LC	31	72	83,6 102,8	59	45	M 8	6,8	62,4 81,6	16	14,8	12	25,5	7	6	12	4	3,9
SNR30C SNR30LC	38	90	98 120,5	72	52	M10	8,5	72,1 94,6	18	16,8	14	31	7	7	12	6,5	3,9
SNR35C SNR35LC	44	100	110,3 135,8	82	62	M10	8,5	79 104,5	20	18,8	16	35	8	8	12	6	5,2
SNR35CH SNR35LCH	48	100	110,3 135,8	82	62	M10	8,5	79 104,5	20	18,8	16	39	12	12	12	6	5,2
SNR45C SNR45LC	52	120	139 171,8	100	80	M12	10,5	105 137,8	22	20,5	20	40,4	10	8	16	8,5	5,2
SNR45CH SNR45LCH	60	120	139 171,8	100	80	M12	10,5	105 137,8	22	20,5	20	48,4	18	16	16	8,5	5,2
SNR55C SNR55LC	63	140	163,3 200,5	116	95	M14	12,5	123,6 160,8	24	22,5	22	49	11	10	16	10	5,2
SNR55CH SNR55LCH	70	140	163,3 200,5	116	95	M14	12,5	123,6 160,8	24	22,5	22	56	18	17	16	10	5,2
SNR65C SNR65LC	75	170	186,4 246,4	142	110	M16	14,5	143,6 203,6	28	26	25	60	16	15	16	9	8,2

¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 153.

²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Bei Einsatz von seitlichen Abschmiernippeln wenden sie sich bitte an THK.

	Abme	essun	gen Fü	hrungs	sschiene ³⁾	Trag	ızahl		Zul. st	at. Mor	mente ⁴⁾		Gewicht	
Schmiernippel ²⁾	Breite 0 W ₁ -0,05	W ₂	Höhe M₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C₀ [kN]	N 1 Wagen [kNm]	i i		1 _B 2 Wagen [kNm]	M _C 1 Wagen [kNm]	_	Schiene [kg/m]
B—M6F	25	23,5	17	40	6×9,5×8,5	48 57	79 101	0,682 1,14		0,427 0,708	2,25 3,4	0,868 1,1	0,6 0,8	3,1
B—M6F	28	31	21	80	7×11×9	68 81	106 138	1,04 1,81	5,7 8,89	0,653 1,12	3,56 5,47	1,3 1,69	1,0 1,3	4,4
B—M6F	34	33	24,5	80	9×14×12	90 108	144 188	1,61 2,68	8,64 13,6	1,01 1,67	5,39 8,49	2,13 2,79	1,5 2,0	6,2
B—M6F	34	33	24,5	80	9×14×12	90 108	144 188	1,61 2,68	8,64 13,6	1,01 1,67	5,39 8,49	2,13 2,79	1,7 2,2	6,2
B—PT1/8	45	37,5	29	105	14×20×17	132 161	216 288	3,29 5,4	16 26,2	2,03 3,35	9,86 16,2	4,21 5,64	2,3 3,4	9,8
B—PT1/8	45	37,5	29	105	14×20×17	132 161	216 288	3,29 5,4	16 26,2	2,03 3,35	9,86 16,2	4,21 5,64	3,0 4,2	9,8
B—PT1/8	53	43,5	36,5	120	16×23×20	177 214	292 383	4,99 8,41	25,7 40,9	3,11 5,22	16 25,3	6,69 8,78	3,6 5,5	14,5
B—PT1/8	53	43,5	36,5	120	16×23×20	177 214	292 383	4,99 8,41	25,7 40,9	3,11 5,22	16 25,3	6,69 8,78	4,4 6,5	14,5
B—PT1/8	63	53,5	43	150	18×26×22	260 340	409 572	8,05 15,9	41,2 74,5	5,03 9,84	25,6 45,7	11 15,4	7,4 10,5	20,5

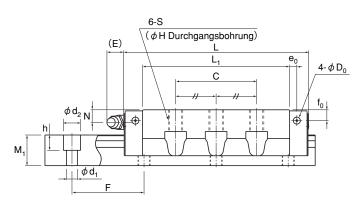

³⁾ Siehe Seite 161 für Standardschienenlängen.

⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

SNS-C, SNS-CH (Schwerlasttyp) SNS-LC, SNS-LCH (Superschwerlasttyp)

SNS-C


Baugröße 1)		Haupt- nessur					А	bmessı	unger	n Führ	ungsv	vagen					
	Höhe	Breite	Länge														
	М	W	L	В	С	S	Н	L ₁	t	Т	T ₁	K	Ν	f ₀	Е	e ₀	D ₀
SNS25C SNS25LC	31	72	83,6 102,8	59	45	M 8	6,8	62,4 81,6	16	14,8	12	25,5	7	6	12	4	3,9
SNS30C SNS30LC	38	90	98 120,5	72	52	M10	8,5	72,1 94,6	18	16,8	14	31	7	7	12	6,5	3,9
SNS35C SNS35LC	44	100	110,3 135,8	82	62	M10	8,5	79 104,5	20	18,8	16	35	8	8	12	6	5,2
SNS35CH SNS35LCH	48	100	110,3 135,8	82	62	M10	8,5	79 104,5	20	18,8	16	39	12	12	12	6	5,2
SNS45C SNS45LC	52	120	139 171,8	100	80	M12	10,5	105 137,8	22	20,5	20	40,4	10	8	16	8,5	5,2
SNS45CH SNS45LCH	60	120	139 171,8	100	80	M12	10,5	105 137,8	22	20,5	20	48,4	18	16	16	8,5	5,2
SNS55C SNS55LC	63	140	163,3 200,5	116	95	M14	12,5	123,6 160,8	24	22,5	22	49	11	10	16	10	5,2
SNS55CH SNS55LCH	70	140	163,3 200,5	116	95	M14	12,5	123,6 160,8	24	22,5	22	56	18	17	16	10	5,2
SNS65C SNS65LC	75	170	186,4 246,4	142	110	M16	14,5	143,6 203,6	28	26	25	60	16	15	16	9	8,2

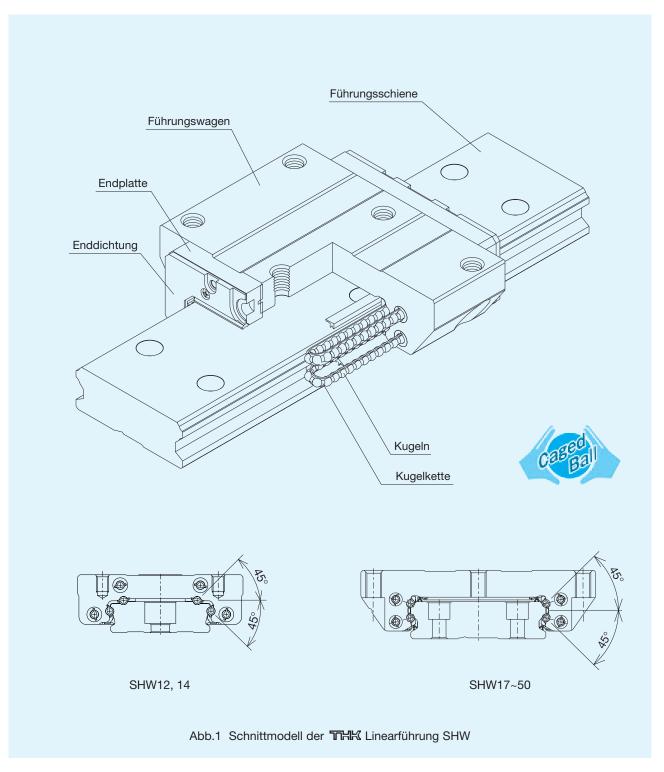
¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 153.

²⁾ Die Bohrungen für seitliche Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Bei Einsatz von seitlichen Abschmiernippeln wenden sie sich bitte an THK.

SNS-LC

	Abme	essung	gen Fü	hrungs	sschiene ³⁾	Trag	zahl		Zul. st	at. Mor	mente ⁴⁾		Gev	vicht
Schmiernippel ²⁾	Breite 0 W ₁ -0,05	W ₂	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C₀ [kN]	1 Wagen	, and		1 _B 2 Wagen [kNm]	M _C 1 Wagen [kNm]	Wagen [kg]	Schiene [kg/m]
	*** -0,05	-	'		-12	37	61	0,544				0,648		
B—M6F	25	23,5	17	40	6×9,5×8,5	44	78	0,915		0,847		0,826	- , -	3,1
5	00	0.1	01	00	7.44.40	52	81	0,821	4,5	0,761	4,17	0,962	1,0	4.4
B—M6F	28	31	21	80	7×11×9	62	106	1,43	7,04	1,33	6,53	1,25	1,3	4,4
B—M6F	34	33	24.5	80	9×14×12	69	110	1,27	6,81	1,17	6,32	1,56	1,5	6,2
B—IVIOF	34	33	24,3	80	9×14×12	83	144	2,11	10,7	1,96	10	2,05	2,0	0,2
B—M6F	34	33	24.5	80	9×14×12	69	110	1,27	6,81	1,17	6,32	1,56	1,7	6,2
D—IVIOF	04	00	24,5	00	3/14/12	83	144	2,11	10,7	1,96	10	2,05	2,2	0,2
B—PT1/8	45	37,5	29	105	14×20×17	101	167	2,63	12,7	2,43	11,8	3,15	2,3	9,8
		0.,0				123	222	4,29	20,8	3,97	19,3	4,21	3,4	0,0
B—PT1/8	45	37,5	29	105	14×20×17	101	167	2,63	12,7	2,43	11,8	3,15	3,0	9,8
		, ,				123	222	4,29	20,8	3,97	19,3	4,21	4,2	
B—PT1/8	53	43,5	36,5	120	16×23×20	136	225	3,96	20,4	3,67	19	4,97	3,6	14,5
		Í	,			164	295	6,66	32,4	6,17	30	6,52	5,5	
B—PT1/8	53	43,5	36,5	120	16×23×20	136	225	3,96	20,4	3,67	19	4,97	4,4	14,5
						164	295	6,66	32,4	6,17	30	6,52	6,5	
B—PT1/8	63	53,5	43	150	18×26×22	199	315	6,4	32,7	5,93	30,3	8,24	7,4	20,5
						261	441	12,7	59,1	11,7	54,8	11,5	10,5	

³⁾ Siehe Seite 161 für Standardschienenlängen.


⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

THK Linearführung SHW

Die breite und besonders niedrig bauende Linearführung mit Kugelkette

Die THK Linearführung SHW mit Kugelkette ist eine besonders niedrig bauende und hochsteife Linearführung mit breiter Schiene. Sie ist optimal für den Einsatz in platzsparenden Konstruktionen oder als Einzelschienensystem. Die Original-Kugelkette von THK garantiert dabei einen geräuscharmen und nahezu wartungsfreien Betrieb auch im hohen Geschwindigkeitsbereich.

Besonderheiten des Typs SHW

Breiter Schienenquerschnitt - niedriger Schwerpunkt

Die Linearführung SHW ist in den Anschlussmaßen kompatibel zu der Linearführung HRW. Aufgrund des breiten Schienenquerschnitts besitzt die Schiene ein hohes axiales Flächenträgheitsmoment mit einer ausgezeichneten tangentialen Steifigkeit. Daher eignet sich dieser Typ ideal für Einzelschienenanwendungen bei engen Einbauverhältnissen, oder bei Anwendungen, die aufgrund hoher Momentbelastung eine sehr steife Linearführung benötigen.

Gleiche Tragzahlen in allen Hauptrichtungen

Die vier Kugelreihen sind jeweils in einem Kontaktwinkel von 45° angeordnet, so dass der Führungswagen gleiche Tragzahlen in radialer, gegenradialer und tangentialer Richtung besitzt. Daher ist dieser Führungstyp in jeder Einbaulage für die unterschiedlichsten Anwendungen einsetzbar.

Kompensation von Montageungenauigkeiten

Aufgrund der X-Anordnung der vier Kreisbogenlaufrillen mit 2-Punkt-Kontakt kann der Führungswagen auch unter Vorspannung Montagefehler kompensieren und präzise, leichtgängige Linearbewegungen ausführen.

Geringe Partikelfreisetzung

Die Kugelkette verhindert die gegenseitige Kontaktreibung der Kugeln. Auf diese Weise verringert sie den Verschleiß und verlängert die Schmierfähigkeit des Schmiermittels durch eine geringe Partikelemission. Darüber hinaus gewährleistet der rostbeständige Stahl eine hohe Korrosionsbeständigkeit.

■ Höhere dynamische Tragzahlen

Die Kugelkette hält die Linearführung SHW nicht nur auf lange Zeit wartungsfrei, sondern sie erhöht auch erheblich die Lebensdauer des Führungssystems. Daher ergeben sich als logische Folgerung höhere dynamische Tragzahlen für Linearführungen mit Kugelkette als für konventionelle Linearführungen (siehe dazu Tab. 1 und 2).

Baugröße	dynamische Tragzahl C [kN]
SHW17CAM	7,65
SHW21CA	8,24
SHW27CA	16,0
SHW35CA	35,5
SHW50CA	70,2

Tab. 1 Dyn. Tragzahlen für den Typ SHW mit Kugelkette

Baugröße	dynamische Tragzahl C [kN]
HRW17CA(M)	4,31
HRW21CA(M)	6,18
HRW27CA(M)	11,5
HRW35CA(M)	27,2
HRW50CA	50,2

Tab. 2 Dyn. Tragzahlen für den Typ HRW (ohne Kugelkette)

Messung der Geräuschentwicklung

Im Führungswagen sind die Kugel-Rückführkanäle mit Kunststoff beschichtet, so dass metallische Geräusche bei der Rückführung der Kugeln entfallen. Zusätzlich hält die Kugelkette die Kugeln auf Abstand, so dass die einzelnen Kugeln nicht mehr aneinanderreiben und -stoßen können. Aufgrund dieser Maßnahmen nehmen selbst bei hoher Geschwindigkeit weder die Geräusch- noch die Wärmeentwicklung wesentlich zu.

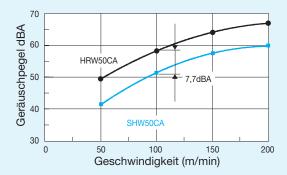


Abb. 2 Geräuschentwicklung beim Typ SHW50CA und Typ HRW50CA

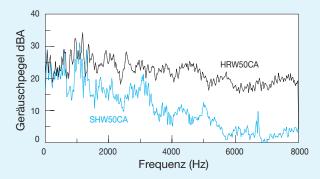


Abb. 3 Geräuschentwicklung beim Typ SHW50CA und Typ HRW50CA (Vorschub 50 m/min)

Messung des Verschiebewiderstands

Die Kugelkette führt die Kugeln kontrolliert in Reihe. In der Übergangszone von dem unbelasteten in den belasteten Bereich werden die Kugeln - ohne dass sie sich aufstauen können - gleichmäßig geführt, so dass ein hervorragendes Laufverhalten mit konstantem Verschiebewiderstand in jeder Einbaulage ermöglicht wird.

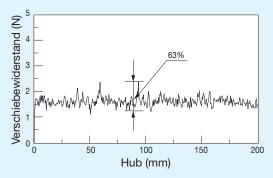


Abb. 4 Verschiebewiderstand beim Typ HRW50CA (Vorschub: 10 mm/s)

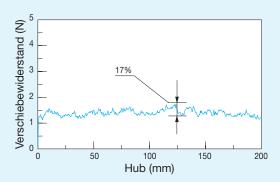


Abb. 5 Verschiebewiderstand beim Typ SHW50CA (Vorschub: 10 mm/s)

Messung der Partikelfreisetzung

Die Kugelkette hält das Schmiermittel permanent bei den Wälzkörpern und verhindert so dessen Freisetzung.

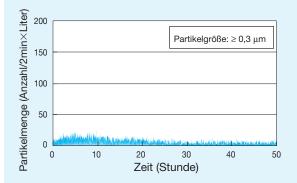
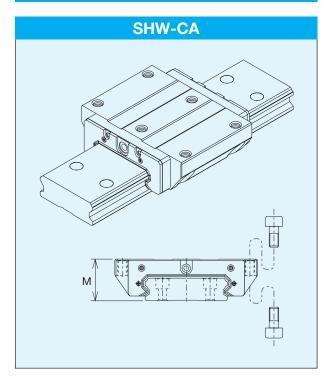
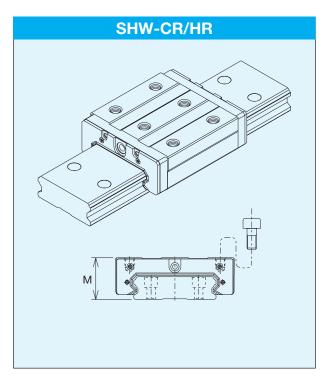




Abb. 6 Partikelfreisetzung beim Typ SHW21CA beim Einsatz von THK AFF-Schmierfett

Typenübersicht

Der Flanschwagen besitzt mit seinem breiten und niedrigen Profil gleiche Tragzahlen in allen Hauptrichtungen. Eine Montage ist bei diesem Typ von oben oder unten möglich.

Der Blockwagen ist schmaler gebaut als der des Typs SHW-CA. Die Gewindebohrungen ermöglichen die einfache Befestigung an der Anschlusskonstruktion.

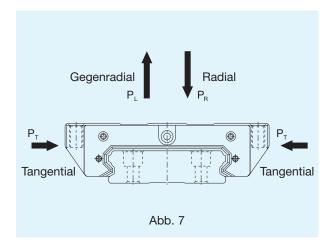
Die kleinste Baugröße der SHW-Baureihe, die SHW12, umfasst neben dem normalen Führungswagen SHW-CR noch den Schwerlastwagen SHW-HR mit mehr tragenden Kugeln.

Berechnung der Lebensdauer

Die Lebensdauer der Linearführung SHW wird nach folgender Formel bestimmt:

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P}\right)^3 \times 50$$

L: Nominelle Lebensdauer (km)
Die nominelle Lebensdauer L ist statistisch als die
Gesamtlaufstrecke definiert, die 90% einer größeren
Menge gleicher Führungen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor
erste Anzeichen einer Werkstoffermüdung auftreten.


	OTOGO / WILLOTOTTOTT OTTOT	Tromotomormadang dantiotom
С	: Dynamische Tragzahl	(N)
Р	: Berechnete Belastung	(N)
f_T	: Temperaturfaktor	(siehe S. 44)
f	: Kontaktfaktor	(siehe S. 44)
fω	: Belastungsfaktor	(siehe S. 44)

Aus der errechneten nominellen Lebensdauer L kann die Lebensdauer L_h (in Stunden) nach folgender Formel errechnet werden:

$$L_h = \frac{L \times 10^3}{2 \times \ell_s \times n_1 \times 60}$$

L _h : zeitbezogene Lebensdauer	(h)
$\ell_{\rm s}$: Hublänge	(mm)
n ₁ : Anzahl der Zyklen pro Minute	(min ⁻¹)

Tragzahlen

Tragzahlen

Der Typ SHW besitzt gleiche Tragzahlen in allen Hauptrichtungen (radial, gegenradial und tangential). Die Tragzahlen sind in den Maßtabellen angegebenen.

Äquivalente Belastung

Bei gleichzeitiger Belastung des Führungswagens aus unterschiedlichen Richtungen wird die äquivalente Belastung wie folgt berechnet:

$$P_{\mathsf{E}} = |P_{\mathsf{R}} - P_{\mathsf{L}}| + P_{\mathsf{T}}$$

P_F : Äquivalente Belastung (N)

- Radial

- Gegenradial

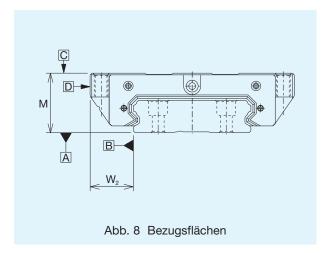
- Tangential

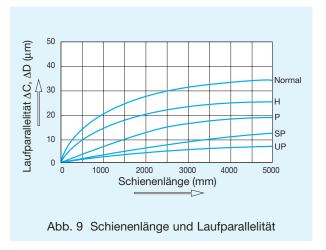
 $\begin{array}{lll} P_{R} & : & Radialbelastung & (N) \\ P_{L} & : & Gegenradialbelastung & (N) \\ P_{T} & : & Tangentialbelastung & (N) \end{array}$

Genauigkeitsklassen

Die Genauigkeit von THK Linearführungen wird, wie Tabelle 3 zeigt, nach der Laufparallelität, den Maßtoleranzen von Höhe und Breite sowie den Differenzen von Höhe und Breite zwischen den Wagenpaaren bei mehreren eingesetzten Führungswagen auf einer Schiene bzw. auf mehreren in einer Ebene parallel verlaufenden Schienen definiert.

Laufparallelität


Die Laufparallelität bezeichnet den Parallelitätsfehler zwischen den beiden Bezugsflächen von Führungsschiene und Führungswagen. Bei der Messung wird die Führungsschiene erst auf der Bezugsfläche festgeschraubt, dann wird der Führungswagen über der gesamten Schienenlänge verfahren.


Abweichung der Höhe M zwischen Paaren

Die Abweichung der Höhe M zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Höhe M, die an jedem der in einer Ebene montierten Führungswagen gemessen worden sind.

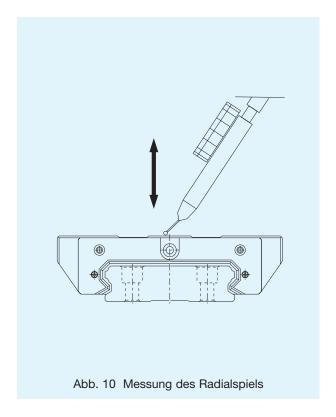
Abweichung der Breite W₂ zwischen Paaren

Die Abweichung der Breite W_2 zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Breite W_2 , die an jedem der auf einer Schiene montierten Führungswagen gemessen worden sind.

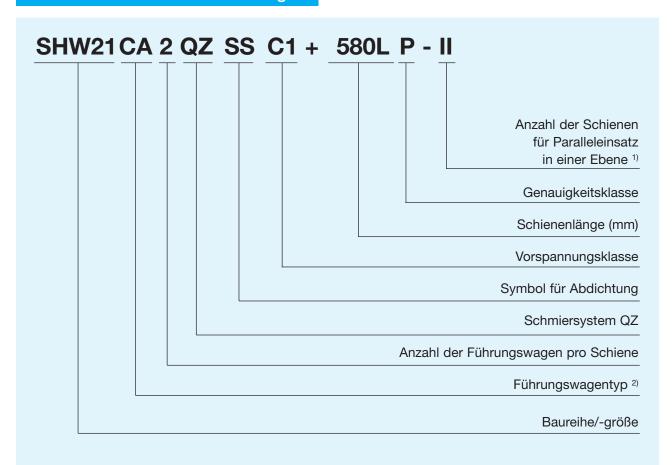
Tab. 3 Genauigkeitsklassen

iab.	3 Genauigkeitsk	kiassen			Einne	eit: mm			
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse	Super- präzisions Klasse	Ultra- präzisions Klasse			
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,08	±0,04	±0,02	±0,01	_			
-	Abweichung der Höhe M zwischen den Paaren	0,015	0,007	0,005	0,003	_			
SHW 12	Maßtoleranz der Breite W ₂	±0,05	±0,025	±0,015	±0,010	_			
14	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	0,007	0,005	_			
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔC(nach Abb	o. 13)				
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD (nach Abb	o. 13)				
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008			
	Abweichung der Höhe M zwischen den Paaren	0,02	0,01	0,006	0,004	0,003			
SHW 17	Maßtoleranz der Breite W ₂	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008			
21	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	0,006	0,004	0,003			
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 13)							
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 13)							
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01			
	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003			
SHW 27	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01			
35	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003			
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔC(nach Abl	o. 13)				
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD (nach Abb	o. 13)				
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02			
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003			
SHW	Maßtoleranz der Breite W ₂	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02			
50	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02	0,01	0,007	0,005			
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔC(nach Abb	o. 13)				
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 13)							

Vorspannung


Tabelle 4 gibt die Vorspannungsklassen mit dem entsprechenden Radialspiel für den Typ SHW an. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

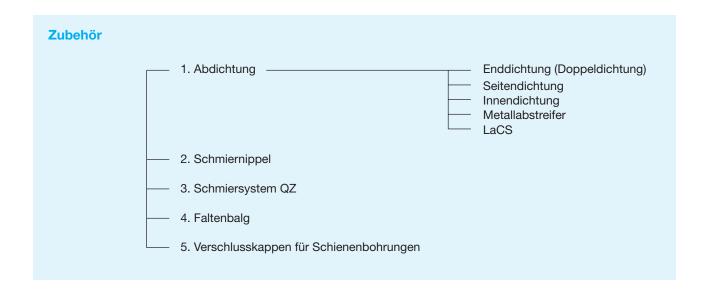
Tab. 4 Vorspannung

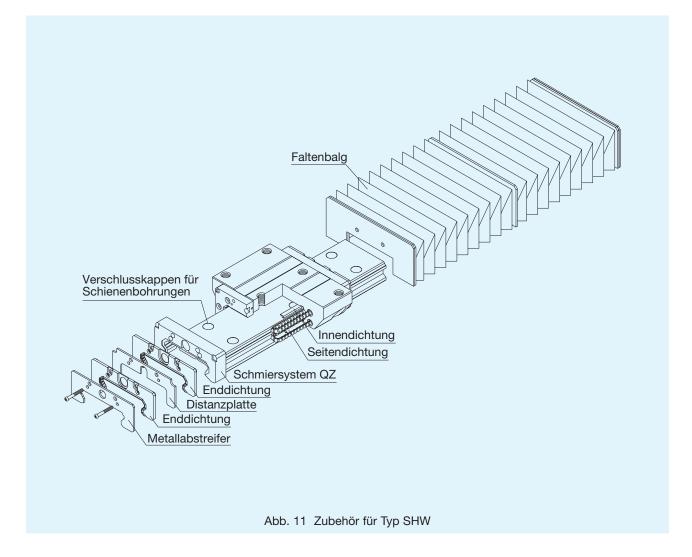

Einheit: µm

Symbol	Normal	Leichte Vorspannung	Mittlere Vorspannung
Baugröße	_	C1	C0
SHW12	− 1,5~ 0	- 4 ~ - 1	_
SHW14	- 5 ~ 0	- 5 ~ - 1	_
SHW17	- 5 ~ 0	- 7 ~ - 3	_
SHW21	- 4 ~ +2	- 8 ~ - 4	_
SHW27	- 5 ~ +2	-11 ~ - 5	_
SHW35	- 8 ~ +4	-18 ~ - 8	- 28 ~ - 18
SHW50	−10 ~ +5	− 24 ~ − 10	− 38 ~ − 24

Anm.: Das Normalspiel wird nicht bezeichnet. Wird leichte Vorspannung C1 oder mittlere Vorspannung C0 gewünscht, muss das entsprechende Symbol in der Bestellbezeichnung angegeben werden (siehe "Aufbau der Bestellbezeichnung").

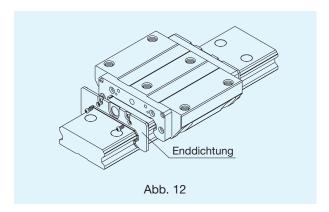
Aufbau der Bestellbezeichnung


¹⁾ Das Zeichen «II» bezeichnet hier die geplante Montageanordnung zweier parallel verlaufender Führungsschienen.

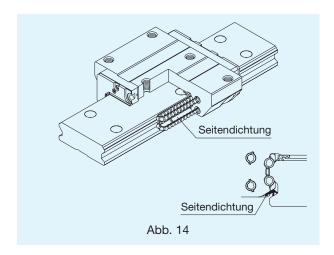

²⁾ Wünschen Sie Schmiernippel am Führungswagen, geben Sie dies bitte bei der Bestellung zusätzlich an. Für die Baugrößen 12 und 14 geben Sie bitte "mit Schmierbohrung" an.

Zubehör

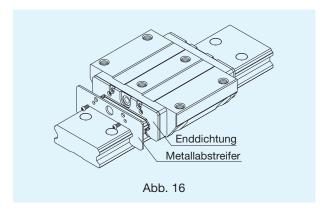
Staubpartikel und andere Fremdstoffe sowie das Eindringen von Wasser verursachen bei Linearführungen außerordentlichen Verschleiß und eine Verkürzung der Lebensdauer. Daher muss schon bei der Auswahl des Führungssystems eine wirksame Abdichtung oder eine Abdeckung entsprechend der Umgebungsbedingungen ausgewählt werden. Das reichhaltige Zubehörprogramm von THK bietet hierfür optimale Lösungsmöglichkeiten an.



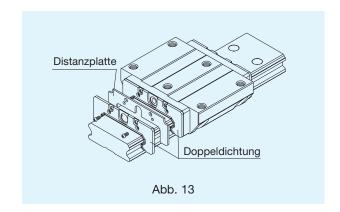
1. Abdichtungen


Enddichtung

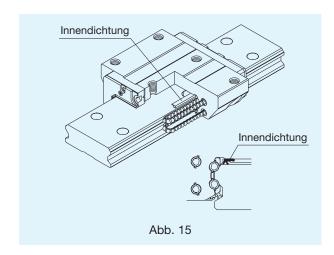
Mit den beidseitig am Führungswagen standardmäßig befestigten Enddichtungen wird ein Eindringen von Fremdstoffen von der Schiene in den Wagen verhindert und der Schmierstoff vor dem Ausdringen zurückgehalten.


Seitendichtung

Die Seitendichtung verhindert das Eindringen von Staub über die seitliche Wagenunterseite. Zusätzlich wird der Schmierstoff vor dem Ausdringen zurückgehalten.


Metallabstreifer (kontaktlos)

Der Metallabstreifer schützt gegen heiße Späne und andere vergleichsweise größere Fremdpartikel, die an der Schiene haften.


Doppeldichtung

Zur weiteren Verbesserung der Abdichtung erhöht die Doppeldichtung deutlich die Abdichtungswirkung im Vergleich zur Enddichtung.

Innendichtung

Innendichtungen schützen effektiv das Wageninnere vor Staub und anderen Fremdstoffen. Dazu wird der Schmierstoff in den Kugelumläufen zurückgehalten.

Lamellen-Kontaktabstreifer LaCS

Im Vergleich zum Metallabstreifer liegt der Kontaktabstreifer LaCS eng an der Schiene an und schützt so das Wageninnere selbst vor kleinsten Fremdpartikeln (siehe S. 364). Zulässige Einsatztemperatur: $-20 \sim +80^{\circ}$ C.

Tab. 5 Verschiebewiderstand mit LaCS¹⁾ Einheit: N

Baugröße	Verschiebewiderstand
SHW 21	3,9
SHW 27	6,5
SHW 35	13,0
SHW 50	19,5

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 7 mit der Angabe der Variation der Länge L des Führungswagens.

Tab. 6 Kennzeichen für Abdichtung

Symbol	Abdichtungszubehör
UU	Mit beidseitigen Enddichtungen
SS	Mit End-, Seiten- und Innendichtungen
DD	Mit Doppel-, Seiten- und Innendichtungen
ZZ	Mit End-, Seiten- und Innendichtungen sowie Metallabstreifern
KK	Mit Doppel-, Seiten- und Innendichtungen sowie Metallabstreifern
SSHH	Mit End-, Seiten- und Innendichtungen sowie Kontaktabstreifern LaCS
DDHH	Mit Doppel-, Seiten- und Innendichtungen sowie Kontaktabstreifern LaCS
ZZHH	Mit End-, Seiten- und Innendichtungen sowie Metall- und Kontaktabstreifern LaCS
KKHH	Mit Doppel-, Seiten- und Innendichtungen sowie Metall- und Kontaktabstreifern LaCS

Tab. 7 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör

Baugröße	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
SHW 12CAM/CRM	37	37	_	_	_	_	_	_	_
SHW 12HRM	50,4	50,4	_	_	_	_	_	_	
SHW 14CAM/CRM	45,5	45,5	_	_	_	_	_	_	
SHW 17CAM/CRM	51	51	54	53,4	56,4	_	_	_	
SHW 21CA/CR	59	59	64	63,2	68,2	75,6	80,6	77,2	82,2
SHW 27CA/CR	72,8	72,8	78,6	77,8	83,6	89,4	95,2	91,8	97,6
SHW 35CA/CR	107	107	114,4	112	119,4	129	136,4	131,4	138,8
SHW 50CA/CR	141	141	149,2	147,4	155,6	166	174,2	168,4	176,6

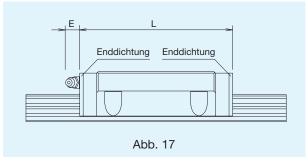
Dichtungswiderstand

Die Maximalwerte des Dichtungswiderstandes für einen Führungswagen mit Enddichtungen (SSR...UU/SS) sind in Tabelle 8 aufgeführt. Bei diesen Werten sind die Dichtungen leicht befettet.

Tab. 8 Dichtungswiderstand

Einheit: N

Baugröße	Dichtungswiderstand				
Baagrobe	UU	SS			
SHW12CA/CR	1,0	1,4			
SHW12HR	1,0	1,8			
SHW14	1,2	1,8			
SHW17	1,4	2,2			
SHW21	4,9	6,9			
SHW27	4,9	8,9			
SHW35	9,8	15,8			
SHW50	14,7	22,7			

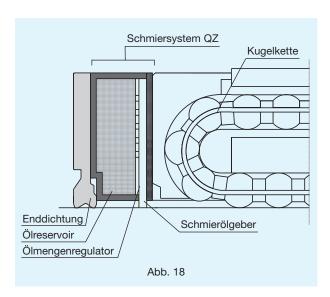

2. Schmiernippel

wartungsfrei. Um die Wartungsfreiheit weiterhin zu verbessern, kann das Schmiersystem QZ und/oder die Kontaktabstreifer LaCS am Führungswagen befestigt werden. Soll trotzdem eine regelmäßige Schmierung durchgeführt werden, sind Schmiernippel im Führungswagen einzusetzen. Dieses muß bei der Bestellung mit angegeben werden. Bei Montage von Schmiernippeln verlängert sich die Gesamtlänge um das Maß E (siehe Tab. 9).

Tab. 9 Verlängerung des Führungswagens mit Schmiernippel

Einheit: mm

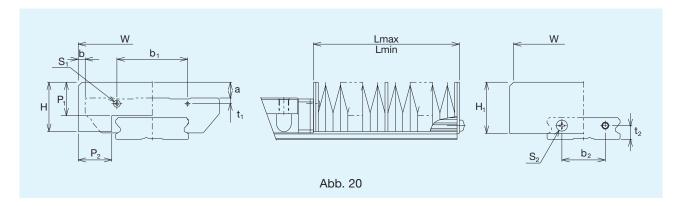
Baugröße	Е	Schmiernippel
SHW12	_	ø2,2 Bohrung
SHW14	_	ø2,2 Bohrung
SHW17	3,5	PB107
SHW21	4,4	PB1021B
SHW27	10,8	B-M6F
SHW35	10,2	B-M6F
SHW50	14,9	B-PT1/8



Anm.: Das Maß L ist in Tab. 5 und in den großen Maßtabellen weiter hinten angegeben.

3. Schmiersystem QZ für Linearführung SHW

Siehe hierzu auch S. 354.



Tab. 10Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör und QZEinheit:											
Baugröße	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	QZDDHH	QZZZHH	QZKKHH		
SHW12CAM/CRM	47	47	_	_	_	_	_	_			
SHW12HRM	60,4	60,4		_	-		_	_			
SHW14CAM/CRM	55,5	55,5		_			_	_			
SHW17CAM/CRM	63	63	66	65,4	68,4	_	_	_			
SHW21CA/CR	75	75	80	77,8	82,8	91,6	96,6	93,2	98,2		
SHW27CA/CR	92,8	92,8	98,6	96,4	102,2	109,4	115,2	111,8	117,6		
SHW35CA/CR	127	127	134,4	132	134,4	149	156,4	151,4	158,8		
SHW50CA/CR	161	161	169.2	167.4	175.6	186	194.2	188.4	196.6		

4. Faltenbalg

Die Abmessungen der Spezial-Faltenbälge für die Linearührung SHW sind in der nachfolgenden Tabelle angegeben. Bei Bestellung verwenden Sie bitte die unten angegebene Bestellbezeichnung.

Tab. 9 Abmessungen Faltenbalg Typ JSHW

Einheit: mm

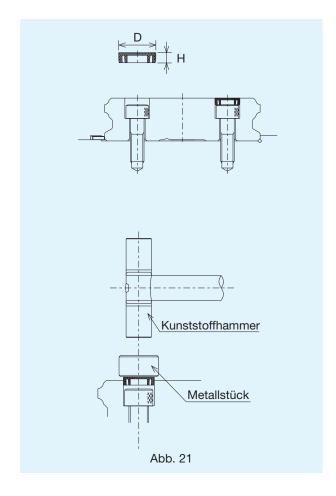
Baugröße		Hauptabmessungen										
										Führung		
	W	Н	H ₁	P ₁	P ₂	b ₁	t ₁	b ₂	t ₂			
JSHW17	68	22	23	17	15,4	39	2,6	18	6	SHW17		
JSHW21	75	25	26	17	17	35,8	2,9	22	7	SHW21		
JSHW27	85	33,5	33,5	20	20	25	3,5	20	10	SHW27		
JSHW35	120	35	35	20	20	75	7,5	40	13	SHW35		
JSHW50	164	42	42	20	20	89,4	14	50	16	SHW50		

	Befestigung				Α	
	Schraubengröße S	S imes Gewindelänge	а	I	0	
Baugröße				Тур	Тур	/ Lmax \
	S ₁	S ₂		CA	CR	L min
JSHW17	M 2 × 4	M 3 × 0,5 × 6	8	3,5	10,5	6
JSHW21	M 2 × 5	M 3 × 6	8	3,5	10,5	6
JSHW27	M 2,6 × 6	M 3 × 6	10	2,5	11,5	7
JSHW35	M 3 × 8	M 3 × 6	6	0	10	7
JSHW50	M 4 × 12	M 4 × 8	_	1	17	7

Länge ausgefahren

5. Verschlusskappen

Verschlusskappen Typ C

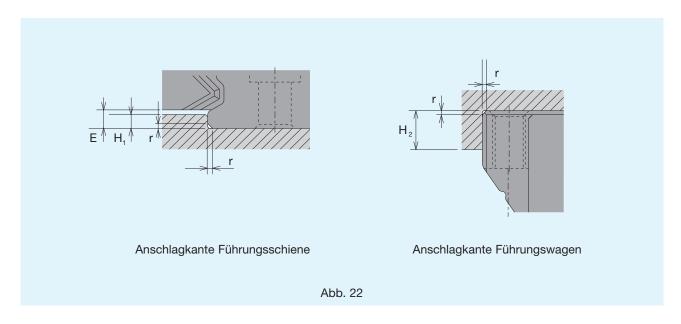

Späne und andere Fremdstoffe können sich in den Befestigungsbohrungen der Schienen sammeln und darüber in die Führungswagen gelangen. Dagegen können spezielle Verschlusskappen bündig zur Schienenoberfläche montiert werden.

Die Verschlusskappen des Typs C bestehen aus einem verschleißfesten und gegen Öl widerstandsfähigen Kunststoff und sind ab Lager für die Schienen-Befestigungsbohrungen für Innensechskantschrauben von M4 bis M8 lieferbar (siehe Tab. 10).

Die Verschlusskappen sind so in die Befestigungsbohrungen einzusetzen, dass sie bündig mit der Schienenoberfläche abschließen (siehe Abb. 21).

Tab. 10 Verschlusskappe Typ C Einheit: mm

			Hauptabm	nessungen
Baugröße	Тур	Schraube	D	Н
SHW12	C4	M4	7,8	1,0
SHW14	C4	M4	7,8	1,0
SHW17	C4	M4	7,8	1,0
SHW21	C4	M4	7,8	1,0
SHW27	C4	M4	7,8	1,0
SHW35	C6	M6	11,4	2,7
SHW50	C8	M8	14,4	3,7



Montagehinweise

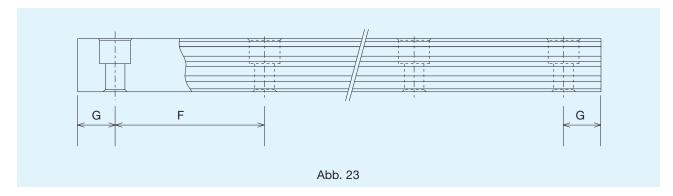
Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 11 angegeben. Die Ausrundungen an den Schultern müssen

dabei so gefertigt sein, dass Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 11 angegebenen Maximalradien.

Tab. 11 Schulterhöhen und Ausrundungen

	Ausrundungs-	Schulterhöhe	Schulterhöhe	
Baugröße	radius	für Führungsschiene	für Führungswagen	
	r _(max.)	H ₁	H ₂	Е
SHW12	0,5	1,5	4	2
SHW14	0,5	1,5	5	2
SHW17	0,4	2	4	2,5
SHW21	0,4	2,5	5	3
SHW27	0,4	2,5	5	3
SHW35	0,8	3,5	5	4
SHW50	0,8	3	6	3,4


Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungsschienen für die Linearführung SHW sind in Tabelle 12 angegeben. Bei Schienenlängen größer als die angegebenen Maximallängen werden die Führungsschienen in mehreren Teilstücken als Stoßversion geliefert.

Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zur Instabilität, mit der Folge, dass die Endgenauigkeit

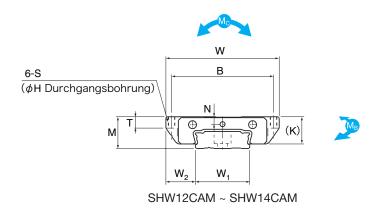
beeinträchtigt werden kann. Sollte jedoch ein anderes Maß als das G-Maß genommen werden, müssen das Maß G und dessen Lage definiert sein.

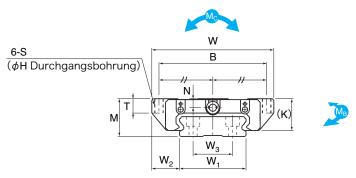
Werden zwei oder mehr Teilstücke eines Schienenstranges bestellt, ist die Gesamt-Schienenlänge anzugeben. Bei Führungsschienen, die als Stoßversion geliefert werden, werden die Stoßstellen der Schienen passgerecht erodiert und die Schienenenden selbst mit einer Fase versehen.

Tab. 12 Standard- und Maximallängen der Führungsschienen vom Typ SHW

Einheit: mm

Baugröße	SHW12	SHW14	SHW17	SHW21	SHW27	SHW35	SHW50
Standard- länge der Führungs- schiene	70 110 150 190 230 270 310 390 470	70 110 150 190 230 270 310 390 470 550 670	110 190 310 470 550	130 230 380 480 580 780	160 280 340 460 640 820	280 440 760 1000 1240 1560	280 440 760 1000 1240 1640 2040
F	40	40	40	50	60	80	80
G	15	15	15	15	20	20	20
Maximallänge	1000	1430	1800	1900	3000	3000	3000


Anm.: Die Maximallängen variieren je nach Genauigkeitsklasse. Sind keine gestoßenen Führungsschienen für Überlängen einsetzbar, wenden Sie sich bitte an THK.


Die Führungsschienen für die Baugrößen SHW12, 14 und 17 sind aus korrosionsbeständigem Stahl.

SHW-CA SHW-CAM

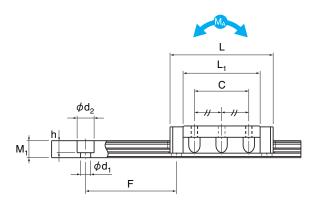
Flanschwagen

SHW17CAM, SHW21CA ~ SHW50CA

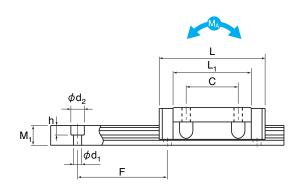
Baugröße ^{1),2)}	Haup	otabmessu	ıngen		Abmessungen Führungswagen							
	Höhe M	Breite W	Länge L	В	С	S	Н	L ₁	Т	K	position ³⁾	
SHW12CAM	12	40	37	35	18	М 3	2,5	27	4	10	2,8	
SHW14CAM	14	50	45,5	45	24	М 3	2,5	34	5	12	3,3	
SHW17CAM	17	60	51	53	26	M 4	3,3	38	6	14,5	4	
SHW21CA	21	68	59	60	29	M 5	4,4	43,6	8	17,7	5	
SHW27CA	27	80	72,8	70	40	M 6	5,3	56,6	10	23,5	6	
SHW35CA	35	120	107	107	60	M 8	6,8	83	14	31	7,6	
SHW50CA	50	162	141	144	80	M10	8,6	107	18	46	14	

¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 177.

²⁾ Bei den Typen mit dem Symbol M sind Führungswagen und -schiene sowie die Kugeln aus korrosionsbeständigem Stahl


³⁾ Die Bohrungen für Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Wenden Sie sich bitte an THH, wenn Sie Abschmiernippel einsetzen wollen.

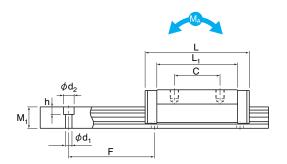
⁴⁾ Siehe Seite 185 für Standardschienenlängen.


⁵⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

SHW12CAM ~ SHW14CAM

SHW17CAM, SHW21CA ~ SHW50CA


Abmessungen Führungsschiene ⁴⁾						Trag	zahl		Zul. s	tat. Mon	nente ⁵⁾		Gewicht	
								N	∕ I _A	M _B		M _C		
Breite			Höhe	Teilung		С	C ₀	"	2 Wagen	1 Wagen	2 Wagen	1 Wagen	Wagen	Schiene
W ₁	W ₂	W ₃	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kg]	[kg/m]
18	11	_	6,6	40	4,5×7,5×5,3	4,31	5,66	0,0228	0,12	0,0228	0,12	0,0405	0,05	0,8
24	13		7,5	40	$4,5\times7,5\times5,3$	7,05	8,98	0,0466	0,236	0,0466	0,236	0,0904	0,10	1,23
33	13,5	18	8,6	40	4,5×7,5×5,3	7,65	10,18	0,0591	0,298	0,0591	0,298	0,164	0,15	1,9
37	15,5	22	11	50	4,5×7,5×5,3	8,24	12,8	0,0806	0,434	0,0806	0,434	0,229	0,24	2,9
42	19	24	15	60	4,5×7,5×5,3	16,0	22,7	0,187	0,949	0,187	0,949	0,455	0,47	4,5
69	25,5	40	19	80	7×11×9	35,5	49,2	0,603	3	0,603	3	1,63	1,4	9,6
90	36	60	24	80	9×14×12	70,2	91,4	1,46	7,37	1,46	7,37	3,97	3,7	15

SHW-CR SHW-CRM SHW-HRM

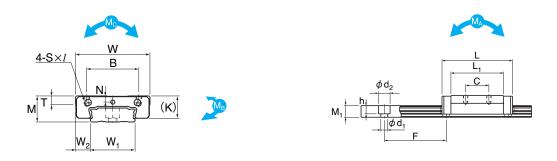
Schmalwagen

SHW27~50CR

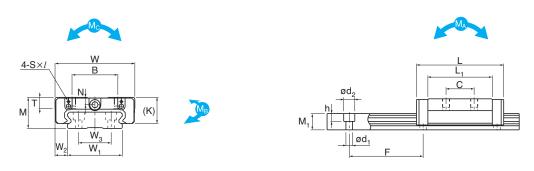
Baugröße ^{1),2)}	Haup	otabmessu	ngen			Abmessun	gen Führu	ngswagen		Schmier- nippel-
	Höhe M	Breite W	Länge L	В	С	S×ℓ	L ₁	Т	K	position ³⁾
SHW12CRM	12	30	37	21	12	M3×3,5	27	4	10	2,8
SHW12HRM	12	30	50,4	21	24	M3×3,5	40,4	4	10	2,8
SHW14CRM	14	40	45,5	28	15	M3×4	34	5	12	3,3
SHW17CRM	17	50	51	29	15	M4×5	38	6	14,5	4
SHW21CR	21	54	59	31	19	M5×6	43,6	8	17,7	5
SHW27CR	27	62	72,8	46	32	M6×6	56,6	10	23,5	6
SHW35CR	35	100	107	76	50	M8×8	83	14	31	7,6
SHW50CR	50	130	141	100	65	M10×15	107	18	46	14

¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe Seite 177.

²⁾ Bei den Typen mit dem Symbol M sind Führungswagen und -schiene sowie die Kugeln aus korrosionsbeständigem Stahl


³⁾ Die Bohrungen für Abschmiernippel sind nicht durchgängig ausgeführt, damit keine Fremdstoffe ins Wageninnere gelangen können. Wenden Sie sich bitte an '고비사, wenn Sie Abschmiernippel einsetzen wollen.

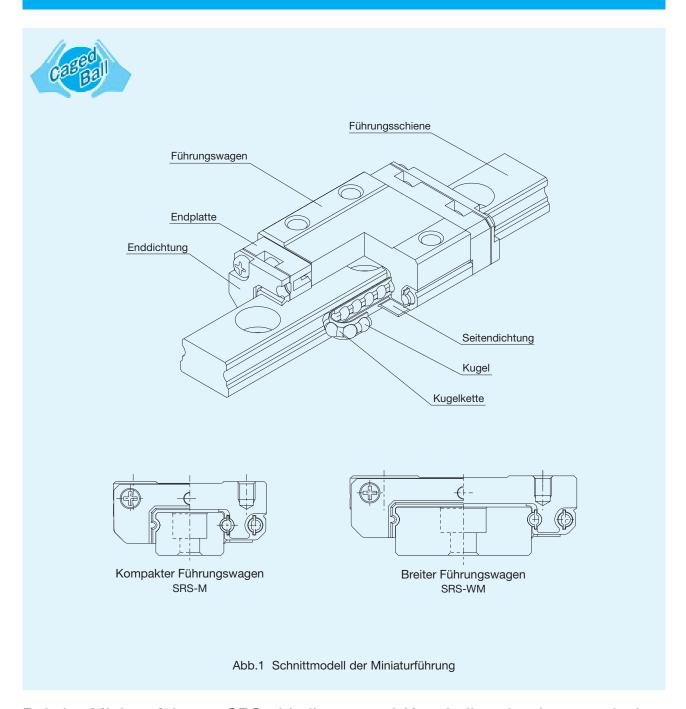
⁴⁾ Siehe Seite 185 für Standardschienenlängen.


⁵⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

SHW12HRM, SHW14CRM

SHW17CRM, SHW21CR


Einheit: mm

Abmessungen Führungsschiene ⁴⁾					iene4)	Trag	Tragzahl Zul. stat. Momente ⁵⁾			Gewicht				
								N	1 _A	. N	1 B	M _C		
Breite			Höhe	Teilung		С	C ₀	1 Wagen	2 Wagen	1 Wagen	2 Wagen	1 Wagen	Wagen	Schiene
W_1	W_2	W_3	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kg]	[kg/m]
18	6		6,6	40	$4,5 \times 7,5 \times 5,3$	4,31	5,66	0,0228	0,12	0,0228	0,12	0,0405	0,04	0,8
18	6		6,6	40	4,5×7,5×5,3	5,56	8,68	0,0511	0,246	0,0511	0,246	0,0621	0,06	0,8
10	0		0,0	40	4,5 × 7,5 × 5,5	3,30	0,00	0,0311	0,240	0,0311	0,240	0,0021	0,00	0,0
24	8	_	7,5	40	4,5×7,5×5,3	7,05	8,98	0,0466	0,236	0,0466	0,236	0,0904	0,08	1,23
33	8,5	18	8,6	40	4,5×7,5×5,3	7,65	10,18	0,0591	0,298	0,0591	0,298	0,164	0,13	1,9
37	8,5	22	11	50	1 E × 7 E × E 0	8,24	12,8	0,0806	0,434	0,0806	0.434	0,229	0,19	2,9
31	6,5	22	11	30	4,5×7,5×5,3	0,24	12,0	0,0800	0,434	0,0800	0,434	0,229	0,19	2,9
42	10	24	15	60	4,5×7,5×5,3	16,0	22,7	0,187	0,949	0,187	0,949	0,455	0,36	4,5
69	15,5	40	19	80	7×11×9	35,5	49,2	0,603	3	0,603	3	1,63	1,2	9,6
90	20	60	24	80	9×14×12	70,2	91,4	1,46	7,37	1,46	7,37	3,97	3,0	15

THK Miniaturführung SRS

Die erste Miniaturführung mit integrierten Kugelketten

Bei der Miniaturführung SRS zirkulieren zwei Kugelreihen in einem gotischen Laufrillenprofil zwischen dem Führungswagen und der Führungsschiene. Dieses Prinzip erlaubt eine sehr kompakte Bauweise mit hoher Belastungsaufnahme aus allen Richtungen. Darüber hinaus kann die SRS in engsten Räumen, oder dort wo Momente wirken, als Einzelschiene eingesetzt werden. Die integrierten Kugelketten garantieren zudem einen wartungsarmen Betrieb auch bei hohen Geschwindigkeiten bei gleichzeitig geringen Geräusch- und Fremdpartikelemissionen.

Geringe Partikelfreisetzung und Korrosionsbeständigkeit

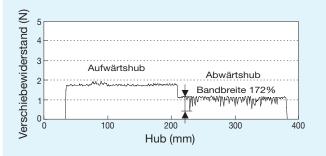
Die Kugelkette verhindert die gegenseitige Kontaktreibung der Kugeln. Auf diese Weise verringert sie den Verschleiß und verlängert die Einsatzdauer des Schmiermittels durch eine geringe Verunreinigung infolge Abriebspartikeln. Darüber hinaus gewährleistet der rostbeständige Stahl eine hohe Korrosionsbeständigkeit.

Gleichmäßige Tragzahlen in allen Hauptrichtungen

Die beiden Kugelreihen sind im 45°-Kontaktwinkel angeordnet und gewährleisten so gleiche Tragzahlen in radialer, gegenradialer und tangentialer Richtung. Daher ist der Typ SRS in jeder Einbaulage für die unterschiedlichsten Anwendungen einsetzbar.

Kompakte Abmessungen

Aufgrund des niedrigen Schienenquerschnitts und der kompakten Abmessungen des Führungswagens mit zwei Kugelumläufen ist die Miniaturführung SRS für engste Einbauräume geeignet.


Leichte Bauweise

Die Kugelrückführungen des Führungswagens bestehen aus Kunststoff, der an den Wagenkörper formschlüssig angespritzt ist. Daher ist diese Miniaturführung sehr leichtgewichtig mit entsprechend niedriger Massenträgheit.

Messung des Verschiebewiderstands

Die Kugelkette führt die Kugeln kontrolliert in Reihe. In der Übergangszone von dem unbelasteten in den belasteten Bereich werden die Kugeln - ohne dass sie sich aufstauen können - gleichmäßig geführt, so dass ein hervorragendes Laufverhalten mit konstantem Verschiebewiderstand in jeder Einbaulage ermöglicht wird.

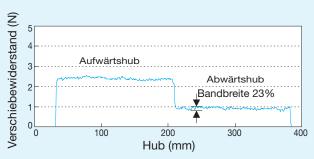


Abb. 2 Verschiebewiderstand beim Typ RSR9WVM (senkrechter Betrieb) Vorschub: 10 mm/s

Abb. 3 Verschiebewiderstand beim Typ SRS9WM (senkrechter Betrieb) Vorschub: 10 mm/s

Messung der Geräuschentwicklung

Im Führungswagen sind die Kugel-Rückführkanäle mit Kunststoff beschichtet, so dass metallische Geräusche bei der Rückführung der Kugeln entfallen. Zusätzlich hält die Kugelkette die Kugeln auf Abstand, so dass die einzelnen Kugeln nicht mehr aneinanderreiben und -stoßen können. Aufgrund dieser Maßnahmen nehmen selbst bei hoher Geschwindigkeit weder die Geräusch- noch die Wärmeentwicklung wesentlich zu.

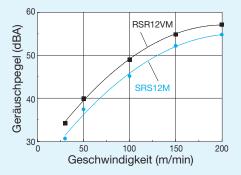


Abb. 4 Geräuschentwicklung bei den Typen SRS12M und RSR12VM

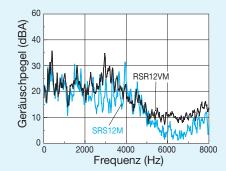


Abb. 5 Geräuschentwicklung bei den Typen SRS12M und RSR12VM (Geschwindigkeit: 100 m/min)

Messung der Partikelfreisetzung

Die Kugelkette hält den Schmierstoff direkt an den Wälzkörpern. Das Ergebnis ist eine optimale Schmierung der Wälzkörper und eine äußerst niedrige Partikelfreisetzung.

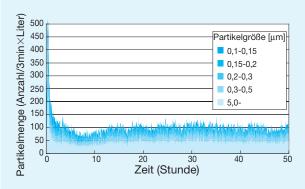


Abb. 6 Gemessene Partikelfreisetzung beim Typ RSR15M (Schmierfett: '고대사'AFF)

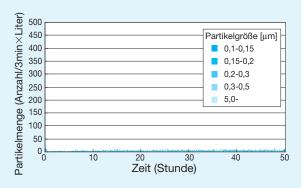
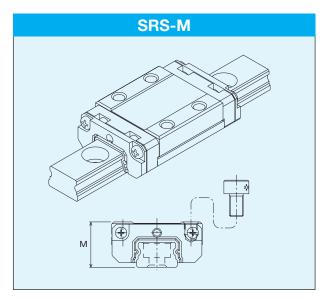



Abb. 7 Gemessene Partikelfreisetzung beim Typ SRS15M (Schmierfett: '교내사'AFF)

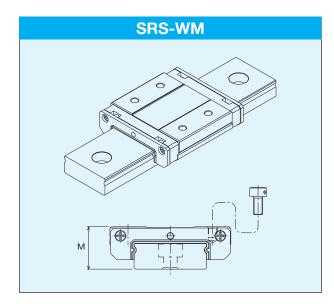
Typenübersicht

Miniaturführung SRS mit Standardwagen.

Berechnung der Lebensdauer

Die Lebensdauer der Miniaturführung Typ SRS wird nach folgender Formel bestimmt:

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P}\right)^3 \times 50$$

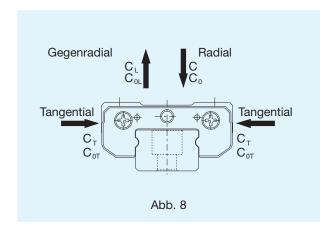

L: Nominelle Lebensdauer (km)
Die nominelle Lebensdauer L ist statistisch als die
Gesamtlaufstrecke definiert, die 90% einer größeren
Menge gleicher Führungen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor
erste Anzeichen einer Werkstoffermüdung auftreten.

(N)
(N)
(siehe S. 44)
(siehe S. 44)
(siehe S. 44)

Aus der errechneten nominellen Lebensdauer L kann die Lebensdauer L_h (in Stunden) nach folgender Formel errechnet werden:

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

L _h : zeitbezogene Lebensdauer	(h)
ℓ_s : Hublänge	(mm)
n.: Anzahl der Zyklen pro Minute	(min-1)



Typ mit breiterem und längerem Führungswagen für höhere zulässige Tragzahlen und Momente.

Variation der Tragzahlen

Tragzahlen

Die Miniaturführungen SRS sind in allen Richtungen (radial, gegenradial und tangential) belastbar. Die Tragzahlen in der Maßtabelle weiter hinten geben die Belastbarkeit in radialer Richtung an. Für die gegenradiale und tangentiale Richtung sind die Tragzahlen nach Tabelle 1 zu ermitteln.

Tab. 1 Tragzahlen bei verschiedenen Belastungsrichtungen

	Dynamische	Statische
	Tragzahl	Tragzahl
Radial	С	C ₀
Gegenradial	$C_L = C$	$C_{0L} = C_0$
Tangential (7, 7W)	C _T = 1,13 C	$C_{0T} = 1,19 C_0$
Tangential (9, 9W, 20)	C _T = 1,19 C	$C_{0T} = 1,19 C_0$
Tangential (12, 12W, 15, 15W, 25)	$C_T = C$	$C_{0T} = C_0$

Äquivalente Belastung

Die äquivalente Belastung eines Führungswagens des Typs SRS bei gleichzeitiger radialer bzw. gegenradialer und tangentialer Belastung wird wie folgt berechnet:

$$P_E = X \times P_R(P_L) + Y \times P_T$$

 P_E : = äquivalente Belastung (N)

- radial

_ gegenradial

- tangential

 P_R : = Radialbelastung (N)

 P_{l} : = Gegenradialbelastung (N)

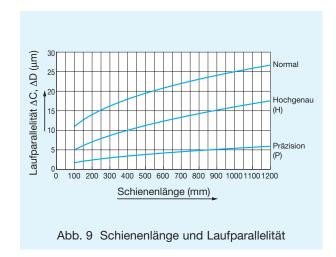
 P_{T} : = Tangentialbelastung (N)

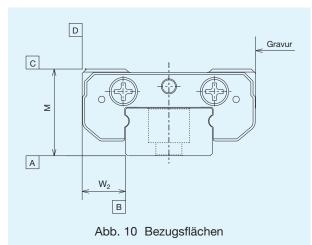
X, Y: Äquivalenzfaktoren (Tabelle 2)

Tab. 2 Äquivalenzfaktoren für radiale und tangentiale Belastung

Aufteilung	P _E	Baugröße	Х	Υ
D /D 1	Äquivalente Radial- und Gegenradial-	7, 7W, 9, 9W, 20	1	0,839
P _{R(L)} / P _T ≥1	belastung	12, 12W, 15, 15W, 25	1	1
	Äquivalente	9, 9W, 20	1,192	1
	Tangentialbelastung	12, 12W, 15, 15W, 25	1	1

Genauigkeitsklassen


Die Miniaturführungen SRS sind in der Normalklasse (kein Symbol), der H-Klasse (H) und der Präzisionsklasse (P) lieferbar.

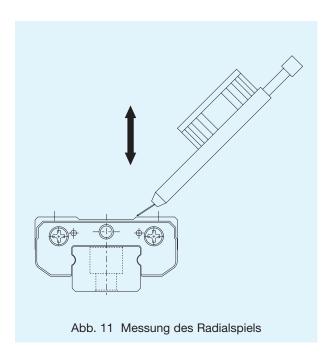

Tab. 3 Genauigkeitsklassen

Einheit: mm

	Gei	nauigkeitsklas	sen	
Toleranzen	Normal	Hochgenau	Präzision	
	_	Н	Р	
Laufparallelität der Fläche C des Wagens zur Fläche A	Δ	ΔC (siehe Abb. 9)		
Laufparallelität der Fläche D des Wagens zur Fläche B	ΔD (siehe Abb. 9)			
Maßtoleranz für Höhe M	± 0,04 ± 0,02 ± 0,01		± 0,01	
Abweichung der Höhe M zwischen Paaren	0,03 0,015 0,007		0,007	
Maßtoleranz für Breite W ₂	± 0,04 ± 0,025 ± 0,015		± 0,015	
Abweichung der Breite W ₂ zwischen den Paaren	0,03 0,02 0,01		0,01	

Anm.: Die Werte beziehen sich auf die Wagenmitte bzw. den Mittelwert der Messwerte im Bereich der Wagenmitte.

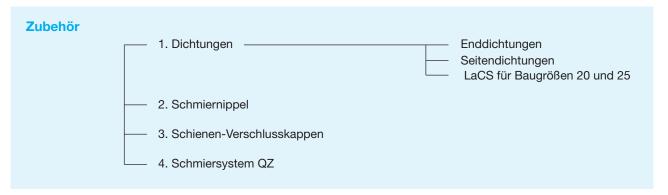
Vorspannung


Tabelle 4 zeigt die Vorspannungsklassen mit dem entsprechenden Radialspiel. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

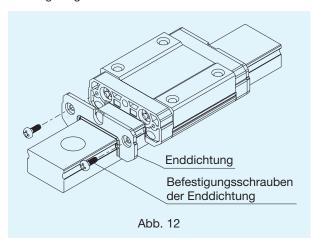
Tab. 4 Vorspannung

Einheit: μm

Baugröße	Vorspannung		
	Normal	C1	
SRS7	+2~-2	0~-3	
SRS9	+2~-2	0~-4	
SRS12	+3~-3	0~-6	
SRS15	+5~-5	0~-10	
SRS20	+5~-5	0~-10	
SRS25	+7~-7	0~-14	


Anm.: Die Vorspannungsklasse "normal" wird nicht in der Bestellbezeichnung angegeben.

Zubehör


Für den optimalen Einsatz der Miniaturführung bietet THKein umfangreiches Zubehörprogramm an.

1. Abdichtungen

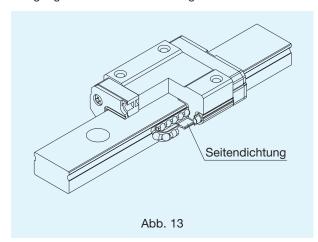
Enddichtung

Die Enddichtungen sind standardmäßig beidseitig am Führungswagen montiert.

Lamellen-Kontaktabstreifer LaCS

Im Vergleich zum Metallabstreifer liegt der Kontaktabstreifer LaCS eng an der Schiene an und schützt so das Wageninnere selbst vor kleinsten Fremdpartikeln (siehe S. 364). Zulässige Einsatztemperatur: $-20 \sim +80^{\circ}$ C.

Tab. 5 Verschiebewiderstand mit LaCS¹⁾ Einheit: N


Baugröße	Verschiebewiderstand
SRS20M	5,2
SRS25M	7,8

¹⁾ Der Verschiebewiderstand gilt nur für einen Wagen mit beidseitigem LaCS.

Zur maximalen Geschwindigkeit fragen Sie 기내년.

Seitendichtung

Die Seitendichtung verhindert das Eindringen von Verunreinigungen über die seitliche Wagenunterseite.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Tab. 6 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör Einheit: mm

Baugröße	ohne	UU	SS	SSHH
SRS 7M	21	23,4	23,4	
SRS 7WM	28,6	31	31	-
SRS 9M	27,8	30,8	30,8	_
SRS 9WM	36	39	39	_
SRS 12M	31,4	34,4	34,4	_
SRS 12WM	41,5	44,5	44,5	_
SRS 15M	40	43	43	_
SRS 15WM	52,5	55,5	55,5	
SRS 20M	47	50	50	67,2
SRS 25M	73	77	77	95,2

Tab. 7 Kennzeichnung

	g
Baugröße	Abdichtungswiderstand
UU	mit beidseitigen Enddichtungen
SS	mit End- und Seitendichtungen
SSHH	Mit End- und Seitendichtung sowie Kontaktabstreifern LaCS

Dichtungswiderstand

Die Maximalwerte des Dichtungswiderstandes für einen Führungswagen mit End- und Seitendichtungen (SSR...SS) sind in Tabelle 8 aufgeführt. Bei diesen Werten sind die Dichtungen leicht befettet.

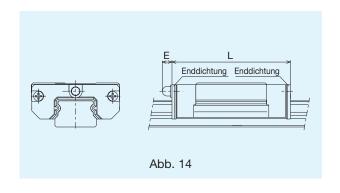
Tab. 8 Kennzeichnung

Baugröße	Dichtungswiderstand
SRS 7M	0,08
SRS 7WM	0,12
SRS 9M	0,20
SRS 9WM	1,00
SRS 12M	0,60
SRS 12WM	1,30
SRS 15M	1,00
SRS 15WM	1,60
SRS 20M	1,30
SRS 25M	1,60

2. Schmiernippel und Schmierbohrung

Die Miniaturführung Typ SRS ist für einen wartungsfreien Betrieb unter normalen Betriebsbedingungen ausgelegt. Bei widrigen Umgebungsbedingungen kann das Schmiersystem QZ und der Lamellen-Kontaktabstreifer LaCS für längere Wartungsintervalle eingesetzt werden¹⁾. Darüber hinaus können die Wagen auch über Schmierbohrungen bzw. Schmiernippel abgeschmiert werden²⁾.

Bitte beachten Sie, dass diese Abschmiermöglichkeiten werksseitig eingerichtet werden, und diese daher bei der Bestellung des Führungssystems mit angegeben werden müssen.


- 1) Siehe S. 354 für QZ und S. 364 für LaCS.
- ²⁾ Ein Anschluss von Schmiernippeln an die Baugrößen SRS7M, SRS7WM, SRS9M, 9WM, 12M und 12 WM ist nicht möglich. Diese Größen werden auf Bestellung mit Schmierbohrungen versehen.
- ³⁾ Schmierbohrungen dürfen nur zum Abschmieren des Wagens benutzt werden.
- 4) Schmiernippel für Wagen mit dem Schmiersystem QZ sind nicht erhältlich.

Tab. 9 Abmessungen Schmiernippel und -bohrung

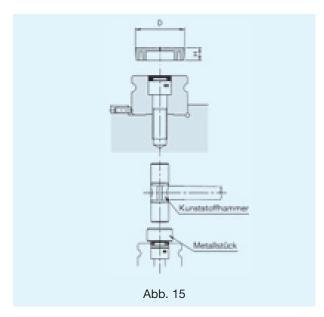
F:	heit:	
-ın	DEIL.	mm

Baugröße	E	Schmiernippel und -bohrung
SRS 7M		ø 1,2 Bohrung
SRS 7WM	_	ø 1,2 Bohrung
SRS 9M	_	ø 1,5 Bohrung
SRS 9WM		ø 1,6 Bohrung
SRS 12M		ø 2,0 Bohrung
SRS 12WM	_	ø 2,0 Bohrung
SRS 15M	4,0 (5,0)	PB107
SRS 15WM	4,0 (5,0)	PB107
SRS 20M	3,5 (5,0)	PB107
SRS 25M	4,0 (5,5)	PB1021B

Anm.: Ohne Enddichtung siehe die Werte in ().

3. Verschlusskappen

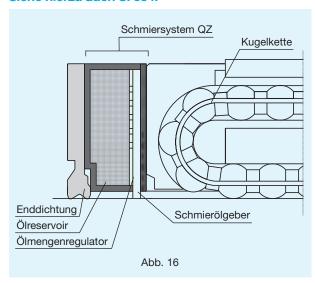
Verschlusskappen Typ C


Späne und andere Fremdstoffe können sich in den Befestigungsbohrungen der Schienen sammeln und darüber in die Führungswagen gelangen. Dagegen können spezielle Verschlusskappen bündig zur Schienenoberfläche eingebaut werden.

Die Verschlusskappen des Typs C bestehen aus einem verschleißfesten und gegen Öl widerstandsfähigen Kunststoff und sind ab Lager lieferbar (siehe Tab. 10).

Die Verschlusskappen sind so in die Befestigungsbohrungen einzusetzen, dass sie bündig mit der Schienenoberfläche abschließen (siehe Abb. 15).

Tab. 10 Verschlusskappe Typ C Einheit: mm


		Hauptabm	nessungen	
Baugröße	Тур	Schraube	D	Н
SRS9M	_	_	_	_
SRS9WM	C3	М3	6,3	1,2
SRS12M	C3	М3	6,3	1,2
SRS12WM	_	_	_	_
SRS15M	C3	М3	6,3	1,2
SRS15WM	_	_	_	
SRS20M	C5	M5	9,8	2,4
SRS25M	C6	M6	11,4	2,7

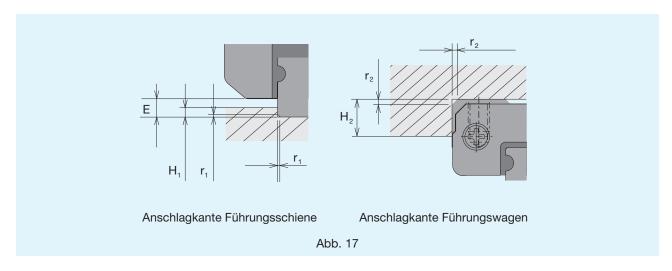
4. Schmiersystem QZ für Linearführung SRS

Siehe hierzu auch S. 354.

Tab. 11 Kennzeichnung

Baugröße	Abdichtungszubehör
QZUU	mit beidseitigen Enddichtungen und QZ
QZSS	mit End- und Seitendichtungen und QZ
QZSSHH	Mit End- und Seitendichtung sowie Kontaktabstreifern LaCS und QZ

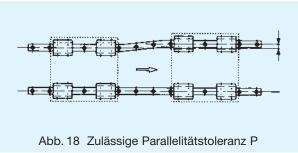
Tab. 12 Gesamtlänge des Führungswagens mit entsprechendem Abdichtungszubehör und QZ


Baugröße	QZUU	QZSS	QZSSHH
SRS 7M	33,4	33,4	
SRS 7WM	41	41	_
SRS 9M	40,8	40,8	_
SRS 9WM	49	49	
SRS 12M	44,4	44,4	_
SRS 12WM	54,5	54,5	_
SRS 15M	55	55	_
SRS 15WM	67,5	67,5	_
SRS 20M	66	66	83,2
SRS 25M	97	97	115,2

Montagehinweise

Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 13 angegeben. Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, dass Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 13 angegebenen Maximalradien.


Tab. 13 Schulterhöhen und Ausrundungen

Einheit: mm

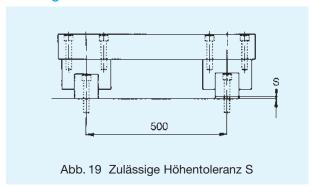
Baugröße	Ausrundungs- radius r ₁ (max.)	Ausrundungs- radius r ₂ (max.)	Schulterhöhe für Führungsschiene H ₁	Schulterhöhe für Führungswagen H ₂	E
SRS7M	0,1	0,2	0,9	3,3	1,3
SRS7WM	0,1	0,1	1,4	3,8	1,8
SRS9M	0,1	0,3	0,5	4,9	0,9
SRS9WM	0,1	0,5	2,5	4,9	2,9
SRS12M	0,3	0,2	1,5	5,7	2,0
SRS12WM	0,3	0,3	2,5	5,7	3,0
SRS15M	0,3	0,4	2,2	6,5	2,7
SRS15WM	0,3	0,3	2,2	6,5	2,7
SRS20M	0,3	0,5	3,0	8,7	3,4
SRS25M	0,5	0,5	4,5	10,5	5,0

Zulässige Toleranzen der Montageflächen

Zulässige Parallelitätstoleranz

Normal Baugröße C1 3 7 4 3 9 9 12 5

Tab. 14 Zulässige Parallelitätstoleranz


Vorspannklasse

15 6 10 20 8 13 25 10 15

Gotische Laufrille

Zulässige Höhentoleranz

Tab. 15 Zulässige Höhentoleranz

Einheit: µm

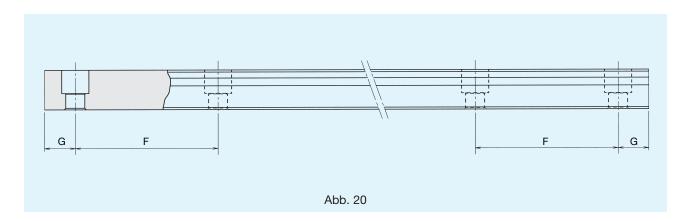
Vorspannklasse	Gotische Laufrille						
Baugröße	C1	Normal					
7	_	25					
9	6	35					
12	12	50					
15	20	60					
20	30	70					
25	40	80					

Ebenheit der Schienen- und Wagenmontageflächen

Die Werte in der Tabelle beziehen sich auf Führungssysteme mit normaler Vorspannung. Bei Führungssystemen mit paralleler Schienenanordnung und der Vorspannung C1 wird eine Ebenheit von maximal 50% der angegebenen Werte empfohlen. Die Linearführung SRS ist mit gotischen Laufrillen ausgestattet. Diese können nur geringe Unebenheiten der Montageflächen kompensieren, so dass eine hochpräzise Bearbeitung der Montagefläche zu empfehlen ist.

Tab. 16 Ebenheit der Schienenund Wagenmontageflächen

0 0	
Baugröße	Ebenheit
SRS7M	0,025/200
SRS7WM	0,025/200
SRS9M	0,035/200
SRS9WM	0,035/200
SRS12M	0,050/200
SRS12WM	0,050/200
SRS15M	0,060/200
SRS15WM	0,060/200
SRS20M	0,070/200
SRS25M	0,070/200

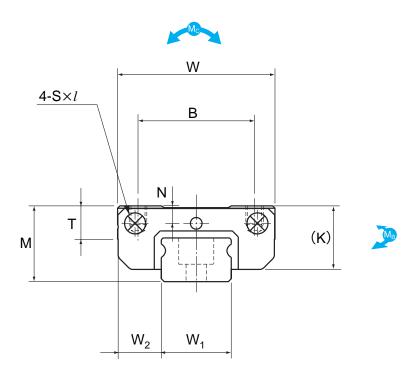

Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungsschienen für die Miniaturführung Typ SRS sind in Tabelle 17 angegeben.

Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zur Instabilität, mit der Folge, dass die Endgenauigkeit

beeinträchtigt werden kann. Sollte jedoch ein anderes Maß als das G-Maß, wie es in Tabelle 17 aufgeführt ist, genommen werden, müssen das Maß G und dessen Lage definiert sein.

Werden Schienenlängen benötigt, die länger als die maximalen Schienenlängen sind, fragen Sie bitte THK

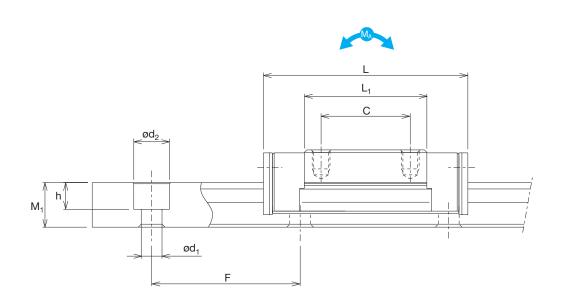

Tab. 17 Standard- und Maximallängen der Führungsschienen

Baugröße	SRS 7M	SRS 7WM	SRS 9M	SRS 9WM	SRS 12M	SRS 12WM	SRS 15M	SRS 15WM	SRS 20M	SRS 25M
Standard- länge der Führungs- schiene	40 55 70 85 100 115 130	50 80 110 140 170 200 260 290	55 75 95 115 135 155 175 195 275 375	50 80 110 140 170 200 260 290 320	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 190 230 270 310 390 470 550	70 110 150 190 230 270 310 350 390 430 470 550 670 870	110 150 190 230 270 310 430 550 670 790	220 280 340 460 640 880 1000	220 280 340 460 640 880 1000
F	15	15	20	30	25	40	40	40	60	60
G	5	10	7,5	10	10	15	15	15	20	20
Maximallänge	300	400	1000	1000	1340	1430	1800	1430	1800	1800

Kompaktwagen

Typ SRS-M in korrosionsbeständiger Ausführung

Baugröße	Haup	otabmessu	ıngen	Abmessungen Führungswagen							
	Höhe	Breite	Länge								
	М	W	L	В	С	S×ℓ	L ₁	Т	K	N	
SRS7M	8	17	23,4	12	8	M2×2,3	13,4	3,3	6,7	1,6	
SRS9M	10	20	30,8	15	10	M3×2,8	19,8	4,9	9,1	2,4	
SRS12M	13	27	34,4	20	15	M3×3,2	20,6	5,7	11	3	
SRS15M	16	32	43	25	20	M3×3,5	25,7	6,5	13,3	3	
SRS20M	20	40	50	30	25	M4×6	34	9	16,6	4	
SRS25M	25	48	77	35	35	M6×7	56	11	20	5	


Bestellbezeichnung

2 SRS20M QZ SS C1 +220L P M-II

- 1 Anzahl der Führungswagen pro Schiene
- 2 Baugröße
- 3 Schmiersystem QZ

- 4 Symbol für Abdichtung 1)
- 5 Vorspannungsklasse
- 6 Schienenlänge (mm) 2)
- 7 Genauigkeitsklasse
- 8 Schiene aus rostbeständigem Stahl
- 9 Anzahl der Schienen für Paralleleinsatz in einer Ebene ³⁾

Einheit: mm

													Helt. Hilli
Abmessungen Führungsschiene ²⁾			Trag	ızahl	Zul. stat. Momente4)					Gewicht			
							M_A		M_B		Mc		
Breite		Höhe	Teilung		С	C ₀	1 Wagen	2 Wagen	1 Wagen	2 Wagen	1 Wagen	Wagen	Schiene
W ₁	W ₂	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[Nm]	[Nm]	[Nm]	[Nm]	[Nm]	[kg]	[kg/m]
7 -0,02	5	4,7	15	2,4× 4,2 ×2,3	1,51	1,29	3,09		3,69		5,02	0,009	0,25
9 -0,02	5,5	5,5	20	3,5× 6 ×3,3	2,69	2,31	7,82	43,9	9,03	50,8	10,6	0,016	0,32
12 -0,02	7,5	7,5	25	3,5× 6 ×4,5	4	3,53	12	78,5	12	78,5	23,1	0,027	0,65
15 -0,02	8,5	9,5	40	3,5× 6 ×4,5	6,66	5,70	26,2	154	26,2	154	40,4	0,047	0,96
20 -0,03	10	11	60	6× 9,5 ×8	7,75	9,77	54,3	296	62,4	341	104	0,11	1,68
23 -0,03	12,5	15	60	7× 11 ×9	16,5	20,2	177	932	177	932	248	0,24	2,6

¹⁾ Werden zum Abschmieren Schmiernippel bzw. Schmierbohrungen gewünscht, müssen die Führungswagen darauf vorbereitet werden. Geben Sie dies bei der Bestellung mit an.

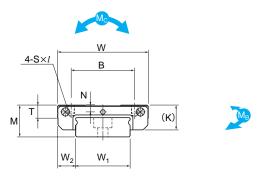
Tragzahlen für SRS-G

rageament at one a								
Baugröße	C [kN]	C ₀ [kN]						
SRS9MG	2,07	2,32						
SRS12MG	3,36	3,55						
SRS15MG	5,59	5,72						
SRS20MG	5,95	9,4						
SRS25MG	13,3	22,3						

Der Typ SRS-G ist im Vergleich zum Typ SRS vollkugelig also ohne Kugelkette. Daher sind die dynamischen Tragzahlen bei diesem Typ auch niedriger als bei dem Typ SRS mit Kugelkette.

²⁾ Siehe Seite 201 für Standardschienenlängen.

³⁾ Das Zeichen «II» bezeichnet hier die geplante Montageanordnung zweier parallel verlaufender Führungsschienen.


⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.



Breite Ausführung

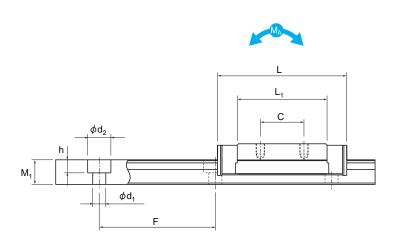
Typ SRS-WM in korrosionsbeständiger Ausführung

SRS7WM, SRS9WM, SRS12WM

Baugröße	Haup	otabmessu	ingen	Abmessungen Führungswagen								
	Höhe Breite Länge											
	М	W	L	В	С	S×ℓ	L ₁	Т	K	N		
SRS7WM	9	25	31	19	10	M3×2,8	20,4	3,8	7,2	1,8		
SRS9WM	12	30	39	21	12	M3×2,8	27	4,9	9,1	2,3		
SRS12WM	14	40	44,5	28	15	M3×3,5	30,9	5,7	11	3		
SRS15WM	16	60	55,5	45	20	M4×4,5	38,9	6,5	13,3	3		

Bestellbezeichnung

2 SRS12WM SS C1 +110L P M-II


- 1 Anzahl der Führungswagen pro Schiene
- 4 Vorspannungsklasse
- 7 Schiene aus rostbeständigem Stahl

2 Baugröße

- 5 Schienenlänge (mm) ²⁾
- Anzahl der Schienen für Paralleleinsatz in einer Ebene 3)

- ______
- 3 Symbol für Abdichtung ¹⁾
- 6 Genauigkeitsklasse

Einheit: mm

	Abmessungen Führungsschiene ²⁾						Trag	Tragzahl Zul. stat. Momente ⁴⁾					Gewicht		
							N	∕ I _A	N	1 B	M _C				
	Breite			Höhe	Teilung		С	C ₀	1 Wagen	2 Wagen	1 Wagen	2 Wagen	1 Wagen	Wagen	Schiene
	W_1	W_2	W ₃	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[Nm]	[Nm]	[Nm]	[Nm]	[Nm]	[kg]	[kg/m]
	14 -0,02	5,5	_	5,2	30	3,5× 6 ×3,2	2,01	1,94	6,47	_	7,71		14,33	0,018	0,56
	18 -0,02	6	_	7,5	30	3,5× 6 ×4,5	3,29	3,34	14	78,6	16,2	91	31,5	0,031	1,01
	24 -0,02	8	_	8,5	40	4,5× 8 ×4,5	5,48	5,3	26,4	143	26,4	143	66,5	0,055	1,52
	42 -0,02	9	23	9,5	40	4,5× 8 ×4,5	9,12	8,55	51,2	290	51,2	290	176	0,13	2,87

¹⁾ Werden zum Abschmieren Schmiernippel bzw. Schmierbohrungen gewünscht, müssen die Führungswagen darauf vorbereitet werden. Geben Sie dies bei der Bestellung mit an.

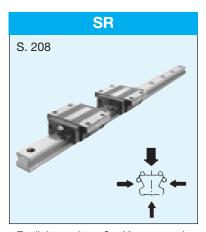
Tragzahlen für SRS-G

nagzamen far ente a									
Baugröße	C [kN]	C ₀ [kN]							
SRS9WMG	2,67	3,35							
SRS12WMG	4,46	5,32							
SRS15WMG	7,43	8,59							

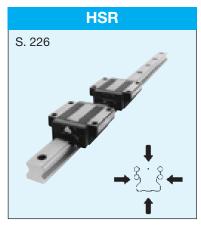
Der Typ SRS-G ist im Vergleich zum Typ SRS vollkugelig also ohne Kugelkette. Daher sind die dynamischen Tragzahlen bei diesem Typ auch niedriger als bei dem Typ SRS mit Kugelkette.

²⁾ Siehe Seite 201 für Standardschienenlängen.

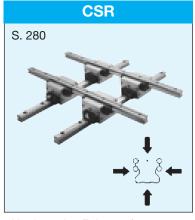
³⁾ Das Zeichen «II» bezeichnet hier die geplante Montageanordnung zweier parallel verlaufender Führungsschienen.

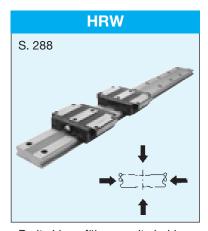

⁴⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

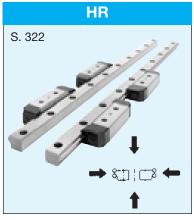


Standard-Linearführungen und Zubehör

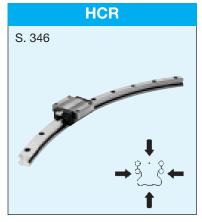

- Radialtyp mit großer Kompensation von Montageungenauigkeiten
- Größe: 15 ~ 150
- Dyn. Tragzahl: 5,39 ~ 411 kN


- Linearführung mit Anschlussmaßen nach DIN 645
- Größe: 8 ~ 150
- Dyn. Tragzahl: 1,0 ~ 518 kN

- Extrem steife Linearführung
- Größe: 25 ~ 100
- Dyn. Tragzahl: 25,9 ~ 599 kN

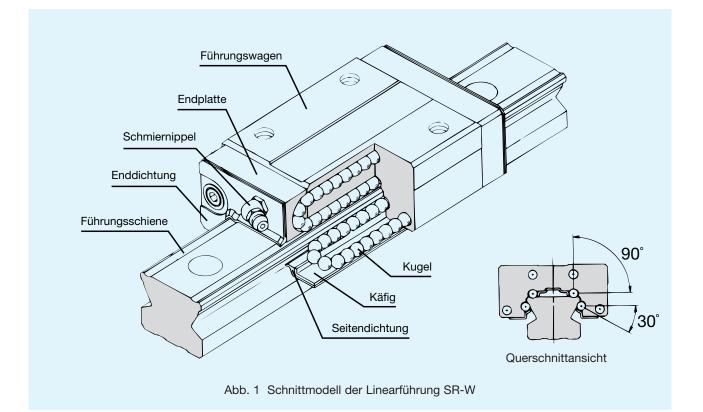

- Hochpräzise Führung für Orthogonalbewegungen
- Größe: 15 ~ 45
- Dyn. Tragzahl: 8,33 ~ 80,4 kN


- Breite Linearführung mit niedrigem Querschnitt
- Größe: 12 ~ 60
- Dyn. Tragzahl: 3,29 ~ 63,8 kN


- Austauschbar und für hohe Montagetoleranzen
- Größe: 15 ~ 35
- Dyn. Tragzahl: 4,31 ~ 25,1 kN

- Extrem flachbauender Typ
- Größe: 918 ~ 60125
- •Dyn. Tragzahl: 1,57 ~ 141 kN

- Selbstausrichtende Linearführung
- Größe: 20 ~ 70
- Dyn. Tragzahl: 9,41 ~ 90,8 kN



- Führung für Kreis- und Bogenbewegungen
- Größe: 12 ~ 65
- •Dyn. Tragzahl: 4,7 ~ 141 kN

THK Linearführung SR

radial hochbelastbar

Aufbau und Merkmale

Bei der THK Linearführung SR laufen die Kugeln in vier Reihen zwischen den Kreisbogenlaufrillen von Führungsschiene und -wagen, bis sie durch die Umlenkstücke in den Endplatten und den im Wagen integrierten Rücklaufkanälen zurückgeführt werden. Eingebaute Käfige schützen die Kugeln vor dem Herausfallen aus dem Wagen, wenn dieser von der Schiene abgezogen wird. Kennzeichnend für die THK Linearführung SR ist ihre relativ geringe Bauhöhe und die besonders hohe Steifigkeit der Führungswagen, mit denen hochgenaue und gleichmäßige Linearbewegungen erzielt werden können.

Kompakter Typ für Schwerbelastung

Als kompakter Typ mit niedriger Bauhöhe ist diese Baureihe aufgrund des Kugelkontaktes von 90° in radialer Richtung hochbelastbar.

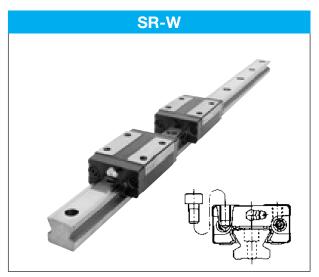
Genauigkeit leicht realisierbar

Da es sich um einen selbsteinstellenden Typ handelt, können Abweichungen in der Parallelität oder der Höhe von zwei Schienen zueinander ausgeglichen werden, wobei leichgängige Bewegungen mit hoher Genauigkeit möglich sind.

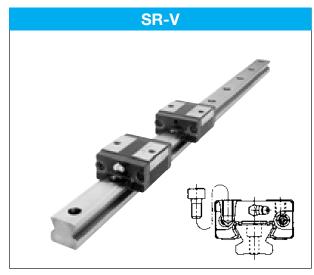
Geräuscharm

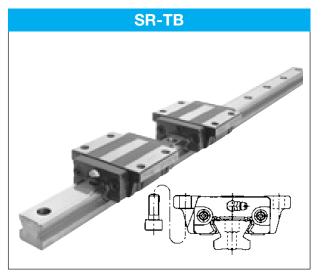
Endplatten aus Kunststoff mit speziellen Umlenkstücken gewährleisten einen gleichmäßigen und geräuscharmen Umlauf der Kugeln.

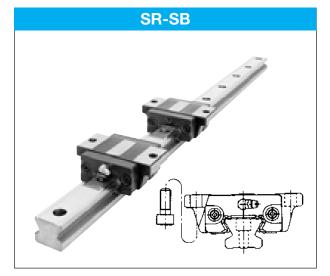
Hohe Lebensdauer


Selbst unter hoher Vorspannung oder Schrägbelastung tritt kein zusätzlicher Differentialschlupf auf und das leichtgängige Rollverhalten wird beibehalten. Dieses ermöglicht eine hohe Genauigkeit über die gesamte Lebensdauer des Führungssystems.

Korrosionsbeständige Version lieferbar


Bei Bedarf können Führungswagen, Führungsschienen und Kugeln in rostbeständiger Ausführung geliefert werden. Geeignet ist diese Ausführung vor allem für Anwendungen in Reinräumen, bei Anwendungen mit geringen Schmiermöglichkeiten sowie bei Einsatzorten mit hoher Feuchtigkeit oder mit Spritzwasser.

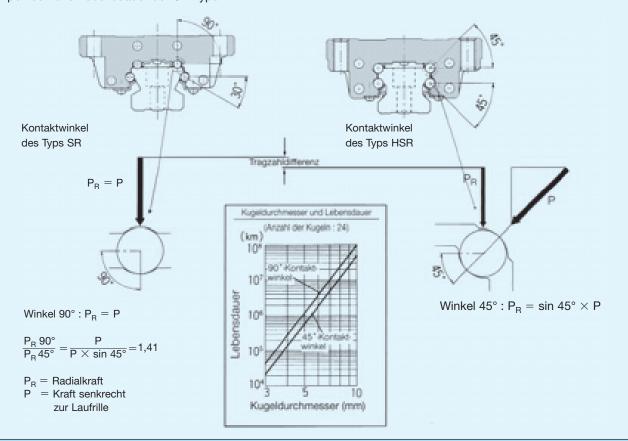

Typenübersicht


Grundmodell der niedrig bauenden Linearführung für hohe Radialbelastung. Stabiles Linearführungssystem mit hohen Tragzahlen.

Kurzwagen-Version des Typs SR-W.

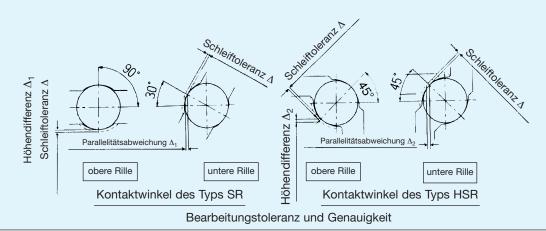
Gleiche niedrige Bauhöhe wie Typ SR-W. Befestigung der Anschlusskonstruktion erfolgt hierbei von unten.

Kurzwagen-Version des Types SR-TB.



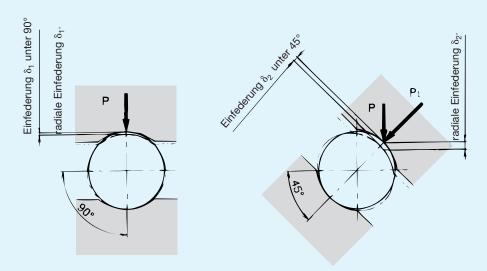
Besonderheiten des Typs SR

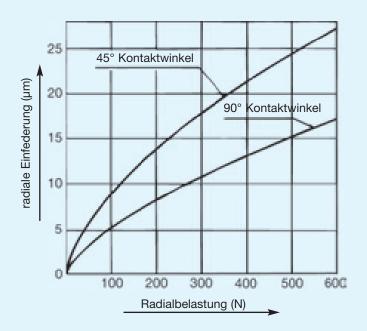
Vergleicht man Linearführungen vom Typ SR (Kontaktwinkel 90°) mit anderen Führungstypen (Kontaktwinkel 45°), ergeben sich folgende Unterschiede:


Unterschiede in Tragzahl und Lebensdauer

Aufgrund der unterschiedlichen Kontaktwinkel, aber bei gleichen technischen Voraussetzungen wie z.B. Kugeldurchmesser, Schmiegung, Kraftrichtung usw., kann die SR-Führung um ca. 40% höhere Radialkräfte gegenüber Führungen mit 45°-Kontaktwinkel aufnehmen. Die vierzigprozentige Belastungserhöhung resultiert aus der Radialkraftzerlegung bei einem Kontaktwinkel von 90° gegenüber einem von 45°. Das Ergebnis ist eine mehr als doppelt so hohe Lebensdauer der SR-Typen.

Unterschiede in der Präzision


Bearbeitungs- oder Schleiftoleranzen von Führungswagen und Führungsschiene beeinflussen die Laufgenauigkeit. Angenommen, die Bearbeitungstoleranz der Laufbahnen beträgt Δ, dann wirkt sich diese Bearbeitungstoleranz auf die Höhendifferenz des 45°-Kontaktmechanismus um den Faktor 1,4 mehr aus als auf die Höhendifferenz des Typs SR. Ähnlich wird die Parallelitätsabweichung beim 45°-Kontaktwinkelmodell um den Faktor 1,22 mehr beeinflußt als beim 30°-Kontaktwinkel der Linearführug Typ SR.



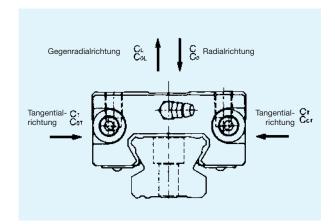
Unterschiede in der Steifigkeit

Der 90°-Kontaktwinkel der Linearführung Typ SR weist auch hinsichtlich der Steifigkeit Unterschiede zu einem 45°-Kontaktwinkelsystem auf. Unter der gleichen Radialbelastung P ist die radiale Einfederung beim Typ SR um 44% geringer. Unterschiede in der Radialbelastung und Einfederung sind in nachfolgender Abbildung dargestellt. Demzufolge ist der Typ SR besonders in den Fällen von Vorteil, in denen die Steifigkeit in radialer Richtung eine wesentliche Rolle spielt.

Belastungs-Einfederungsdiagramm für unterschiedliche Kontaktstrukturen (Kugeldurchmesser: Da = 6,35 mm) (Einfederung pro Kugel)

Radialbelastung und Einfederung

Zusammenfassung


Die Linearführung SR ist besonders geeignet für Anwendungen mit überwiegend radialer Belastung und in Fällen, in denen hohe radiale Steifigkeit sowie hohe Laufgenauigkeiten benötigt werden.

Variation der Tragzahlen

Tragzahlen

Linearführungen des Typs SR können Belastungen aus allen Richtungen aufnehmen. Die in der Maßtabelle angegebenen Tragzahlen beziehen sich auf Belastungen in radialer Richtung. Die Tragzahlen für Gegenradial- und Tangentialrichtungen können der Tabelle 1 entnommen werden.

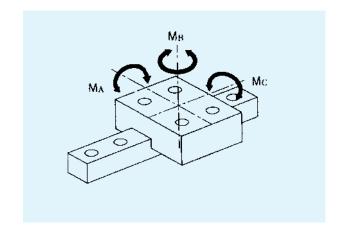
Tab. 1 Verhältnis der Tragzahlen beim Typ SR

Baugröße		Dynamische Tragzahl	Statische Tragzahl
SR	Radial	С	C ₀
15~70	Gegenradial	$C_{L} = 0,62C$	$C_{0L} = 0,50 C_0$
	Tangential	$C_{T} = 0,56C$	$C_{0T} = 0.43 C_0$
SR	Radial	С	C ₀
85~150	Gegenradial	$C_{L} = 0.78C$	$C_{0L} = 0.71 C_0$
00 100	Tangential	$C_{T} = 0.48C$	$C_{0T} = 0.35 C_0$

Äquivalente Belastung

Die äquivalente Belastung eines Führungswagens bei gleichzeitiger gegenradialer und tangentialer Belastung wird wie folgt berechnet:

$$P_E = X \times P_L + Y \times P_T$$


P_{F}	:	äquivalente Belastung in gegenradialer o	der
_		tangentialer Richtung	(N)
P_{l}	:	Gegenradialbelastung	(N)
P_{T}^{-}	:	Tangentialbelastung	(N)
X.Y	:	Äguivalenzfaktoren	(Tabelle 2)

Tab. 2 Äquivalenzfaktoren

Baugröße	PE	Х	Υ
SR	Äquivalente Gegenradialbelastung	1	1,15
15~70	Äquivalente Tangentialbelastung	0,866	1
SR	Äquivalente Gegenradialbelastung	1	2
85~150	Äquivalente Tangentialbelastung	0,5	1

Zulässiges statisches Moment Mo

Bei einer Belastung eines einzelnen oder zweier zusammengesetzter Führungswagen können auf den Führungswagen je nach dem Kraftangriffspunkt Momente wirken. In solchen Fällen ist gemäß den Werten in Tabelle 3 der geeignete Typ zu wählen. Bei der Kräfteermittlung und der Lebensdauerberechnung sind auch die Momente zu berücksichtigen.

Tab. 3 Zulässiges statisches Moment des Typs SR Einheit: kNm

LITTIEIL											
Baugröße	N	1 _A	N	∕I B	$M_{C}^{2)}$						
	1 Wagen	2 Wagen ¹⁾	1 Wagen	2 Wagen ¹⁾							
SR15W/TB	0,0925	0,516	0,0567	0,321	0,113						
SR15V/SB	0,0326	0,224	0,0203	0,143	0,0654						
SR20W/TB	0,146	0,778	0,0896	0,481	0,194						
SR20V/SB	0,053	0,332	0,0329	0,21	0,11						
SR25W/TB	0,286	1,52	0,175	0,942	0,355						
SR25V/SB	0,103	0,649	0,0642	0,41	0,201						
SR30W/TB	0,494	2,55	0,303	1,57	0,611						
SR30V/SB	0,163	1,08	0,102	0,692	0,352						
SR35W/TB	0,74	4,01	0,454	2,49	1,01						
SR35V/SB	0,259	1,68	0,161	1,07	0,576						
SR45W/TB	1,1	5,96	0,679	3,69	1,77						
SR55W/TB	2,27	11,3	1,39	6,98	2,87						
SR 70T	2,54	13,2	2,18	11,3	4,14						
SR 85T	2,54	15,1	1,25	7,47	5,74						
SR100T	3,95	20,9	1,95	10,3	8,55						
SR120T	5,83	32,9	2,87	16,2	13,7						
SR150T	9,98	55,8	4,92	27,5	24,3						

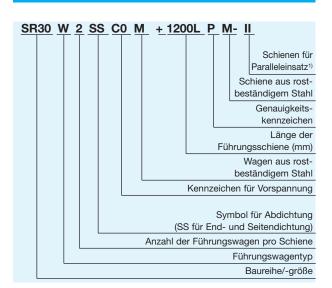
Anmerkung: 1) Die Werte gelten für zwei zusammengesetzte Führungswagen.

²⁾ Der M_C-Wert gilt für einen Wagen. Bei Anwendungen mit zwei Wagen verdoppelt sich dieser Wert.

Vorspannung

Tabelle 4 gibt die Vorspannungsklassen mit dem entsprechenden Radialspiel für die einzelnen Baugrößen an. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

Tab. 4 Vorspannungsklassen

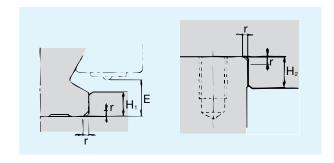

Einheit: µm

Vorspannungs- klasse	Normal	Leichte Vorspannung	
Baugröße	_	C1	C0
SR15	− 4 ~ + 2	− 10 ~ − 4	_
SR20	$-5 \sim +2$	$-12\sim-5$	− 17 ~ − 12
SR25	$-6 \sim +3$	$-15\sim-6$	$-21\sim-15$
SR30	$-7 \sim +4$	$-18 \sim -7$	$-26 \sim -18$
SR35	− 8 ~ + 4	$-20\sim-8$	$-31 \sim -20$
SR45	− 10 ~ + 5	- 24 ~-10	$-36 \sim -24$
SR55	$- 12 \sim + 5$	$-28\sim -12$	$-45\sim-28$
SR70	$- 14 \sim + 7$	$-32\sim -14$	$-50 \sim -32$
SR85	− 20 ∼ + 9	- 46 ∼-20	− 70 ~ − 46
SR100	− 22 ∼ + 10	− 52 ~−22	− 78 ~ − 52
SR120	− 25 ~ + 1 2	- 57 ~-25	− 87 ~ − 57
SR150	$-29 \sim +14$	- 69 ∼-29	−104 ~ − 69

Anm. 1: Die Vorspannungsklasse «Normal» wird in der Bestellbezeichnung nicht angegeben.

Anm. 2: Die Vorspannung in tangentialer Richtung beträgt ca. 60% des Radialwertes.

Aufbau der Bestellbezeichnung



Das Zeichen "II" bezeichnet hier die geplante Montageanordnung zweier parallel verlaufender Führungsschienen.

Montagehinweis

Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 5 angegeben. Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, dass Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 5 angegebenen Maximalradien.

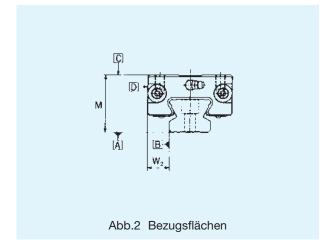
Tab. 5 Schulterhöhen und Ausrundungen Einheit: mm

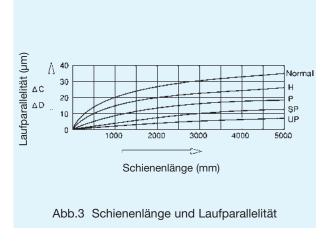
Bau-	Ausrundungs-	Schulterhöhe	Schulterhöhe	
größe	radius	für Führungs-	für Führungs-	
		schiene	wagen	
	r (max.)	H ₁	H ₂	Е
SR15	0,5	3,8	4	4,5
SR20	0,5	5	5	6
SR25	1,0	5,5	5	7
SR30	1,0	8	6	9,5
SR35	1,0	9	6	11,5
SR45	1,0	10	8	12,5
SR55	1,5	11	8	13,5
SR70	1,5	12	10	15
SR85	1,2	8	12	18,5
SR100	1,2	10	15	19
SR120	1,2	12	20	15
SR150	1,2	12	20	22

Genauigkeitsklassen

Die Genauigkeit von T⊓HK Linearführungen wird, wie Tabelle 6 und Abbildung 3 zeigen, nach der Laufparallelität, den Maßtoleranzen von Höhe und Breite sowie den Differenzen von Höhe und Breite zwischen den Wagenpaaren bei mehreren eingesetzten Führungswagen auf einer Schiene bzw. auf mehreren in einer Ebene parallel verlaufenden Schienen definiert.

Laufparallelität


Die Laufparallelität bezeichnet den Parallelitätsfehler zwischen den beiden Bezugsflächen von Führungsschiene und Führungswagen. Bei der Messung wird die Führungsschiene erst auf der Bezugsfläche festgeschraubt, dann wird der Führungswagen über der gesamten Schienenlänge verfahren.

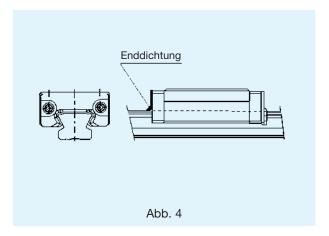

Abweichung der Höhe M zwischen Paaren

Die Abweichung der Höhe M zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Höhe M, die an jedem der in einer Ebene montierten Führungswagen gemessen worden sind.

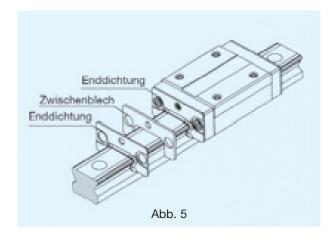
Abweichung der Breite W₂ zwischen Paaren

Die Abweichung der Breite W2 zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Breite W₂, die an jedem der auf einer Schiene montierten Führungswagen gemessen worden sind.

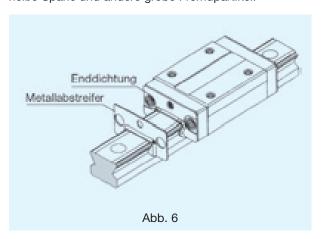
Ta


ab. 6 Genauigkeitsklassen Einhei										
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse	Super- präzisions Klasse	Ultra- präzisions Klasse				
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008				
	Abweichung der Höhe M zwischen den Paaren	0,02	0,01	0,006	0,004	0,003				
SR 15	Maßtoleranz der Breite W ₂	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008				
20	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	0,006	0,004	0,003				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 3)								
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 3)					
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01				
	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003				
SR 25	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01				
30 35	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 3)								
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 3)								
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02				
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003				
SR 45	Maßtoleranz der Breite W ₂	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02				
55	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02	0,01	0,007	0,005				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 3)								
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 3)					
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03				
SR	Abweichung der Höhe M zwischen den Paaren	0,03	0,02	0,01	0,007	0,005				
70 85	Maßtoleranz der Breite W ₂	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03				
100 120	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,025	0,015	0,010	0,007				
150	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 3)								
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 3)								

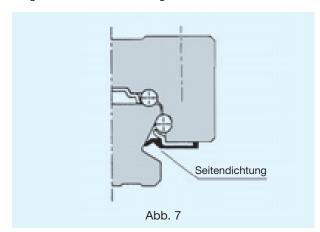
Abdichtung


Enddichtung

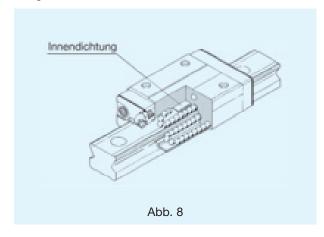
Der Wagen der Linearführung SR ist standardmäßig mit Enddichtungen ausgestattet.


Doppeldichtung

Zum verstärkten Staubschutz ist die Doppeldichtung als Zubehör erhältlich.


Metallabstreifer

Der Metallabstreifer (Option) schützt die Dichtung gegen heiße Späne und andere grobe Fremdpartikel.


Seitendichtung

Zur verbesserten Staubabdichtung an der Unterseite des Wagens sind Seitendichtungen erhältlich.

Innendichtung

Innendichtungen schützen effektiv das Wageninnere vor Staub und anderen Fremdstoffen. Lieferbar für die Baugrößen SR45~55.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 8 mit der Angabe der Variation der entsprechenden Länge L des Führungswagens.

Tab. 7

Symbol	Abdichtungszubehör
UU	mit beidseitigen Enddichtungen
SS	mit End- und Seitendichtungen
ZZ	mit End- und Seitendichtungen
	sowie Metallabstreifern
DD	Mit Doppel- und Seitendichtungen
KK	Mit Doppel- und Seitendichtungen
	sowie Metallabstreifern
LL	mit Enddichtungen für geringen
	Verschiebewiderstand
RR	Mit LL- und Seitendichtunen

Dichtungswiderstand

In Tabelle 9 sind die maximalen Dichtungswiderstände eines abgeschmierten Führungswagens mit montierten Enddichtungen angegeben (Symbol "UU" in der Bestellbezeichnung).

Tab.9 Dichtungswiderstand

Einheit: N

Baugröße	Dichtungswiderstand
SR15	2,5
SR20	3,4
SR25	4,4
SR30	8,8
SR35	11,8
SR45	12,7
SR55	15,7
SR70	19,6
SR85	_
SR100	_
SR120	_
SR150	_

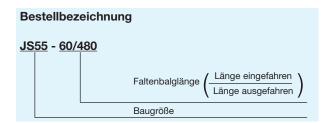
Tab. 8 Kombinationsmöglichkeiten bei Abdichtungen und dadurch entstehende Längenvariationen des Führungswagens

Einheit: mm


Baugröße	ohne		U	IU	S	S		DD	Z	ZZ	K	(K	L	.L	F	RR
SR15	0	-5,0	0	_	0	_	0	5,2	_	1,4	Δ	6,6	0	_	0	_
SR20	0	-6,3	0	_	0	_	0	6,3	_	4,1	Δ	10,7	0	-	0	-
SR25	0	-7,0	0	-	0	_	0	7,6	0	4,4	0	12,0	0	-	0	-
SR30	0	-7,0	0	-	0	-	0	7,6	0	2,6	0	10,2	×		×	
SR35	0	-7,0	0	-	0	-	0	7,6	0	2,6	0	10,2	×		×	
SR45	0	-8,0	0	-	0	-	0	8,6	0	3,4	0	12,0	×		×	
SR55	0	-8,0	0	-	0	_	0	8,6	0	3,4	0	12,0	×		×	
SR70	0	-7,4	0	_	0	_	0	8,6	0	3,8	0	11,0	×		×	
SR85	0	-8,0	0	_	0	_	×		×		×		×		×	
SR100	0	-8,0	0	-	0	-	×		×		×		×		×	
SR120	0	-9,0	0	-	0	-	×		×		×		×		×	
SR150	0	-9,0	0	_	0	_	×		×		×		×		×	

- Anmerkung: o: Kombinationsmöglichkeit vorhanden
 - ×: keine Kombinationsmöglichkeit
 - △: Kombinationsmöglichkeit vorhanden, aber ohne Schmiernippel. Fragen Sie hierzu THK

Faltenbalg für Typ SR


Die Abmessungen des Spezial-Faltenbalgs für die Linearführung SR sind in der nachfolgenden Tabelle ersichtlich. Bitte verwenden Sie die unten stehende Bestellbezeichnung für Ihre Anfrage.

Einheit: mm

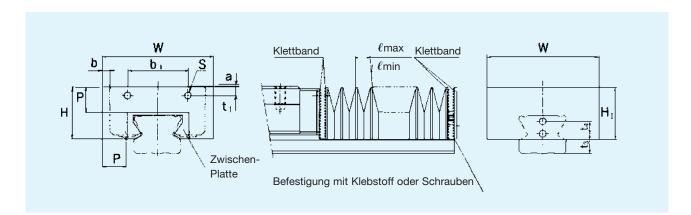
Baugröße														Befesti-	A	passende	
	W	Н	H ₁	Р	b ₁	t ₁	b_2	t ₂	t ₃	t ₄	Schraubengröße S × Gewindelänge	а	W/V	TB/SB	gungs- platte T	Lmax Lmin	Führung
JS 15	51	24	26	15	22	3,4	_	_	8	_	M3 × 6	5	8,5	_	14	5	SR 15
JS 20	58	26	30	15	25	4,2	_	_	6	6	M3 × 6	4	8	0,5	14	5	SR 20
JS 25	71	33	38	20	29	5	_	_	6	7	M3 × 6	7	11,5	1	14	7	SR 25
JS 30	76	37,5	37,5	20	42	5	12	17	_	_	M4 × 8	3	8	_	14	7	SR 30
JS 35	84	39	39	20	44	6,5	14	20	_	_	M5 × 10	1,5	7	_	14	7	SR 35
JS 45	95	47,5	47,5	20	60	8	22	27	_	_	M5 × 10	_	5	_	14	7	SR 45
JS 55	108	55,5	55,5	25	70	10	24	28	_	_	M6 × 12	_	4	_	14	9	SR 55
JS 70	144	67	67	30	90	13	34	35	_	_	M6 × 12	_	9	_	14	10	SR 70

Anm.: Ist der Faltenbalg für eine andere Einbaulage als für die horizontale Lage vorgesehen, sollte dies bei der Bestellung angegeben werden, da sich die Ausdehnungsrate des Balgs ändert.

Anm.: Die Faltenbalglänge wird wie folgt berechnet:

Lmin = $\frac{S}{(A-1)}$ S: Hublänge (mm)

Lmax = Lmin × A A: Ausdehnungsrate (Lmax/Lmin)



Neuer Spezial-Faltenbalg für Typ SR

Für die Typen SR15/20/25 gibt es außer den bisherigen Spezialfaltenbälgen nun auch neue Faltenbälge mit nachfolgend beschriebenen Eigenschaften. Geben Sie bitte bei Ihrer Bestellung die untenstehende Bestellbezeichnung an.

Merkmale

- In der Höhe und Breite sind die neuen Faltenbälge kleiner als die bisherigen, so dass sie genau mit dem Wagen abschließen. Die Ausdehnungsrate ist gleich oder sogar besser.
- In jeder Falte des Balgs befindet sich eine Zwischenplatte. Daher kann der Balg z. B. über Kopf, auf eine geneigte Fläche oder an die Wand montiert werden.
- 3) Die neuen Bälge können mit Geschwindigkeiten bis zu 2 m/s (120 m/min) betrieben werden.
- 4) Die Bälge können mit Klettband befestigt werden. Folglich können die Standardbälge auf die gewünschte Länge zugeschnitten oder bei Anwendungen für lange Schienen mit Klebstoff verbunden werden.
- 5) Die neuen Bälge können aber auch wie üblich mit Schrauben befestigt werden.
- 6) Bei Spezialanforderungen wenden Sie sich bitte an unseren technischen Kundendienst.

Einheit: mm

		Hauptabmessungen b Dehnungs- IFakto														Faktor	passende Führung
Baugröße	W	Н	P	b₁	l t₁	t ₃	l t₄	d	a	w	ТВ	ℓmax	ℓmin	rate A	Е	k	
DS 15	38	19	10	22	3,4	8	-4	3,5	0	7	2	13	2,5	5	2	1,3	SR 15
DS 20	49	22	10	25	4,2	6	6	4	0	5	3,5	13	2,5	5	2	1,3	SR 20
DS 25	56	26	12	29	5	6	7	4	0	8,5	4	15	3	5	2	1,3	SR 25

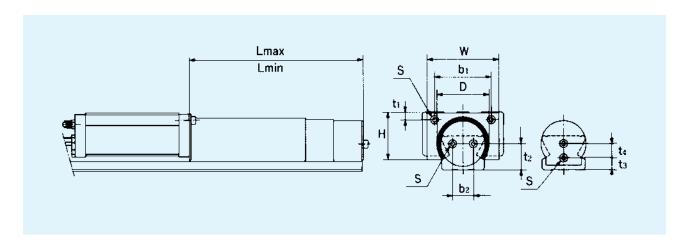
• Die maximale Einzellänge oder Standardlänge beträgt Lmax (Lmin) = ℓ max (ℓ min) \times 200

 Rechenbeispiel für Balgabmessungen für SR15 Hub $\ell_{\rm S} = 530~{\rm mm}$

Lmin =
$$\frac{\ell_S}{(A-1)} = \frac{530}{4} = 132,5 \approx 135$$

 $\begin{aligned} \text{Lmax} &= \text{A} \times \text{Lmin} = 5 \times 135 = 675 \\ \text{n= erforderliche Anzahl von Falten} \end{aligned}$

$$n = \frac{L \text{ max}}{P \times k} = \frac{675}{10 \times 1,3} = 51,9 \approx 52 \text{ Falten}$$


Lmin = $n \times \ell$ min + E=52 × 2,5+2=132 (E für Plattendicke 2)

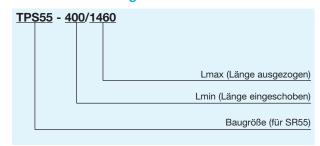
Der passende Balg ist DS15-132/675.

Metall-Teleskopabdeckung für Typ SR

Die Maße der Metall-Teleskopabdeckung für die Linearführung SR sind in folgender Tabelle angegeben. Beziehen Sie sich bitte auf die unten angegebene Bestellbezeichnung.

Einheit: mm

			Haup	otabmes	sungen						passende
Baugröße	W	D max	Н	b ₁	t ₁	b ₂	t ₂	t ₃	t ₄	Schraubengröße S X Gewindelänge	Führung
TPS 25	42	30	26,5	29	5	_	_	6	7	M3 × 6	SR 25
TPS 30	54	37	34,5	42	5	12	17	_	_	M4 × 8	SR 30
TPS 35	64	42	38	44	6,5	14	20	_	_	M5 × 10	SR 35
TPS 45	76	55	48	60	8	22	27	_		M5 × 10	SR 45
TPS 55	90	61	54,5	70	10	24	28	_	_	M6 × 12	SR 55


Einheit: mm

Baugröße	Segmente	l	_	Hub
		min	max	
	3	200	530	330
TPS 25	3	150	380	230
	3	100	230	130
	3	250	680	430
TPS 30	3	200	530	330
	3	150	380	230
	3	300	830	530
TPS 35	3	250	680	430
	3	200	530	330
	3	150	380	230

Einheit: mm

Baugröße	Segmente	l	_	Hub
		min	max	
	3	350	980	630
TPS 45	3	300	830	530
	3	250	680	430
	3	200	530	330
	4	400	1460	1060
TPS 55	4	350	1330	980
	4	300	1060	760
	4	250	860	610

Bestellbezeichnung

Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungschienen sind in Tabelle 10 angegeben. Bei Schienenlängen größer als die angegebenen Maximallängen werden die Führungsschienen in mehreren Teilen als Stoßversion geliefert.

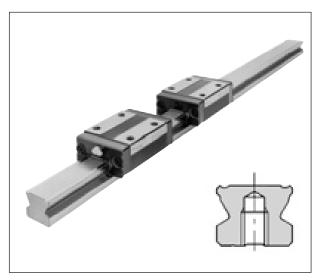
Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zur Instabilität, mit der Folge, dass die Endgenauigkeit beeinträchtigt werden kann. Werden zwei oder mehr Teilstücke eines Schienenstranges bestellt, ist die Gesamt-Schienenlänge anzugeben. Bei Führungsschienen, die als Stoßversion geliefert werden, werden die Stoßstellen der Schienen paßgenau erodiert und die Schienenenden selbst mit einer Fase versehen.

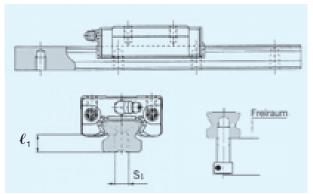
Tab. 10 Standard- und Maximallängen der Führungsschienen

Einheit: mm

Baugröße	SR 15	SR 20	SR 25	SR 30	SR 35	SR 45	SR 55	SR 70
	160	220	220	280	280	570	780	1270
	220	280	280	360	360	675	900	1570
	280	340	340	440	440	780	1020	2020
	340	400	400	520	520	885	1140	
	400	460	460	600	600	990	1260	
	460	520	520	680	680	1095	1380	
	520	580	580	760	760	1200	1500	
	580	640	640	840	840	1305	1740	
	640	700	700	920	920	1410	1860	
	700	760	760	1000	1000	1515	1980	
	760	820	820	1080	1080	1725	2100	
	820	940	940	1160	1160	1830	2220	
	940	1000	1000	1240	1240	1935	2340	
	1000	1060	1060	1320	1320	2040	2460	
	1060	1120	1120	1400	1400	2145	2580	
	1120	1180	1240	1480	1480	2250	2700	
	1180	1240	1300	1640	1640	2355	2820	
	1240	1300	1360	1720	1720	2460	2940	
Standardlänge	1300	1360	1420	1800	1800	2565		
der	1360	1420	1480	1880	1880	2670		
Führungs-	1420	1480	1540	1960	1960	2775		
schiene	1480	1540	1600	2040	2040	2880		
(L ₀)	1540	1600	1660	2120	2120	2985		
		1660	1720	2200	2200			
		1720	1780	2280	2280			
		1780	1840	2360	2360			
		1840	1900	2440	2440			
		1900	1960	2520	2520			
		1960	2020	2600	2600			
		2020	2080	2680	2680			
		2080	2140	2760	2760			
		2140	2200	2840	2840			
			2260 2320	2920	2920			
			2320					
			2380					
F	60	60	60	80	80	105	120	150
G	20	20	20	20	20	22,5	30	35
Maximallänge	2500	3000	3000	3000	3000	3000	3000	3000
	(1240)	(1480)	(2020)	(2520)	(2520)			

Anm.: Die Maximallängen variieren je nach Genauigkeitsklasse. Sind keine gestoßenen Führungsschienen für Überlängen einsetzbar, wenden Sie sich bitte an THK


Die Baugrößen ab SR85 sind Semi-Standardtypen. Bezüglich der lieferbaren Schienenlängen fragen Sie bitte


Die Angaben in () geben die Maximallängen für korrosionsbeständige Führungsschienen an.

Von unten verschraubbarer Typ SR

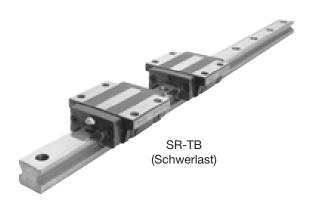
Die Führungsschiene des Typs SR ist auch in einer von unten verschraubbaren Ausführung lieferbar.

Tab 11. Gewindebohrungen

Einheit: mm

Baugröße	S ₁	Gewindelänge ℓ_1
SR 15	M5	7
SR 20	M6	9
SR 25	M6	10
SR 30	M8	14
SR 35	M8	16
SR 45	M12	20
SR 55	M14	22

 Wählen Sie die Länge der Befestigungsschrauben bitte so, dass in der Gewindebohrung noch ca. 2-5 mm Frei-raum bleibt.




SR-TB/SB

Standardtyp

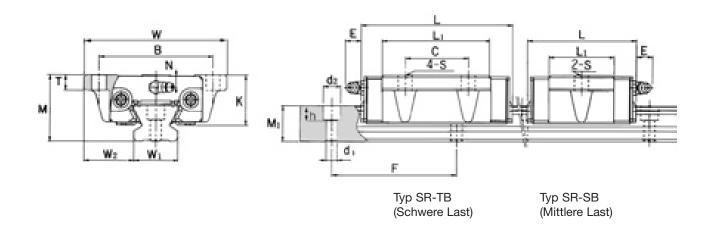
SR-TB/SB M

Korrosionsbeständiger Typ¹⁾

Davew#0a 2)		omessun	_			Abmes	ssungen	Führung	swagen		
Baugröße ²⁾	Höhe M	Breite W	Länge L	В	С	S	L ₁	Т	К	N	Е
SR 15 TB-Y TB-MY ³⁾⁴⁾ SR 15 SB-Y SB-MY ³⁾⁴⁾	24	52	57 41	41	26 —	4,5	39,5 22,9	7	19,5	6	5,5
SR 20 TB TB-M ³⁾ SR 20 SB SB-M ³⁾	28	59	66,5 48	49	32 —	5,5	46,7 27,8	9	22	6	12
SR 25 TB-Y TB-MY ³⁾⁴⁾ SR 25 SB-Y SB-MY ³⁾⁴⁾	33	73	83 60	60	35 —	7	59 35,2	10	26	7	12
SR 30 TB TB-M ³⁾ SR 30 SB SB-M ³⁾	42	90	97 68	72	40 —	9	69,3 40,4	10	32,5	8	12
SR 35 TB TB-M ³⁾ SR 35 SB SB-M ³⁾	48	100	111 78	82	50 —	9	79 45,7	13	36,5	8,5	12
SR 45 TB	60	120	126	100	60	11	90,5	15	47,5	11,5	16
SR 55 TB	68	140	156	116	75	14	117	17	54,5	12	16

¹⁾ Bei den Typen mit dem Symbol M sind Führungswagen, Führungsschienen und Kugeln aus rostbeständigem Stahl.

²⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S. 209.


³⁾ Auf Anfrage können für diese Typen auch Endplatten aus rostbeständigem Stahl geliefert werden.

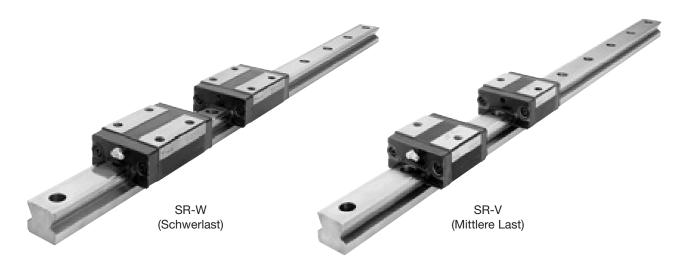
⁴⁾ Das Symbol Y bedeutet, dass die Befestigungsbohrungen der Führungsschienen bei der Baugröße SR15TB/SB für Schrauben der Größe M4 und bei der Baugröße SR25TB/SB für Schrauben der Größe M6 vorgesehen sind. Ohne das Symbol Y sind die Schienen für Schrauben der Größe M5 vorgesehen.

⁵⁾ Die Standardlängen der Führungsschienen sind auf S. 220 angegeben.

⁶⁾ Die zulässigen statischen Momente M_A, M_B und M_C finden Sie auf S. 212.

Einheit: mm

Cohmissional	Breite			essunger	n Führungsschiene ⁵⁾	Tragzahl ⁶⁾		Gewicht Wagen Schiene	
Schmiernippel	W ₁ ±0,05	W ₂	Höhe M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[kg]	[kg/m]
PB1021B	15	18,5	12,5	60	$3.5 \times 6 \times 4.5$	9,51 5,39	19,3 11,1	0,2 0,15	1,2
B-M6F	20	19,5	15,5	60	6 × 9,5 × 8,5	12,5 7,16	25,2 14,4	0,4 0,3	2,1
B-M6F	23	25	18	60	7 × 11 × 9	20,3 11,7	39,5 22,5	0,6 0,4	2,7
B-M6F	28	31	23	80	7 × 11 × 9	30 17,2	56,8 32,5	1,1 0,8	4,3
B-M6F	34	33	27,5	80	9 × 14 × 12	41,7 23,8	77,2 44,1	1,5 1,0	6,4
B-PT1/8	45	37,5	35,5	105	11 × 17,5 × 14	55,3	101	2,5	11,3
B-PT1/8	48	46	38	120	14 × 20 × 17	89,1	157	4,2	12,8



SR-W/V

SR-W/V M

Standardtyp

Korrosionsbeständiger Typ¹⁾

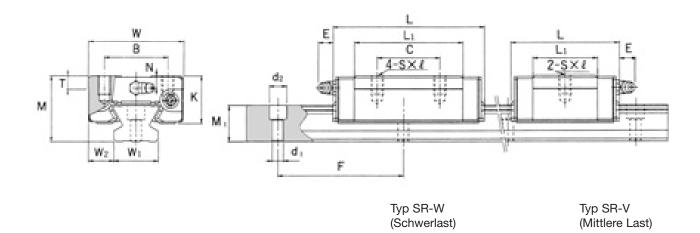
Baugröße ²⁾	Länge	Abmessungen Führungswagen									
baugione -/	Höhe M	Breite W	Larige	В	С	Sxℓ	L ₁	Т	K	N	Е
SR 15 W-Y W-MY ³⁾⁴⁾ SR 15 V-Y V-MY ³⁾⁴⁾	24	34	57 41	26	26 —	M4×7	39,5 22,9	6	19,5	6	5,5
SR 20 W W-M ³⁾ SR 20 V V-M ³⁾	28	42	66,5 48	32	32 —	M5×8	46,7 27,8	7,5	22	6	12
SR 25 W-Y W-MY ³⁾⁴⁾ SR 25 V-Y V-MY ³⁾⁴⁾	33	48	83 60	35	35 —	M6×9	59 35,2	8	26	7	12
SR 30 W W-M ³⁾ SR 30 V V-M ³⁾	42	60	97 68	40	40 —	M8×12	69,3 40,4	9	32,5	8	12
SR 35 W W-M ³⁾ SR 35 V V-M ³⁾	48	70	111 78	50	50 —	M8×12	79 45,7	13	36,5	8,5	12
SR 45 W	60	86	126	60	60	M10×15	90,5	15	47,5	11,5	16
SR 55 W	68	100	156	75	75	M12×20	117	17	54,5	12	16
SR 70 T	85	126	195	90	90	M16×25	147,6	25	70	12	16
SR 85 T ^{5/6)}	110	156	180	100	80	M18×30	130	25	91,5	27	12
SR 100 T ^{5/6)}	120	178	200	120	100	M20×35	150	30	101	32	12
SR 120 T ⁵⁾	110	205	235	160	120	M20×35	180	24	95	14	13,5
SR 150 T ⁵⁾	135	250	280	200	160	M20×35	215	24	113	17	13,5

¹⁾ Bei den Typen mit dem Symbol M sind Führungswagen, Führungsschienen und Kugeln aus rostbeständigem Stahl.

²⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S. 213.

³⁾ Auf Anfrage können für diese Typen auch Endplatten aus rostbeständigem Stahl geliefert werden.

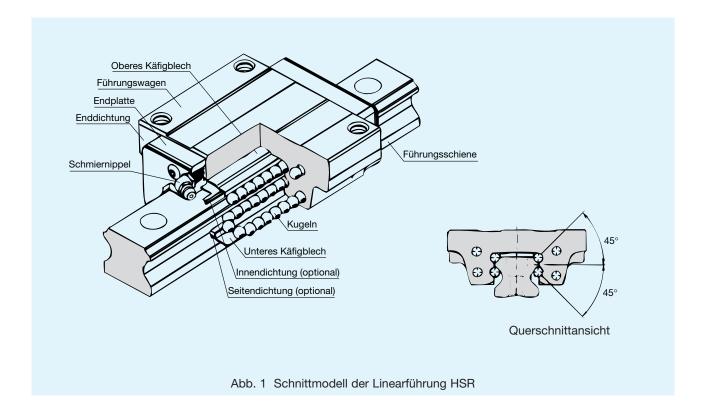
⁴⁾ Das Symbol Y bedeutet, dass die Befestigungsbohrungen der Führungsschienen bei der Baugröße SR15W/V für Schrauben der Größe M4 und bei der Baugröße SR25W/V für Schrauben der Größe M6 vorgesehen sind. Ohne das Symbol Y sind die Schienen für Schrauben der Größe M5 vorgesehen.


⁵⁾ Linearführungen der Baugrößen SR85T oder größer sind Semi-Standardprodukte. Für weitere Informationen wenden Sie sich bitte an THK.

⁶⁾ Bei den Typen SR85T und SR100T sind die Schmiernippel seitlich am Führungswagen angebracht.

⁷⁾ Die Standardlängen der Führungsschienen sind auf S. 220 angegeben.

⁸⁾ Die zulässigen statischen Momente M_A, M_B und M_C finden Sie auf S. 212.


Einheit: mm

	Breite		Abme	essunger	Führungsschiene 7)	Tragzahl 8)		Gewicht	
Schmiernippel	W ₁		Höhe			C	$[C_0]$	F 7	Schiene
	±0,05	W_2	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[kg]	kg/m
PB1021B	15	9,5	12,5	60	$3,5 \times 6 \times 4,5$	9,51 5,39	19,3 11,1	0,2 0,12	1,2
B-M6F	20	11	15,5	60	6 × 9,5 × 8,5	12,5 7,16	25,2 14,4	0,3 0,2	2,1
B-M6F	23	12,5	18	60	7 × 11 × 9	20,3 11,7	39,5 22,5	0,4 0,3	2,7
B-M6F	28	16	23	80	7 × 11 × 9	30 17,2	56,8 32,5	0,8 0,5	4,3
B-M6F	34	18	27,5	80	9 × 14 × 12	41,7 23,8	77,2 44,1	1,2 0,8	6,4
B-PT1/8	45	20,5	35,5	105	11 × 17,5 × 14	55,3	101	2,2	11,3
B-PT1/8	48	26	38	120	14 × 20 × 17	89,1	157	3,6	12,8
B-PT1/8	70	28	47	150	18 × 26 × 22	156	266	7,0	22,8
A-PT1/8	85	35,5	65,5	180	18 × 26 × 22	120	224	10,1	34,9
A-PT1/8	100	39	70,3	210	22 × 32 × 25	148	283	14,1	46,4
B-PT1/4	114	45,5	65	230	26 × 39 × 30	279	377	_	_
B-PT1/4	144	53	77	250	33 × 48 × 36	411	537	_	_

THK Linearführung HSR

gleiche Belastungsaufnahme aus allen Hauptrichtungen

Aufbau und Merkmale

Bei der THK Linearführung HSR zirkulieren vier Kugelreihen innerhalb des Führungswagens. Im belasteten Bereich laufen die Kugeln zwischen den feingeschliffenen Laufrillen von Führungswagen und -schiene, bis sie durch die in den Endplatten integrierten Umlenkstücke und die Rücklaufkanäle zurückgeführt werden. Die Konstruktion der Endplatten gewährleistet dabei eine hohe Laufruhe bei geringen Reibungsverlusten.

Gleiche Belastungsaufnahme in allen Hauptrichtungen

Aufgrund der Anordnung der Kugelreihen in einem Kontaktwinkel von jeweils 45° besitzt die Linearführung HSR gleiche Tragzahlen in radialer, gegenradialer und tangentialer Richtung. Auf diese Weise kann der Typ HSR in verschiedenen Einbaulagen für die unterschiedlichsten Anwendungen eingesetzt werden.

Hohe Steifigkeit

Die optimale Anordnung des Kugelumlaufsystems ermöglicht die Anbringung einer ausreichend hohen Vorspannung für ein spielfreies Linearführungssystem mit großer Steifigkeit.

Zur Befestigung der Anschlusskonstruktion befinden sich großdimensionierte Gewinde- oder Durchgangsbohrungen im sehr kompakten Führungswagen. Somit kann die Linearführung HSR auch im Schwerlastbereich, wie beispielsweise in Werkzeugmaschinen, eingesetzt werden.

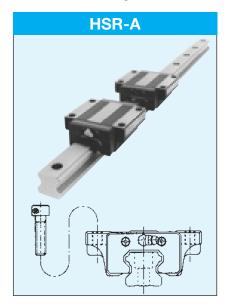
Käfigbleche schützen die Kugeln vor dem Herausfallen aus dem Führungswagen, wenn dieser zur Erleichterung der Montage von der Schiene abgezogen wird. Aus der äußerst kompakten Konstruktion des Führungswagens resultiert eine hohe Steifigkeit mit sehr präzisen Linearbewegungen bei konstanten Laufeigenschaften.

Kompensation von Montagefehlern

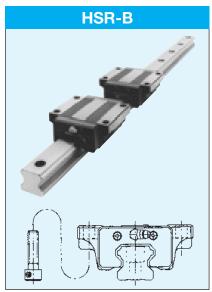
Aufgrund der X-Anordnung der vier Kreisbogenlaufrillen mit 2-Punkt-Kontakt kann der Führungswagen negative Einflüsse von Montagefehlern auf die Laufgenauigkeit auch unter Vorspannung kompensieren.

Hohe Lebensdauer

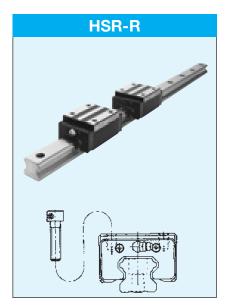
Sowohl bei Aufbringung einer Vorspannung als auch bei Montagefehlern tritt keine wesentliche Erhöhung des Differentialschlupfes auf. Somit ergibt sich eine hohe Lebensdauer bei gleichbleibender Präzision.


Korrosionsbeständige Version

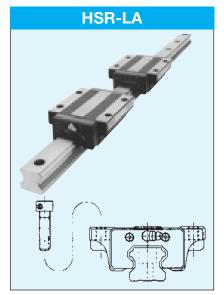
Bei Bedarf können Führungswagen, Führungsschienen und Kugeln in rostbeständiger Ausführung geliefert werden. Geeignet ist diese Ausführung vor allem für Anwendungen in Reinräumen, bei Anwendungen mit geringen Schmiermöglichkeiten sowie bei Einsatzorten mit hoher Feuchtigkeit oder Spritzwasser.



Typenübersicht


Standardausführung für Schwerlast

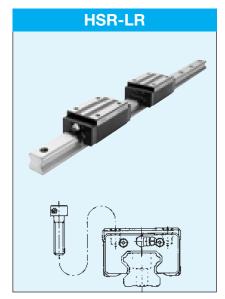
Der Führungswagen ist mit vier Gewindebohrungen für eine einfache Montage der Anschlusskonstruktion versehen.



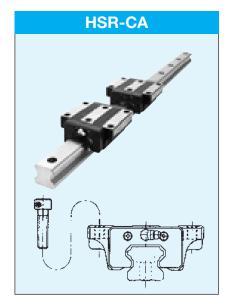
Die Anschlusskonstruktion wird mittels Befestigungsschrauben montiert, die von unten durch die vier Bohrungen des Führungswagens durchgeführt werden.



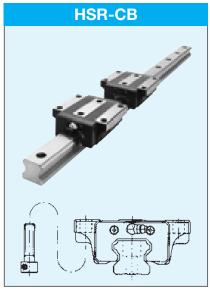
Der schmale Führungswagen ist mit vier Gewinde-Sacklochbohrungen versehen. Mit diesem kann auch die frühere Kompaktführung NSR-TBA ersetzt werden.


Standardausführung für Superschwerlast

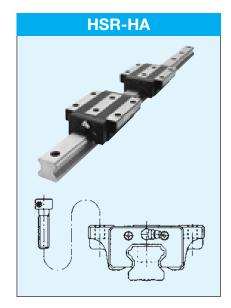
Dieser Wagentyp mit vier Gewindebohrungen hat die gleiche Querschnittsform wie der Typ HSR-A, besitzt aber aufgrund seiner verlängerten Bauform mehr Laufkugeln für höhere Tragzahlen.

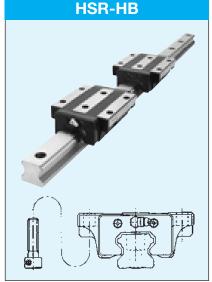


Dieser Wagentyp mit vier Durchgangsbohrungen hat die gleiche Querschnittsform wie der Typ HSR-B, besitzt aber aufgrund seiner verlängerten Bauform mehr Laufkugeln für höhere Tragzahlen.



Dieser Wagentyp mit vier Gewindebohrungen hat die gleiche Querschnittsform wie der Typ HSR-R, besitzt aber aufgrund seiner verlängerten Bauform mehr Laufkugeln für höhere Tragzahlen.


Der Führungswagen ist mit sechs Gewindebohrungen für eine einfache Montage der Anschlusskonstruktion versehen.


Die Anschlusskonstruktion wird mittels Befestigungsschrauben montiert, die von unten durch die sechs Durchgangsbohrungen des Führungswagens durchgeführt werden.

Diese übergroße Linearführung der Baureihe HSR ist speziell für sehr schwere Anschlusskonstruktionen und große Werkzeugmaschinen konstruiert.

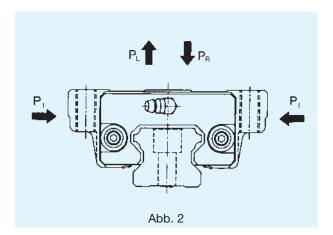
Dieser Wagentyp mit sechs Gewindebohrungen hat die gleiche Querschnittsform wie der Typ HSR-CA, besitzt aber aufgrund seiner verlängerten Bauform mehr Laufkugeln für höhere Tragzahlen.

Dieser Wagentyp mit sechs Durchgangsbohrungen hat die gleiche Querschnittsform wie der Typ HSR-CB, besitzt aber aufgrund seiner verlängerten Bauform mehr Laufkugeln für höhere Tragzahlen.

Miniaturisierte Linearführungen aus der Baureihe HSR-Mini.

Variation der Tragzahlen

Tragzahlen

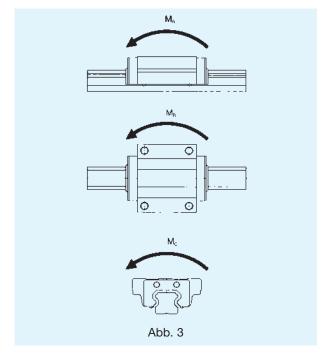

Die Linearführung HSR kann aus allen Richtungen gleich belastet werden. Die in den Maßtabellen angegebenen Tragzahlen beziehen sich auf Belastungen in radialer, gegenradialer und tangentialer Richtung.

Äquivalente Belastung

Bei gleichzeitiger Belastung des Führungswagens HSR aus unterschiedlichen Richtungen wird die äquivalente Belastung mit folgender Formel ermittelt:

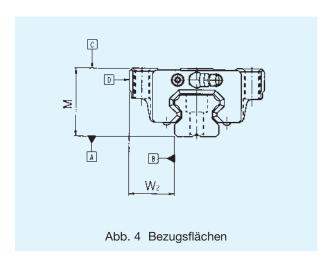
$$P_{E} = |P_{R} - P_{L}| + P_{T}$$

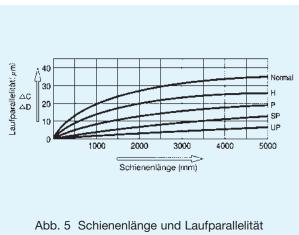
 $\begin{array}{ll} P_{\rm E}: {\rm \ddot{a}quivalente~Belastung} & (\rm N) \\ P_{\rm R}: {\rm radiale~Belastung} & (\rm N) \\ P_{\rm L}: {\rm gegenradiale~Belastung} & (\rm N) \\ P_{\rm T}: {\rm tangentiale~Belastung} & (\rm N) \end{array}$


Zulässiges statisches Moment Mo

Beim Einsatz eines Führungswagens oder zweier Wagen, die direkt aneinander auf einer Führungsschiene montiert sind, wirkt je nach Lage des Kraftangriffspunktes eine zusätzliche Momentbelastung auf den bzw. die Führungswagen. Tabelle 1 gibt die Werte für das zulässige statische Moment pro Wagen bzw. Wagenpaar in den Richtungen M_A , M_B und M_C an.

Tab. 1 Zulässiges statisches Moment beim Typ HSR


Einheit: kNm


Richtung	N	1 _A	N	∕I B	M _C
Baugröße	1 Wagen	2 Wagen	1 Wagen	2 Wagen	1 Wagen
HSR8	0,00492	0,0319	0,00492	0,0319	0,00727
HSR10	0,0123	0,0716	0,0123	0,0716	0,0162
HSR12	0,0409	0,228	0,0409	0,228	0,0445
HSR15	0,0805	0,457	0,0805	0,457	0,0844
HSR20	0,19	1,04	0,19	1,04	0,201
HSR20L	0,323	1,66	0,323	1,66	0,27
HSR25	0,307	1,71	0,307	1,71	0,344
HSR25L	0,529	2,74	0,529	2,74	0,459
HSR30	0,524	2,7	0,524	2,7	0,562
HSR30L	0,889	4,37	0,889	4,37	0,751
HSR35	0,782	3,93	0,782	3,93	0,905
HSR35L	1,32	6,35	1,32	6,35	1,2
HSR45	1,42	7,92	1,42	7,92	1,83
HSR45L	2,44	12,6	2,44	12,6	2,43
HSR55	2,45	13,2	2,45	13,2	3,2
HSR55L	4,22	21,3	4,22	21,3	4,28
HSR65	4,8	23,5	4,8	23,5	5,82
HSR65L	8,72	40,5	8,72	40,5	7,7
HSR85	8,31	45,6	8,31	45,6	11
HSR85L	14,2	72,5	14,2	72,5	14,7
HSR100	19,4	98,2	19,4	98,2	22,4
HSR120	25,9	129	25,9	129	31,1
HSR150	33,6	167	33,6	167	45,2

Genauigkeitsklassen

Tab. 2A Genauigkeitsklassen

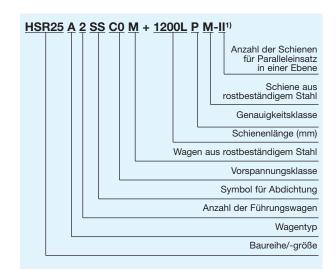
Einheit: mm

Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse		Ultra- präzisions Klasse				
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,08	±0,04	±0,02	±0,01	_				
	Abweichung der Höhe M zwischen den Paaren	0,015	0,007	0,005	0,003	_				
HSR 8	Maßtoleranz der Breite W ₂	±0,05	±0,025	±0,015	±0,010	_				
10 12	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	±0,007	±0,005	_				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)								
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)								

	2B Genauigkeits		Einhe	eit: mm							
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse	Super- präzisions Klasse	Ultra- präzisions Klasse					
	Kennzeichen	Normal	Н	Р	SP	UP					
	Maßtoleranz der Höhe M	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008					
	Abweichung der Höhe M zwischen den Paaren	0,02	0,01	0,006	0,004	0,003					
HSR 15	Maßtoleranz der Breite W ₂	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008					
20	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	0,006	0,004	0,003					
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)						
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)						
	Kennzeichen	Normal	Н	Р	SP	UP					
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01					
	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003					
HSR 25	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01					
30 35	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003					
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)									
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)									
	Kennzeichen	Normal	Н	Р	SP	UP					
	Maßtoleranz der Höhe M	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02					
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003					
HSR 45	Maßtoleranz der Breite W ₂	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02					
55	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02	0,01	0,007	0,005					
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)						
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)						
	Kennzeichen	Normal	Н	Р	SP	UP					
	Maßtoleranz der Höhe M	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03					
HSR	Abweichung der Höhe M zwischen den Paaren	0,03	0,02	0,01	0,007	0,005					
65 85	Maßtoleranz der Breite W ₂	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03					
100 120	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,025	0,015	0,010	0,007					
150	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)						
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)						

Vorspannung

Tabelle 3 gibt die Vorspannungsklassen mit dem entsprechenden Radialspiel für den Typ HSR an. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

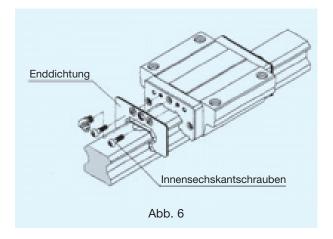

Tab. 3 Vorspannung

Eil	 CII	ι. ι	ai i	

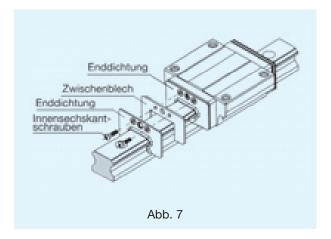
Symbol	Normal	Leichte Vorspannung	Mittlere Vorspannung
Baugröße	_	C1	C0
HSR8	±1	-4 ~−1	_
HSR10	±2	-5 ∼-1	_
HSR12	±3	-6 ~-2	_
HSR15	-4 ∼+2	-12 ~-4	_
HSR20	-5 ∼+2	−14 ~−5	−23 ~−14
HSR25	-6 ∼+3	-16 ∼-6	-26 ∼ -16
HSR30	-7 ∼+4	−19 ~−7	−31 ~−19
HSR35	-8 ∼+4	−22 ~−8	−35 ~−22
HSR45	-10 ∼+5	−25 ~ −10	−40 ~ −25
HSR55	-12 ∼+5	−29 ~ −12	−46 ~ −29
HSR65	-14 ∼+7	−32 ~−14	−50 ~−32
HSR85	-16 ∼+8	−36 ~−16	-56 ∼ -36
HSR100	-19 ∼+9	-42 ∼ -19	-65 ∼ -42
HSR120	−21 ~+10	-47 ∼ -21	−73 ~ −47
HSR150	−23 ~+11	−51 ~−23	−79 ~ −51

Anm.: Das Normalspiel wird nicht bezeichnet. Wird leichte Vorspannung C1 oder mittlere Vorspannung C0 gewünscht, muß das entsprechende Symbol in der Bestellbezeichnung angegeben werden (siehe "Aufbau der Bestellbezeichnung").

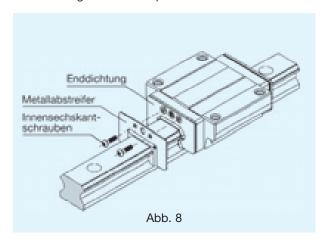
Aufbau der Bestellbezeichnung


Das Zeichen «II» bezeichnet hier die geplante Montageanordnung zweier parallel verlaufender Führungsschienen.

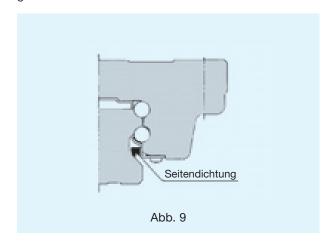
Abdichtung


Enddichtungen

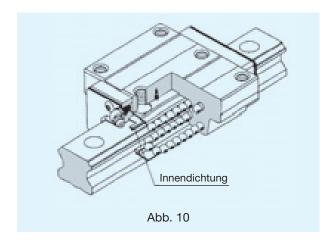
Die Führungswagen der Linearführung HSR sind standardmäßig mit Enddichtungen ausgestattet.


Doppeldichtungen

Zum verstärkten Schutz gegen Fremdpartikel sind Doppeldichtungen als Zubehör erhältlich.


Metallabstreifer

Metallabstreifer dienen zum Schutz gegen heiße Metallspäne und andere größere Fremdpartikel.


Seitendichtungen

Für eine verbesserte Abdichtung der Unterseite des Führungswagens werden diese mit Seitendichtungen ausgestattet.

Innendichtungen

Innendichtungen sind für die Baugrößen HSR30 bis HSR85 erhältlich.

Schmiersystem QZ

Siehe S. 354.

Lamellen-Kontaktabstreifer LaCS

Siehe S. 364.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 5 mit der Angabe der Variation der entsprechenden Länge L des Führungswagens.

Tab. 4

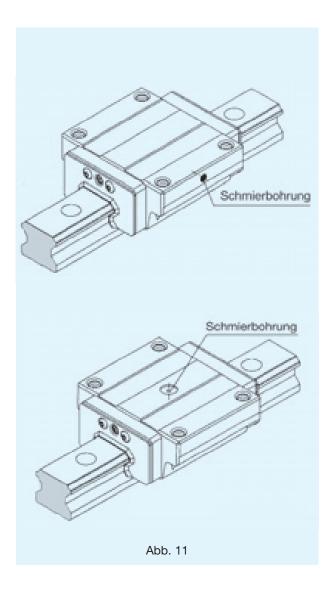
Symbol	Abdichtungszubehör
UU	mit beidseitigen Enddichtungen
SS	mit End- und Seitendichtungen
ZZ	mit End- und Seitendichtungen
	sowie Metallabstreifern
DD	Mit Doppel- und Seitendichtungen
KK	Mit Doppel- und Seitendichtungen
	sowie Metallabstreifern
LL	mit Enddichtungen für niedrigen
	Verschiebewiderstand
RR	Mit LL- und Seitendichtungen

Tab. 5 Kombinationsmöglichkeiten bei Abdichtungen und dadurch entstehende Längenvariationen des Führungswagens

Einheit: mm

Baugröße	oh	nne	U	IU	S	S	D	D	Z	ZZ	K	ίK	L	.L	R	RR
HSR8	0	-3,0	0	_	×		×		×		×		×		×	
HSR10	0	-3,0	0	_	×		×		×		×		×		×	
HSR12	0	-3,0	0	_	×		×		×		×		×		×	
HSR15	0	-5,0	0	_	0	_	0	5,2	\triangle	1,6	\triangle	6,8	0	-	0	-
HSR20	0	-6,0	0	_	0	_	0	6,6	0	2,6	0	9,2	0	-	0	-
HSR25	0	-7,0	0	_	0	_	0	7,6	0	2,6	0	10,2	0	_	0	-
HSR30	0	-7,0	0	_	0	_	0	7,6	0	2,6	0	10,2	0	_	0	-
HSR35	0	-7,0	0	_	0	_	0	7,6	0	2,6	0	10,2	0	_	0	_
HSR45	0	-7,0	0	_	0	_	0	7,2	0	5,2	0	12,4	0	_	0	_
HSR55	0	-7,0	0	_	0	_	0	7,2	0	5,2	0	12,4	0	_	0	_
HSR65	0	-7,0	0	_	0	_	0	7,2	0	5,2	0	12,4	0	_	0	_
HSR85	0	-7,0	0	_	0	_	0	7,2	0	4,8	0	12,0	×		×	
HSR100	0	-12,0	0	_	0	_	×		×		×		×		×	
HSR120	0	-12,0	0	_	0	_	×		×		×		×		×	
HSR150	0	-12,0	0	_	0	_	×		×		×		×		×	

Anmerkung: O: Kombinationsmöglichkeit vorhanden


×: keine Kombinationsmöglichkeit

△: Kombinationsmöglichkeit vorhanden, aber ohne Schmiernippel. Fragen Sie hierzu ™HK

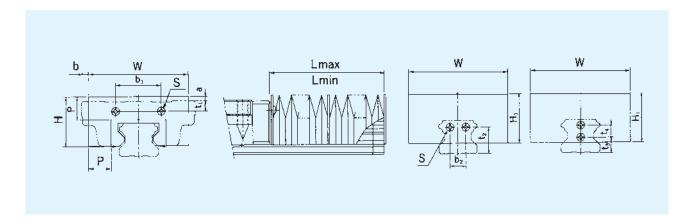
Nicht standardmäßige Schmierbohrungen

Auf Anfrage können die Führungswagen der Baureihe HSR mit Semi-Standard-Schmierbohrungen, wie weiter unten gezeigt, oder mit Schmierbohrungen an anderen Stellen versehen werden.

Dichtungswiderstand

Die Maximalwerte des Dichtungswiderstands für einen Führungswagen mit End-, Seiten- und Innendichtungen (Symbol SS in der Bestellbezeichnung) sind in Tabelle 6 aufgeführt. Bei diesen Werten sind die Dichtungen leicht befettet.

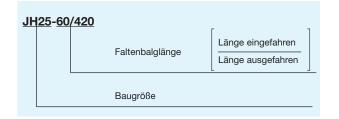
Tab.6 Dichtungswiderstand


Einheit: N

· ·						
Baugröße	Dichtungswiderstand					
HSR8	0,5					
HSR10	0,8					
HSR12	1,2					
HSR15	2,0					
HSR20	2,5					
HSR25	3,9					
HSR30	7,8					
HSR35	11,8					
HSR45	19,6					
HSR55	19,6					
HSR65	34,3					
HSR85	34,3					
HSR100	_					
HSR120						
HSR150	_					

Spezialfaltenbalg für Typ HSR

Die Abmessungen der Spezial-Faltenbälge für die Linearführung HSR sind in der nachfolgenden Tabelle angegeben. Bei Bestellung verwenden Sie bitte die unten angegebene Bestellbezeichnung.



Einheit: mm

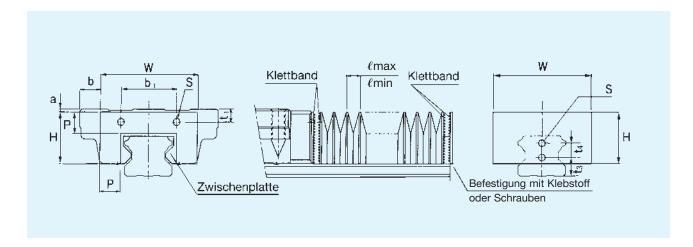
	Hauptabmessungen													Α	passende			
Baugröße	W	Н	H ₁	Р	b ₁	A/B	1 R	b ₂	t ₂	t ₃	t ₄	Schraubengröße S×Gewindelänge	Wage A/B			entyp	Lmax Lmin	Kompakt- führung
JH15	55	27	30	15	25	2,5	6,5	_	_	10	_	M4×8¹)	7,5	3,5	4	10,5	5	HSR15
JH20	66	32	35	17	34	5	5	_	_	6	8	M3×6	7	7	3	11	6	HSR20
JH25	78	38	38	20	30	7	11	_	_	10	8	M3×6	8,5	4,5	4	15	7	HSR25
JH30	84	42	42	20	40	8	11	_	_	11	10	M4×8	7	4	_	12	7	HSR30
JH35	88	43	43	20	40	9	16	14	23	_	_	M4×8	4	_	_	9	7	HSR35
JH45	100	51	51	20	58	10	20	20	29	_	_	M5×10	_	_	_	7	7	HSR45
JH55	108	54	54	20	66	11	21	26	35	_	_	M5×10	_	_	_	4	7	HSR55
JH65	132	68	68	20	80	19	19	32	42	_	_	M6×12	_	_	_	3	7	HSR65
JH85	170	88	88	30	105	23	23	44	50	_	_	M6×12	_	_	_	_	10	HSR85

¹⁾ Der Faltenbalg Typ JH15 wird schienenseitig mit Schrauben der Größe M4 \times 8 befestigt. Zur Befestigung am Führungswagen werden M2 \times 5 Schrauben verwendet.

Bestellbezeichnung

Berechnung der Faltenbalglänge:

$$\mbox{Lmin} = \frac{\ell_{\mbox{\scriptsize S}}}{(\mbox{\scriptsize A}-1)} \qquad \qquad \ell_{\mbox{\scriptsize S}} \mbox{: Hublänge (mm)}$$


 $Lmax = Lmin \times A$ A: Ausdehnungsrate

Neuer Spezial-Faltenbalg Typ HSR

Für die Baugrößen HSR15 bis HSR25 gibt es neben den Spezialfaltenbälgen einen neuen Typ mit nachfolgend beschriebenen Merkmalen. Geben Sie bitte bei Bestellung die unten stehende Bestellbezeichnung an.

- ① In der Höhe und Breite stimmen die neuen Faltenbälge jetzt mit den Führungswagen überein. Die Ausdehnungsrate ist gleich oder sogar besser.
- ② An jeder Falte des neuen Balges befinden sich Zwischenplatten. Daher können sie auch in Schräglage, über Kopf oder an der Wand montiert werden.
- ③ Die neuen Faltenbälge können für Verfahrgeschwindigkeiten bis zu 2 m/s eingesetzt werden.

Einheit: mm

Baugröße				t	1				Wage	a	ıptabr k Wage)	unger 	 		Ausdeh- nungs- rate	Faktor	passende Kompakt-	
	W	Н	Р	b ₁	A,B	R	t_3	t ₄	S	A,B	R	A,B	R	ℓ max	ℓ min	Α	Е	k	führung
DH15	35	19,5	8,5	25	2,5	6,5	10	_	3,5	0	4	7	2	10	2,5	4	2	1,2	HSR15
DH20	45	25	10	34	5	5	6	8	4	0	0	5	3,5	13	2,5	5	2	1,3	HSR20
DH25	52	29,5	12	30	7	11	10	8	4	0	4	8,5	4	15	3	5	2	1,3	HSR25

Bestellbezeichung

• Die max. Einzel- oder Standardlänge wird wie folgt berechnet:

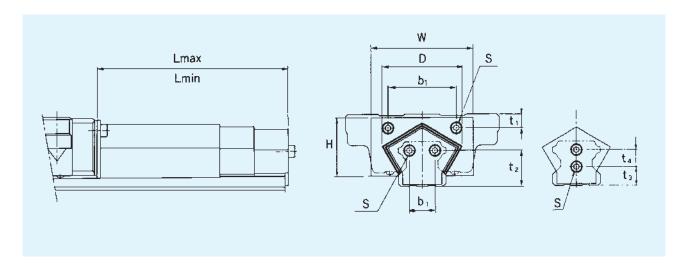
Lmax (Lmin) =
$$\ell$$
max (ℓ min) × 200

• Berechnungsbeispiel für Typ HSR20 mit der Hublänge ℓ s = 530 mm

Lmin =
$$\frac{\ell s}{(A-1)} = \frac{530}{4} = 132,5 \approx 135$$

Lmax = A x Lmin = 5 x 135 = 675 Erforderliche Anzahl von Falten (n)

$$n = \frac{Lmax}{Pxk} = \frac{675}{10x1,3} = 51,9 \approx 52$$


 $\label{eq:Lmin} \mbox{Lmin} = \mbox{n} \times \ell \mbox{min} + \mbox{E} = 52 \times 2, 5 + 2 = 132$ (E für Plattendicke 2 mm)

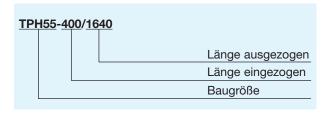
Der passende Balg ist DH20-132/675.

Teleskopabdeckung für Typ HSR

Die Abmessungen der Teleskopabdeckung sind in unten stehender Tabelle angegeben. Bei Bestellung geben Sie bitte die vollständige Bestellbezeichnung an.

Einheit: mm

					Haupt	abmess	ungen				
Baugröße	W	D (max)	Н	b ₁	t ₁	b ₂	t ₂	t ₃	t ₄	Schraubengröße S×Gewindelänge	passende Kompaktführung
TPH25	55	42	28	30	7	_	_	10	8	M3×6	HSR25
TPH30	60	48	34	40	8	_	_	11	10	M4×8	HSR30
TPH35	70	55	38	40	9	14	23	_	_	M4×8	HSR35
TPH45	90	75	48	58	10	20	29	_	_	M5×10	HSR45
TPH55	100	88	55	66	11	26	35	_	_	M5×10	HSR55

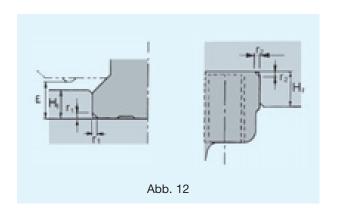

Einheit: mm

Baugröße	Anzahl der Segmente	L min	max	Hub
	3	200	530	330
TPH25	3	150	380	230
	3	100	230	130
	3	250	680	430
TPH30	3	200	530	330
	3	150	380	230
	3	300	830	530
TPH35	3	250	680	430
	3	200	530	330
	3	150	380	230

Einheit: mm

Baugröße	Anzahl der Segmente	l min	- max	Hub
	3	350	980	630
TPH45	3	300	830	530
	3	250	680	430
	3	200	530	330
	4	400	1460	1060
TPH55	4	350	1330	980
	4	300	1060	760
	4	250	860	610

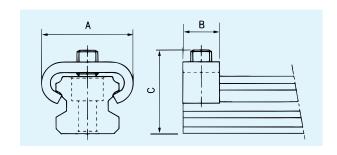
Bestellbezeichnung



Montagehinweis

Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 7 angegeben.


Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, daß Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein, als die in Tabelle 7 angegebenen Maximalradien.

Stopper

Wird bei den Miniaturführungen der Baugrößen HSR8/ 10/12 der Führungswagen von der Führungsschiene gezogen, fallen die Kugeln aus dem Wagen heraus. An den Schienenenden werden daher Stopper gegen ein versehentliches Herunterziehen des Wagens von derSchiene montiert.

Bei Montage der Führung ohne Stopper ist zu beachten, daß die Führungswagen nicht über die Schiene hinausgezogen werden.

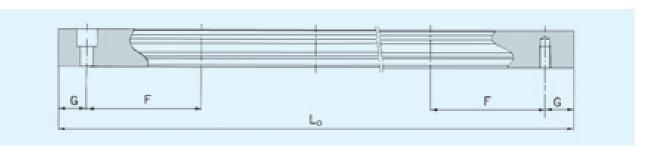
Einheit: mm

Baugröße	А	В	С
HSR8	12,5	6	10
HSR10	15	6	11
HSR12	18,5	7	16

Tab. 7 Schulterhöhen und Ausrundungen für Typ HSR

Einheit: mm

	Ausrundungs-	Ausrundungs-	Schulterhöhe	Schulterhöhe	
Baugröße	radius	radius	Schiene	Wagen	
	r ₁	r ₂	H ₁	H ₂	Е
HSR8	0,3	0,5	1,6	6	2,1
HSR10	0,3	0,5	1,7	5	2,2
HSR12	0,8	0,5	2,6	4	3,1
HSR15	0,5	0,5	3	4	3,5
HSR20	0,5	0,5	3,5	5	4
HSR25	1,0	1,0	5	5	5,5
HSR30	1,0	1,0	5	5	7
HSR35	1,0	1,0	6	6	7,5
HSR45	1,0	1,0	8	8	10
HSR55	1,5	1,5	10	10	13
HSR65	1,5	1,5	10	10	14
HSR85	1,5	1,5	12	14	16
HSR100	2,0	2,0	16	16	20,5
HSR120	2,5	2,5	17	18	20
HSR150	2,5	2,5	20	20	22,5


Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungsschienen sind in Tabelle 8 angegeben. Bei Schienenlängen größer als die angegebenen Maximallängen werden die Führungsschienen in mehreren Teilstücken als Stoßversion geliefert.

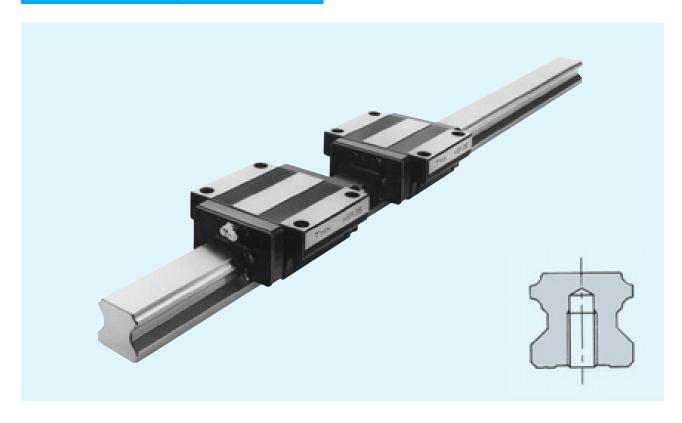
Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage

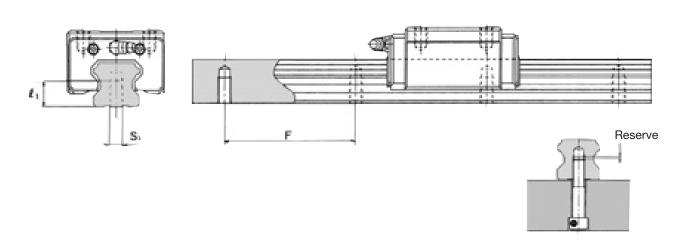
zur Instabilität, mit der Folge, daß die Endgenauigkeit beeinträchtigt werden kann.

Werden zwei oder mehr Teilstücke eines Schienenstranges bestellt, ist die Gesamt-Schienenlänge anzugeben. Bei Führungsschienen, die als Stoßversion geliefert werden, werden die Stoßstellen der Schienen paßgenau erodiert und die Schienenenden selbst mit einer Fase versehen.

Tab. 8 Standard- und Maximallängen der Führungsschienen vom Typ HSR

Einheit: mm


Baugröße	HSR8	HSR10	HSR12	HSR15	HSR20	HSR25	HSR30	HSR35	HSR45	HSR55	HSR65	HSR85	HSR100	HSR120	HSR150
Standard- länge (L ₀)	35 55 75 95 115 135 175 195 215 235 275	45 70 95 120 145 170 195 220 245 270 295 320 345 370 395 420 445 470	70 110 150 190 230 270 310 350 390 430 470 510 550 630 670	160 220 280 340 400 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600 1720 1840 1960 2080 2200	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1300 1420 1480 1540 1600 1720 1840 1960 2080 2200 2320 2440	280 360 440 520 600 680 760 840 920 1000 1160 1240 1320 1400 1480 1560 1640 1720 1880 1960 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1160 1240 1320 1400 1480 1560 1640 1720 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620	1530 1890 2250 2610	1340 1760 2180 2600	1470 1930 2390	1600 2100 2350
F	20	25	40	60	60	60	80	80	105	120	150	180	210	230	250
G	7,5	10	15	20	20	20	20	20	22,5	30	35	45	40	45	50
Maximallänge	(275)	(470)	(670)	2500 (1240)	3000 (1480)	3000 (2020)	3000 (2520)	3000 (2520)	3090	3060	3000	3000	3000	3000	3000


Anm.: · Die Maximallängen variieren je nach Genauigkeitsklasse

- · Sind keine gestoßenen Schienen für Überlängen einsetzbar, wenden Sie sich bitte an '미네셔.
- · Die Werte in Klammern sind die Maximallängen für korrosionsbeständige Versionen.

Führungsschiene HSR mit Gewindebohrungen von unten

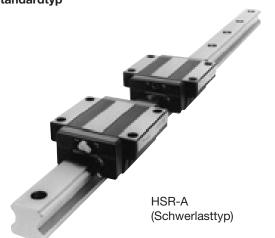
Baugröße	S ₁	Effektive Gewindelänge ℓ_1 [mm]
HSR15	M5	8
HSR20	M6	10
HSR25	M6	12
HSR30	M8	15
HSR35	M8	17
HSR45	M12	24
HSR55	M14	24
HSR65	M20	30

- 1) Die Schraubenlänge sollte 2-5 mm kürzer sein als die effektive Gewindelänge der Gewindebohrung.
- 2) Bestellbezeichnung

HSR30A2SS + 1000LHK

Symbol für Schiene mit Gewindebohrung von unten

3) Die Führungswagen der Typen HSR-YR und CSR können ohne Einschränkungen verwendet werden.



HSR-A/LA

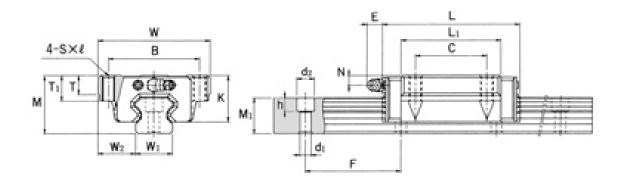
HSR-A/LA M

Mit vier Gewindebohrungen

Standardtyp Korrosionsbeständiger Typ¹⁾

Baugröße ²⁾	Auf Höhe	Benabmes Breite	sungen Länge			Abmessu	ngen Füh	rungswage	en			
Baugrob e -/	M	W	Lange	В	С	$S \times \ell$	L ₁	Т	T ₁	К	N	E
HSR 15 A HSR 15 A-M ³⁾	24	47	56,5	38	30	M5 × 11	38,8	7	11	19,3	4,5	5,5
HSR 20 A HSR 20 A-M ³⁾	30	63	74	53	40	M6 × 10	50,8	10	10	26	5	12
HSR 20 LA HSR 20 LA-M ³⁾	30	63	90	53	40	M6 × 10	66,8	10	10	26	5	12
HSR 25 A HSR 25 A-M ³⁾	36	70	83	57	45	M8 × 16	59,5	10	16	30,5	6	12
HSR 25 LA HSR 25 LA-M ³⁾	36	70	102,5	57	45	M8 × 16	78,6	10	16	30,5	6	12
HSR 30 A HSR 30 A-M ³⁾	42	90	98	72	52	M10 × 18	70,4	10	18	35	7	12
HSR 30 LA HSR 30 LA-M ³⁾	42	90	120,5	72	52	M10 × 18	93	10	18	35	7	12
HSR 35 A HSR 35 A-M ³⁾	48	100	109,5	82	62	M10 × 21	80,4	13	21	40,5	8	12
HSR 35 LA HSR 35 LA-M ³⁾	48	100	135	82	62	M10 × 21	105,8	13	21	40,5	8	12
HSR 45 A HSR 45 LA	60	120	139 171	100	80	M12 × 15	98 129,8	14	25	50	10	16
HSR 55 A HSR 55 LA	70	140	163 201	116	95	M14 × 17	118 156,1	15	29	57	11	16
HSR 65 A HSR 65 LA	90	170	186 246	142	110	M16 × 23	147 206,5	23	37	76	19	16
HSR 85 A HSR 85 LA	110	215	247 303	185	140	M20 × 30	178,6 236	30	55	94	23	16

¹⁾ Bei den Typen mit dem Symbol M sind Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl


²⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S.232.

³⁾ Auf Anfrage können für diese Typen auch korrosionsbeständige Metall-Endkappen geliefert werden. Besonders zu empfehlen bei Temperaturen über 80°C.

⁴⁾ Siehe S. 240 für Standardschienenlängen.

 $^{^{\}rm 5)}$ Die zulässigen statischen Momente $\rm M_A, \, M_B$ und $\rm M_C$ finden Sie auf S. 230.

	Breite	Abmes	sungen Fi	ührungssc	hiene ⁴⁾	Tragza	hlen ⁵⁾	Gewicht		
Schmiernippel	W ₁ ±0,05	W ₂	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]	
Eintreibnippel PB1021B	15	16	15	60	4,5×7,5×5,3	8,33	13,5	0,2	1,5	
B-M6F	20	21,5	18	60	6×9,5×8,5	13,8	23,8	0,35	2,3	
B-M6F	20	21,5	18	60	6×9,5×8,5	21,3	31,8	0,47	2,3	
B-M6F	23	23,5	22	60	7×11×9	19,9	34,4	0,59	3,3	
B-M6F	23	23,5	22	60	7×11×9	27,2	45,9	0,75	3,3	
B-M6F	28	31	26	80	9×14×12	28	46,8	1,1	4,8	
B-M6F	28	31	26	80	9×14×12	37,3	62,5	1,3	4,8	
B-M6F	34	33	29	80	9×14×12	37,3	61,1	1,6	6,6	
B-M6F	34	33	29	80	9×14×12	50,2	81,5	2,0	6,6	
B-PT1/8	45	37,5	38	105	14×20×17	60 80,4	95,6 127	2,8 3,3	11,0	
B-PT1/8	53	43,5	44	120	16×23×20	88,5 119	137 183	4,5 5,7	15,1	
B-PT1/8	63	53,5	53	150	18×26×22	141 192	215 286	8,5 10,7	22,5	
B-PT1/8	85	65	65	180	24×35×28	210 282	310 412	17,0 23,0	35,2	



HSR-B/LB

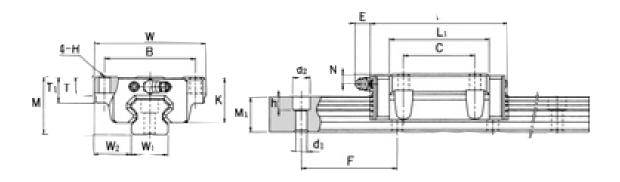
HSR-B/LB M

Mit vier Durchgangsbohrungen

Standardtyp Korrosionsbeständiger Typ¹

D "0 "		tabmess				Abm	essunge	en Führ	ungswa	gen		I
Baugröße ²⁾	Höhe M	Breite W	Länge L	В	С	Н	L ₁	Т	T ₁	K	N	Е
HSR 15 B HSR 15 B-M ³⁾	24	47	56,5	38	30	4,5	38,8	7	11	19,3	4,5	5,5
HSR 20 B HSR 20 B-M ³⁾	30	63	74	53	40	6	50,8	10	10	26	5	12
HSR 20 LB HSR 20 LB-M ³⁾	30	63	90	53	40	6	66,8	10	10	26	5	12
HSR 25 B HSR 25 B-M ³⁾	36	70	83	57	45	7	59,5	10	16	30,5	6	12
HSR 25 LB HSR 25 LB-M ³⁾	36	70	102,5	57	45	7	78,6	10	16	30,5	6	12
HSR 30 B HSR 30 B-M ³⁾	42	90	98	72	52	9	70,4	10	18	35	7	12
HSR 30 LB HSR 30 LB-M ³⁾	42	90	120,5	72	52	9	93	10	18	35	7	12
HSR 35 B HSR 35 B-M ³⁾	48	100	109,5	82	62	9	80,4	13	21	40,5	8	12
HSR 35 LB HSR 35 LB-M ³⁾	48	100	135	82	62	9	105,8	13	21	40,5	8	12
HSR 45 B HSR 45 LB	60	120	139 171	100	80	11	98 129,8	15	25	50	10	16
HSR 55 B HSR 55 LB	70	140	163 201	116	95	14	118 156,1	17	29	57	11	16
HSR 65 B HSR 65 LB	90	170	186 246	142	110	16	147 206,5	23	37	76	19	16
HSR 85 B HSR 85 LB	110	215	247 303	185	140	18	178,6 236	30	55	94	23	16

¹⁾ Bei den Typen mit dem Symbol M sind Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl.

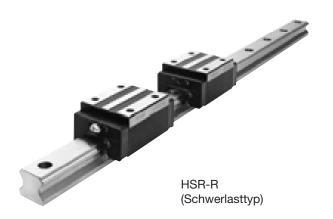

²⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S.232.

³⁾ Auf Anfrage können für diese Typen auch korrosionsbeständige Metall-Endkappen geliefert werden. Besonders zu empfehlen bei Temperaturen über 80°C.

⁴⁾ Siehe S. 240 für Standardschienenlängen.

 $^{^{\}rm 5)}$ Die zulässigen statischen Momente $\rm M_A, \, M_B$ und $\rm M_C$ finden Sie auf S. 230.

	Breite	Abmes	sungen Fü	ührungssc	hiene ⁴⁾	Tragza	hlen ⁵⁾	Gew	icht
Schmiernippel	W ₁ ±0,05	W_2	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
Eintreibnippel PB1021B	15	16	15	60	4,5×7,5×5,3	8,33	13,5	0,2	1,5
B-M6F	20	21,5	18	60	6×9,5×8,5	13,8	23,8	0,35	2,3
B-M6F	20	21,5	18	60	6×9,5×8,5	21,3	31,8	0,47	2,3
B-M6F	23	23,5	22	60	7×11×9	19,9	34,4	0,59	3,3
B-M6F	23	23,5	22	60	7×11×9	27,2	45,9	0,75	3,3
B-M6F	28	31	26	80	9×14×12	28	46,8	1,1	4,8
B-M6F	28	31	26	80	9×14×12	37,3	62,5	1,3	4,8
B-M6F	34	33	29	80	9×14×12	37,3	61,1	1,6	6,6
B-M6F	34	33	29	80	9×14×12	50,2	81,5	2,0	6,6
B-PT1/8	45	37,5	38	105	14×20×17	60 80,4	95,6 127	2,8 3,3	11,0
B-PT1/8	53	43,5	44	120	16×23×20	88,5 119	137 183	4,5 5,7	15,1
B-PT1/8	63	53,5	53	150	18×26×22	141 192	215 286	8,5 10,7	22,5
B-PT1/8	85	65	65	180	24×35×28	210 282	310 412	17,0 23,0	35,2


HSR-R/LR

HSR-R/LR M

Mit vier Gewindebohrungen

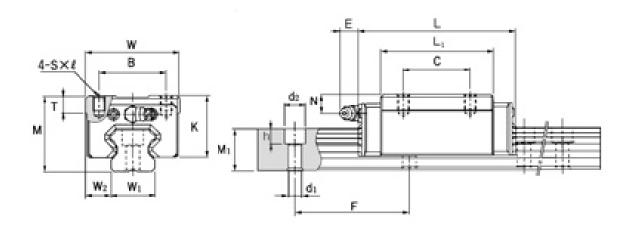
Standardtyp

Korrosionsbeständiger Typ¹)

* Frühere Bezeichnung: CR/HR

D (0, 0)	Hauptabmessungen Baugröße ²⁾ Höhe Breite Länge					Abmess	ungen Fi	ührungsv	vagen		
Baugroße ²⁾	Hohe M	Breite W	Lange L	В	С	S×ℓ	L ₁	Т	К	N	Е
HSR 15 R HSR 15 R-M ³⁾	28	34	56,5	26	26	M4×5	38,8	6	23,3	8,5	5,5
HSR 20 R HSR 20 R-M ³⁾	30	44	74	32	36	M5×6	50,8	8	26	5	12
HSR 20 LR HSR 20 LR-M ³⁾	30	44	90	32	50	M5×6	66,8	8	26	5	12
HSR 25 R HSR 25 R-M ³⁾	40	48	83	35	35	M6×8	59,5	8	34,5	10	12
HSR 25 LR HSR 25 LR-M ³⁾	40	48	102,5	35	50	M6×8	78,6	8	34,5	10	12
HSR 30 R HSR 30 R-M ³⁾	45	60	98	40	40	M8×10	70,4	8	38	10	12
HSR 30 LR HSR 30 LR-M ³⁾	45	60	120,5	40	60	M8×10	93	8	38	10	12
HSR 35 R HSR 35 R-M ³⁾	55	70	109,5	50	50	M8×12	80,4	10	47,5	15	12
HSR 35 LR HSR 35 LR-M ³⁾	55	70	135	50	72	M8×12	105,8	10	47,5	15	12
HSR 45 R HSR 45 LR	70	86	139 171	60	60 80	M10×17	98 129,8	15	60	20	16
HSR 55 R HSR 55 LR	80	100	163 201	75	75 95	M12×18	118 156,1	18	67	21	16
HSR 65 R HSR 65 LR	90	126	186 246	76	70 120	M16×20	147 206,5	23	76	19	16
HSR 85 R HSR 85 LR	110	156	247 303	100	80 140	M18×25	178,6 236	30	94	23	16

¹⁾ Bei den Typen mit dem Symbol M sind Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl.

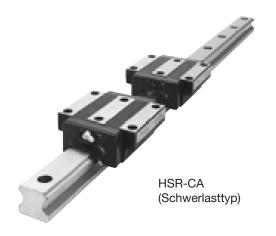

²⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S.232.

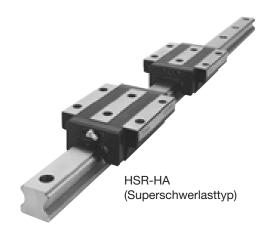
³⁾ Auf Anfrage können für diese Typen auch korrosionsbeständige Metall-Endkappen geliefert werden. Besonders zu empfehlen bei Temperaturen über 80°C.

⁴⁾ Siehe S. 240 für Standardschienenlängen.

 $^{^{\}rm 5)}$ Die zulässigen statischen Momente $\rm M_A,\,M_B$ und $\rm M_C$ finden Sie auf S. 230.

Schmiernippel	Breite	Abmes	sungen Fi	ührungssc	hiene ⁴⁾	Tragza	hlen ⁵⁾	Gew	icht
Schiniernippei	W ₁ ±0,05	W_2	Höhe M ₁	Teilung F	$d_1 imes d_2 imes h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
Eintreibnippel PB1021B	15	9,5	15	60	4,5×7,5×5,3	8,33	13,5	0,18	1,5
B-M6F	20	12	18	60	6×9,5×8,5	13,8	23,8	0,25	2,3
B-M6F	20	12	18	60	6×9,5×8,5	21,3	31,8	0,35	2,3
B-M6F	23	12,5	22	60	7×11×9	19,9	34,4	0,54	3,3
B-M6F	23	12,5	22	60	7×11×9	27,2	45,9	0,67	3,3
B-M6F	28	16	26	80	9×14×12	28	46,8	0,9	4,8
B-M6F	28	16	26	80	9×14×12	37,3	62,5	1,1	4,8
B-M6F	34	18	29	80	9×14×12	37,3	61,1	1,5	6,6
B-M6F	34	18	29	80	9×14×12	50,2	81,5	2,0	6,6
B-PT1/8	45	20,5	38	105	14×20×17	60 80,4	95,6 127	2,6 3,1	11,0
B-PT1/8	53	23,5	44	120	16×23×20	88,5 119	137 183	4,3 5,4	15,1
B-PT1/8	63	31,5	53	150	18×26×22	141 192	215 286	7,3 9,3	22,5
B-PT1/8	85	35,5	65	180	24×35×28	210 282	310 412	13,0 16,0	35,2


HSR-CA/HA


HSR-CA/HA M

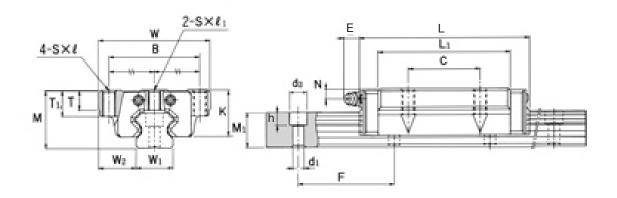
Mit sechs Gewindebohrungen

Standardtyp

Korrosionsbeständiger Typ¹⁾

	Haupt	abmessu	. •			Abmessu	ingen F	ühru	ngsv	vagen		
Baugröße ²⁾	Höhe M	Breite W	Länge L	В	С	S× ℓ (ℓ_1)	L ₁	Т	T ₁	K	N	Е
HSR 20 CA HSR 20 CA-M ³⁾	30	63	74	53	40	M6×10(9,5)	50,8	10	10	26	5	12
HSR 20 HA HSR 20 HA-M ³⁾	30	63	90	53	40	M6×10(9,5)	66,8	10	10	26	5	12
HSR 25 CA HSR 25 CA-M ³	36	70	83	57	45	M8×16(10,5)	59,5	10	16	30,5	6	12
HSR 25 HA HSR 25 HA-M ³⁾	36	70	102,5	57	45	M8×16(10,5)	78,6	10	16	30,5	6	12
HSR 30 CA HSR 30 CA-M ³⁾	42	90	98	72	52	M10×18(12,5)	70,4	10	18	35	7	12
HSR 30 HA HSR 30 HA-M ³⁾	42	90	120,5	72	52	M10×18(12,5)	93	10	18	35	7	12
HSR 35 CA HSR 35 CA-M ³⁾	48	100	109,5	82	62	M10×21(14,5)	80,4	13	21	40,5	8	12
HSR 35 HA HSR 35 HA-M ³⁾	48	100	135	82	62	M10×21(14,5)	105,8	13	21	40,5	8	12
HSR 45 CA HSR 45 HA	60	120	139 171	100	80	M12×15(18)	98 129,8	14	25	50	10	16
HSR 55 CA HSR 55 HA	70	140	163 201	116	95	M14×17(20,5)	118 156,1	15	29	57	11	16
HSR 65 CA HSR 65 HA	90	170	186 246	142	110	M16×23(29,5)	147 206,5	23	37	76	19	16
HSR 85 CA HSR 85 HA	110	215	247 303	185	140	M20×30(40)	178,6 236	30	55	94	23	16

¹⁾ Bei den Typen mit dem Symbol M sind Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl


²⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S.232.

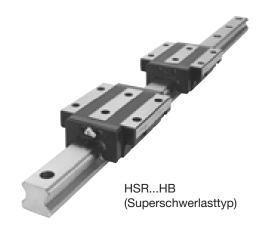
³⁾ Auf Anfrage können für diese Typen auch korrosionsbeständige Metall-Endkappen geliefert werden. Besonders zu empfehlen bei Temperaturen über 80°C.

⁴⁾ Siehe S. 240 für Standardschienenlängen.

 $^{^{5)}}$ Die zulässigen statischen Momente $\rm M_A, \, M_B$ und $\rm M_C$ finden Sie auf S. 230.

Schmiernippel	Breite	Abmes	ssungen F	ührungsso	chiene ⁴⁾	Tragza	ahlen ⁵⁾	Gew	icht
Scrimernippei	W ₁ ±0,05	W_2	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-M6F	20	21,5	18	60	6×9,5×8,5	13,8	23,8	0,35	2,3
B-M6F	20	21,5	18	60	6×9,5×8,5	21,3	31,8	0,47	2,3
B-M6F	23	23,5	22	60	7×11×9	19,9	34,4	0,59	3,3
B-M6F	23	23,5	22	60	7×11×9	27,2	45,9	0,75	3,3
B-M6F	28	31	26	80	9×14×12	28	46,8	1,1	4,8
B-M6F	28	31	26	80	9×14×12	37,3	62,5	1,3	4,8
B-M6F	34	33	29	80	9×14×12	37,3	61,1	1,6	6,6
B-M6F	34	33	29	80	9×14×12	50,2	81,5	2,0	6,6
B-PT1/8	45	37,5	38	105	14×20×17	60 80,4	95,6 127	2,8 3,3	11,0
B-PT1/8	53	43,5	44	120	16×23×20	88,5 119	137 183	4,5 5,7	15,1
B-PT1/8	63	53,5	53	150	18×26×22	141 192	215 286	8,5 10,7	22,5
B-PT1/8	85	65	65	180	24×35×28	210 282	310 412	17,0 23,0	35,2

HSR-CB/HB


HSR-CB/HB M

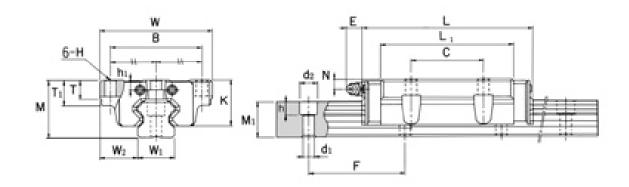
Mit sechs Durchgangsbohrungen

Standardtyp

Korrosionsbeständiger Typ¹⁾

Da		abmessu	_		ı	Abm	essun	gen Fül	nrungs	wagen		ı	ı
Baugröße ²⁾	Höhe M	Breite W	Länge L	В	С	Н	h ₁	L ₁	Т	T ₁	K	N	Е
HSR 20 CB HSR 20 CB-M ³⁾	30	63	74	53	40	6	4	50,8	10	10	26	5	12
HSR 20 HB HSR 20 HB-M ³⁾	30	63	90	53	40	6	4	66,8	10	10	26	5	12
HSR 25 CB HSR 25 CB-M ³⁾	36	70	83	57	45	7	4,5	59,5	10	16	30,5	6	12
HSR 25 HB HSR 25 HB-M ³⁾	36	70	102,5	57	45	7	4,5	78,6	10	16	30,5	6	12
HSR 30 CB HSR 30 CB-M ³⁾	42	90	98	72	52	9	4,5	70,4	10	18	35	7	12
HSR 30 HB HSR 30 HB-M ³⁾	42	90	120,5	72	52	9	4,5	93	10	18	35	7	12
HSR 35 CB HSR 35 CB-M ³⁾	48	100	109,5	82	62	9	6	80,4	13	21	40	8	12
HSR 35 HB HSR 35 HB-M ³⁾	48	100	135	82	62	9	6	105,8	13	21	40	8	12
HSR 45 CB HSR 45 HB	60	120	139 171	100	80	11	7,5	98 129,8	15	25	50	10	16
HSR 55 CB HSR 55 HB	70	140	163 201	116	95	14	8	118 156,1	17	29	57	11	16
HSR 65 CB HSR 65 HB	90	170	186 246	142	110	16	15	147 206,5	23	37	76	19	16
HSR 85 CB HSR 85 HB	110	215	247 303	185	140	18	23	178,6 236	30	55	94	23	16

¹⁾ Bei den Typen mit dem Symbol M sind Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl


²⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S.232.

³⁾ Auf Anfrage können für diese Typen auch korrosionsbeständige Metall-Endkappen geliefert werden. Besonders zu empfehlen bei Temperaturen über 80°C.

⁴⁾ Siehe S. 240 für Standardschienenlängen.

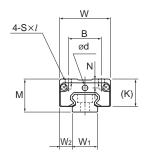
 $^{^{5)}}$ Die zulässigen statischen Momente $\rm M_A, \, M_B$ und $\rm M_C$ finden Sie auf S. 230.

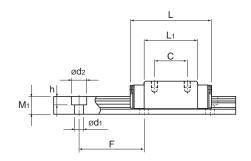
Schmiernippel	Breite	Abmes	sungen Fi	ührungssc	hiene ⁴⁾	Tragza	hlen ⁵⁾	Gew	icht
Scrimerriippei	W ₁ ±0,05	W ₂	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-M6F	20	21,5	18	60	6×9,5×8,5	13,8	23,8	0,35	2,3
B-M6F	20	21,5	18	60	6×9,5×8,5	21,3	31,8	0,47	2,3
B-M6F	23	23,5	22	60	7×11×9	19,9	34,4	0,59	3,3
B-M6F	23	23,5	22	60	7×11×9	27,2	45,9	0,75	3,3
B-M6F	28	31	26	80	9×14×12	28	46,8	1,1	4,8
B-M6F	28	31	26	80	9×14×12	37,3	62,5	1,3	4,8
B-M6F	34	33	29	80	9×14×12	37,3	61,1	1,6	6,6
B-M6F	34	33	29	80	9×14×12	50,2	81,5	2,0	6,6
B-PT1/8	45	37,5	38	105	14×20×17	60 80,4	95,6 127	2,8 3,3	11,0
B-PT1/8	53	43,5	44	120	16×23×20	88,5 119	137 183	4,5 5,7	15,1
B-PT1/8	63	53,5	53	150	18×26×22	141 192	215 286	8,5 10,7	22,5
B-PT1/8	85	65	65	180	24×35×28	210 282	310 412	17,0 23,0	35,2

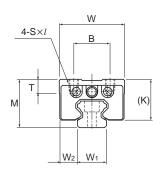
HSR 8, 10 und 12

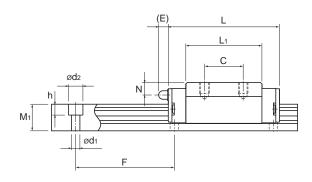
Korrosionsbeständige Ausführung¹⁾

	Haupt	abmess	ungen	Abmessungen Führungswagen									
Baugröße ²⁾	Höhe	Breite	Länge										
	М	W	L	В	С	$S imes \ell$	L ₁	Т	K	N	Е		
HSR8R-M	11	16	24	10	10	M2 × 2,5	15	_	8,9	2,6	_		
HSR10R-M	13	20	31	13	12	M2,6 × 2,5	20,1	_	10,8	3,5	_		
HSR12R-M	20	27	45	15	15	$M4 \times 4,5$	30,5	6	16,9	5,2	4,0		

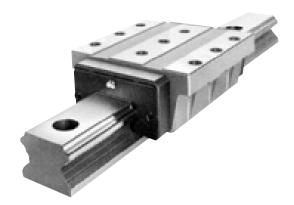

¹⁾ Mit M sind Führungswagen, -schiene und Kugeln aus korrosionsbeständigem Stahl gekennzeichnet. So wird ein größerer Schutz gegen Korrosion und andere Umwelteinflüsse erzielt.


²⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S.232.


³⁾ Siehe S. 240 für Standardschienenlängen.


 $^{^{4)}}$ Die zulässigen statischen Momente $\mathrm{M_{A}}$, $\mathrm{M_{B}}$ und $\mathrm{M_{C}}$ finden Sie auf S. 230.

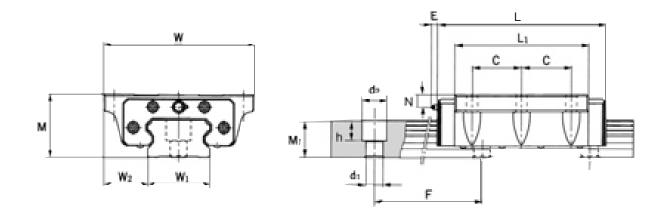
Einheit: mm


		Abme	ssungen	Führungss	schiene ³⁾	Trag	zahl ⁴⁾	Gew	icht
Schmiernippel	Breite W ₁		Höhe	Teilung		С	C_0	Wagen	Schiene
	± 0,05	W_2	M ₁	F	$d_1 \times d_2 \chi h$	[N]	[N]	[kg]	[kg/m]
Ø 2,2 Bohrung	8	4	6	20	$2,4 \times 4,2 \times 2,3$	1.080	2.160	0,012	0,3
Ø 2,5 Bohrung	10	5	7	25	$3.5 \times 6 \times 3.3$	1.960	3.820	0,025	0,45
Eintreibnippel PB-107	12	7,5	11	40	$3.5 \times 6 \times 4.5$	4.700	8.530	0,080	0,83

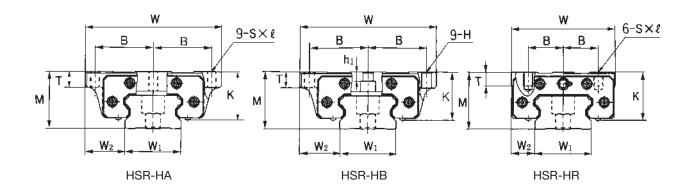
HSR-HA/HSR-HB/HSR-HR

Mit neun (HA/HB) bzw. sechs (HR) Gewindebohrungen

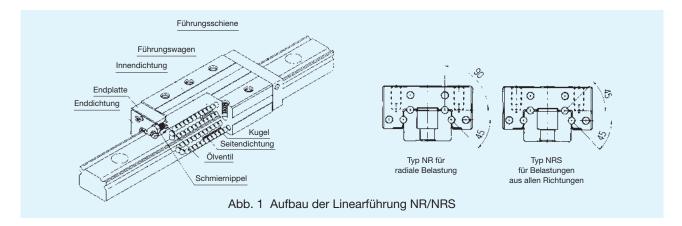
Extra großer Typ



		abmessu	–			Abmessi	ungen	Führu	ıngswa	agen			
Baugröße ¹⁾	Höhe M	Breite W	Länge L	В	С	s×ℓ	Н	h ₁	L ₁	Т	K	N	Е
HSR100HA HSR100HB HSR100HR	120	250 250 200	334	110 110 130	100	M18×35 — M18×27	 20 	23 —	261	35	100	23	16
HSR120HA HSR120HB HSR120HR	130	290 290 220	365	125 125 146	105	M20×38 — M20×30	 22 	23 —	287	38	110	26,5	16
HSR150HA HSR150HB HSR150HR	145	350 350 266	396	150 150 180	115	M24×40 — M24×35	26 —	23,5 —	314	40	123	29	16


¹⁾ Zur Zusammensetzung der Bestellbezeichnung siehe S. 232.

 $^{^{2)}}$ Siehe S. 240 für Standardschienenlängen. $^{3)}$ Die zulässigen statischen Momente $\rm M_A,\,M_B$ und $\rm M_C$ finden Sie auf S. 230.


Cohmierninnel	Breite	Abmes	sungen Fü	hrungssch	niene ²⁾	Tragzal	hlen³)	Gewicht	
Schmiernippel	W ₁ ±0,05	W ₂	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-PT1/4	100	75 75 50	70	210	26×39×32	351	506	32	49
B-PT1/4	114	88 88 53	75	230	33×48×43	429	612	43	61
B-PT1/4	144	103 103 61	85	250	39×58×46	518	728	62	87

THK Linearführung NR/NRS

Mit der Linearführung NR entwickelte THK eine neue Leistungsdimension. Die idealen dynamischen Eigenschaften dieses kugelgelagerten Linearführungssystems und die Resistenz gegen Schwingungen und Stoßbelastungen sind Basis für den bevorzugten Einsatz in Werkzeugmaschinen. Im Vergleich zu einer rollengelagerten Führung ist die statische Tragzahl höher, obwohl der Typ NR eine kompaktere Bauform aufweist.

Charakteristika der neuen Führungsgeneration NR

Verbesserter Dämpfungseffekt

Wirken keine Bearbeitungskräfte auf die Linearführung, läßt sich der Typ NR sehr leichtgängig verfahren. Hohe Bearbeitungskräfte, wie sie in Werkzeugmaschinen bei der Schwerzerspanung auftreten, erzeugen dagegen eine Vergrößerung der Kontaktflächen zwischen den Kugeln und Kreisbogenrillen (Druckellipse). Die hieraus resultierende Bewegung ist eine ideale Kombination aus gleitendem und rollendem Anteil. Dieser sogenannte Differentialschlupf zwischen den Kugeln und Kreisbogenrillen erzeugt einen belastungsabhängigen Reibwiderstand, der die Dämpfungseigenschaft der Linearführung erheblich verbessert.

Die Erhöhung des Differentialschlupfes beeinträchtigt nicht die Leistungsfähigkeit des Typs NR, wie dies bei Linearführungen mit der Gotikbogen-Konfiguration der Fall ist. Im Eilgang, wenn bei Werkzeugmaschinen hohe Geschwindigkeiten gefordert werden, werden leichtgängige Bewegungen für hohe Positioniergenauigkeiten erzielt.

Bei schwerer Zerspanung mit entsprechend niedrigen Vorschubgeschwindigkeiten werden hervorragende Dämpfungseffekte realisiert, und so die Produktivität von Werkzeugmaschinen durch eine höhere Zerspanleistung und vielfältigere Bearbeitungsmöglichkeiten gesteigert.

Höchste Steifigkeit

Die niedrige und massive Bauweise der Linearführung NR minimiert die Einfederung der Führungsschiene und verhindert das Öffnen des Führungswagens bei Tangentialbelastung. Die Steifigkeit wird deshalb bei Tangentialund Gegenradialbelastung deutlich erhöht. Die als Tiefrillenprofil ausgeführten Kreisbogenrillen ermöglichen eine Selbstorientierung des Kugel-Kontaktwinkels in Belastungsrichtung, um die Steifigkeit und Tragfähigkeit je nach

Belastungsrichtung und Anwendungsbedingung zu optimieren. Die oberen Kreisbogenrillen des Typs NR sind zur Aufnahme von überwiegend radialer Belastung im Kontaktwinkel von 90° zur Auflagefläche geschliffen (siehe Abb. 1).

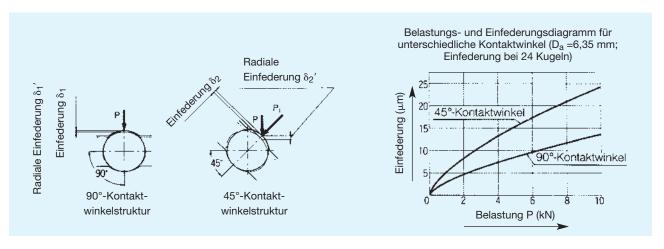
Ist die Belastungsrichtung überwiegend tangential, steht der Typ NRS mit einer Kontaktwinkel-Konfiguration von 45° für gleich hohe Tragfähigkeit in allen Hauptrichtungen zur Verfügung. Die Anschlußmaße und die sonstigen Werte (zulässige statische Momente etc.) sind identisch mit denen des Typs NR. Lediglich die Tragzahlen sind unterschiedlich zum Typ NR.

Ultrahohe Tragfähigkeit

Durch die nahezu identische Form des Tiefrillenprofils mit der Kugelkontur ist beim Typ NR bei Belastung die Kontaktfläche der Kugel gleich oder größer als die Kontaktfläche einer Rolle. Dieses ermöglicht höhere statische Tragzahlen als bei rollengelagerten Linearführungen. In der Praxis werden rollengelagerte Führungen zusätzlich von folgenden Faktoren stark beeinflußt:

- 1. Blockadephänomen durch Rollenverkippung.
- 2. Eine Vorspannung zwecks Steifigkeitserhöhung erzeugt Schwergängigkeit und Fluktuation.
- Kantenpressungen an den Rollen, verursacht durch Montagefehler, reduzieren die tatsächliche Tragfähigkeit.

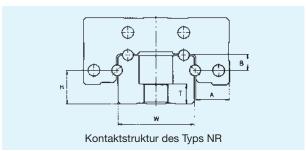
Die neue Führungsgeneration mit den Baureihen NR und NRS ist frei von diesen kritischen Einflüssen und garantiert bei einfacher Montage hohe Maschinenleistungen.



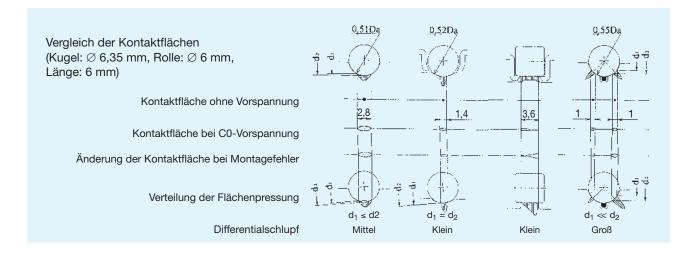
Besonderheiten des Typs NR

Steifigkeitserhöhung um Faktor 2 in Hauptlastrichtung

Der Typ NR basiert auf einem 90°-Kontaktwinkel, der eine höhere Steifigkeit ermöglicht als der 45°-Kontaktwinkel. Übertragen auf die gleiche Radialbelastung P bedeutet dies


eine um 44% geringere Einfederung des Typs NR (siehe Abb. unten).

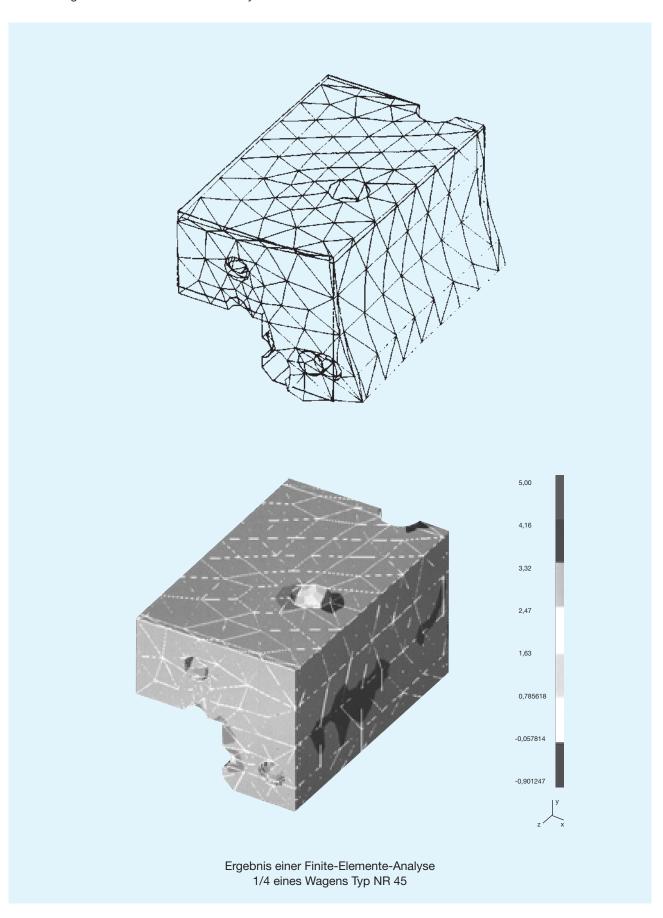
Steifigkeitserhöhung um Faktor 2 bei Tangential- oder Gegenradialbelastung


Beim Typ NR ist die Distanz H von der Schienenauflagefläche zum Kugelzentrum der unteren Kreisbogenrillen kurz. Dies reduziert das Verhältnis der Schienenbreite W zu H. Die Distanz T zwischen der Auflage der Befestigungsschraube zur Schienenauflagefläche ist ebenfalls kurz. Diese konstruktive Überlegung leistet einen Beitrag zur hohen Tangentialsteifigkeit. Die zu erwartende Einfederung des Wagens ist aufgrund der Belastung sowie der Vorspannungs- und Kippkräfte durch kurze Hebelarme (Maß B) minimiert. Versteifte Wangen am Führungswagen (Maß A) verhindern ein Öffnen des Führungswagens bei Gegenradialbelastung.

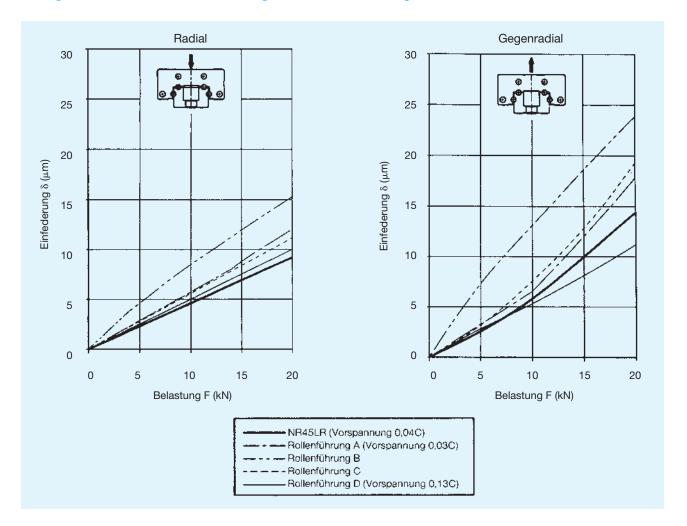
Zur Erhöhung der statischen Steifigkeit werden bei der NR-Serie im Vergleich zum konventionellen kompatiblen Typ 30% mehr Kugeln mit kleinerem Durchmesser verwendet. Durch die nahezu identische Kontur von Laufrillen- und Kugelradius erfolgt eine Selbstorientierung des Kontaktwinkels zur Belastung. Durch diese Charakteristik wird die Steifigkeit in allen Lastrichtungen erhöht.

Vergleich von Kontaktflächen und Flächenpressung je nach Kontaktstruktur

Der Kontaktbereich der Wälzelemente besitzt je nach Konfiguration eine unterschiedliche Verformungsmenge und Flächenpressung. Aufgrund der Bordführung und des modifizierten Linienkontakts verkürzt sich die effektive Kontaktlänge der Rolle. Für die Lastaufnahme steht nicht die volle Traglänge zur Verfügung. Durch die Form- und Lagegenauigkeit sowie Montagetoleranzen wird die Kontaktfläche in der Rolle zusätzlich verringert.



Finite-Elemente-Analyse


Die Entwicklung des Führungswagens der NR-Serie basiert auf dem Ergebnis der Finite-Elemente-Analyse mit der

Zielsetzung, die Steifigkeit zu erhöhen und gleichzeitig die Gesamthöhe zu reduzieren.

Steifigkeitskennlinien: NR45LR im Vergleich zu Rollenführungen

Schnittleistungsergebnisse der Linearführung NR45LR bei einem Bearbeitungsprozeß für Werkzeugmaschinen

Um Erkenntnisse über das tatsächliche Verhalten beim Bearbeiten zu gewinnen, erforscht THK seit einigen Jahren in der Praxis, wie unterschiedlich Führungsarten einschließlich der Gleitführung die Leistung einer Werkzeugmaschine beeinflussen. Basierend auf diesen Testergebnissen wird ein Vergleich zwischen einer THK Linearführung NR45LR und einer Rollenführung dargestellt.

1. Testziel

Die auf einem Lineartisch installierten Kompaktführungen wurden einem Versuch unterzogen, um die Schnittleistung beim Stirnfräsen und Schaftfräsen zu bewerten. Die Leistung beim Schwerzerspanen wurde durch einen Stirnfräser geprüft. Die Kombinationen von Schnittkräften aus unterschiedlichen Richtungen wurden mittels eines Schaftfräsers erfaßt.

2. Testmethode

Der Lineartisch wurde auf der X-Achse eines vertikalen Bearbeitungszentrums installiert. Auf diesem wurde das Werkstück aufgespannt. Der Test wurde bei feststehender X-Achse und bewegtem Lineartisch durchgeführt (Abb. 3).

3. Bewertungsparameter

Die zur Bewertung aufgenommenen Daten wurden wie folgt aufgenommen:

- ① Horizontale Amplitude des Maschinentisches
- 2 Vertikale Amplitude des Maschinentisches
- 3 Verschleißmenge der Wendeschneidplatte
- Leistungsbedarf (Tischvorschub)

Messmethode der Prüfparameter

Um die Schwingungen bei der Bearbeitung zu messen, wurden am Tisch Beschleunigungsaufnehmer installiert. Die Messwerte sind anhand der FFT-Analyse als vertikale und horizontale Amplituden dargestellt.

Als Verschleißmenge ist die Gewichtsdifferenz der Wendeschneidplatte vor und nach dem Bearbeiten bezogen auf das Spanvolumen definiert.

Das benötigte Vorschub-Antriebsmoment des Motors wurde während des Vorschubs gemessen.

Technische Daten zum Prüfstand

Maschine

Vertikales Bearbeitungszentrum Motorleistung: 18,5 kW

Werkzeugaufnahme: BT 50 (entspricht ISO 50)

Tisch

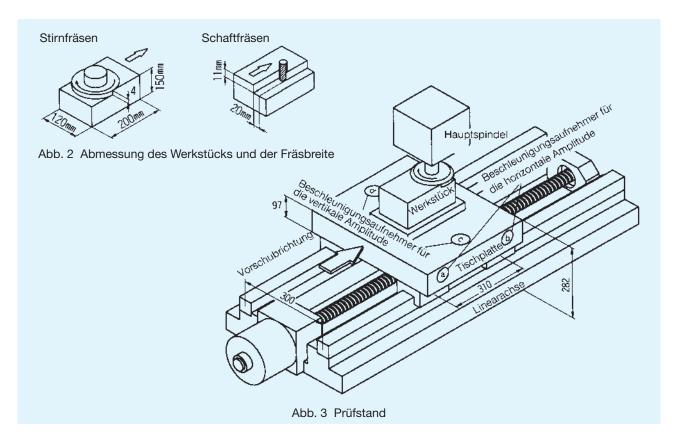
Lineartisch (für Prüfzwecke hergestellt)

AC-Servomotor 2,9 kW Nenndrehmoment: 1862 Ncm

Kugelgewindetrieb: Durchmesser 50 mm

Steigung 10 mm

Werkzeug Werkstück


Stirnfräser: Ø125 mm (6 Schneidplatten, Hartmetall- Maße: 120B × 200L × 150H (mm)

egierung)

Schaftfräser: Ø 20 mm (2 Schneidplatten, Cermett) Werkstoff: S45C (vergleichbar CK45, HRC18)

Bearbeitungsbedingungen

Stirnfräser B 125 Schaftfräser B 20 $n = 382 \text{ min}^{-1}$ $n = 2000 \text{ min}^{-1}$ Drehzahl der Hauptspindel: v = 150 m/minv = 125 m/minSchnittgeschwindigkeit: f = 710 mm/minf = 270 mm/minVorschubgeschwindigkeit: Schnittiefe: t = 4 mmt = 11 mm $Q = 341 \text{ cm}^3/\text{min}$ $Q = 59.4 \text{ cm}^3/\text{min}$ Spanvolumen: Bearbeitungsweg: L = 14,2 mL = 11.6 m

4. Ergebnisse

Vergleich der Bearbeitungsleistung

Die folgende Tabelle verdeutlicht, wie Schwingungen die Bearbeitungsleistung zwischen dem Typ NR und einer

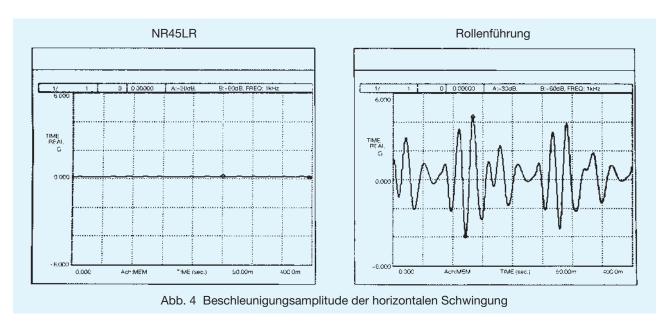
Rollenführung beeinflussen. Ausgangsbasis für die relative Bewertung ist der Wert 1 für den Typ NR.

(siehe Abb. 2)

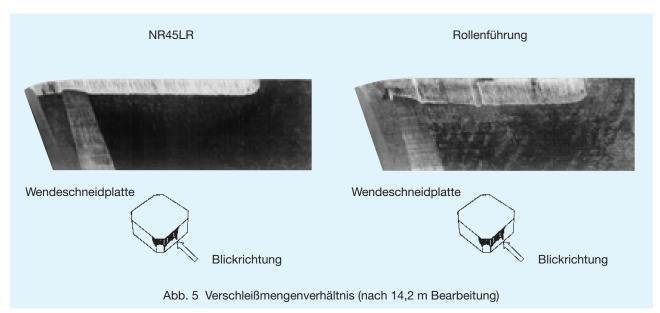
Tab. 1 Stirnfräsen

	① HorizontaleAmplitude	② VertikaleAmplitude	③ Verschleiß- menge	Leistungsbedarf f für den Vorschub	
NR45LR	1	1	1	1	
Rollenführung	1,8	1,3	2,4	1,3	

Tab. 2 Schaftfräsen


	① HorizontaleAmplitude	② VertikaleAmplitude	③ Verschleiß- menge	Leistungsbedarf für den Vorschub		
NR45LR	1	1	1	1		
Rollenführung	1,2	1,6	3,3	2,1		

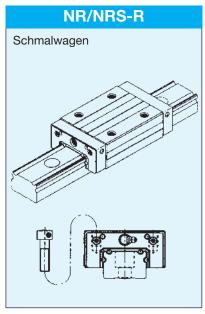
Vergleich der Amplituden am Maschinentisch (Beschleunigungsamplitude)


Die gemessenen Horizontalamplituden der NR45LR während der Bearbeitung werden im Vergleich zu einer Rollenführung dargestellt. Die Beschleunigungsamplituden der

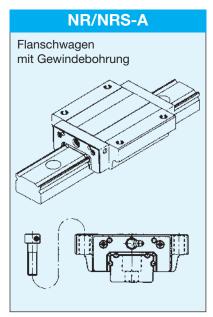
NR45LR sind beim Stirnfräsen kleiner als die der Rollenführung (siehe Abb. 4).

Vergleich über den Verschleiß an der Wendeschneidplatte

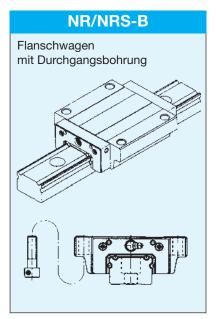
Die beim Stirnfräsen eingesetzte Wendeschneidplatte des Fräskopfes wurde auf Verschleiß untersucht (Abb. 5). Die Aufnahmen zeigen an der Freifläche der Wendeschneidplatte bei der Bearbeitung mit der NR45LR eine kleinere Verschleißbreite als bei dem Test mit einer Rollenführung.


Zusammenfassung der Ergebnisse

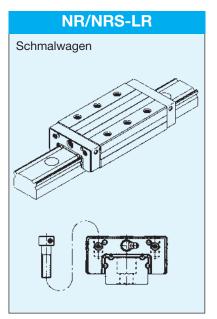
- ① + ② Die Amplitudenwerte beweisen beim Typ NR ein günstigeres dynamisches Verhalten (vertikal wie horizontal). Die Oberflächenqualität (Rauheit, Welligkeit) wird in sehr starkem Maße positiv beeinflußt.
- 3 Das Verschleißmengenverhältnis der Wendeschneidplatte ist beim Typ NR um Faktor 2 bis 3 verbessert.
- Der für den Tischvorschub erforderliche Leistungsbedarf beträgt beim Typ NR im Vergleich zu einer Rollenführung lediglich 75 %. Die Wirtschaftlichkeit des Maschineneinsatzes wird dadurch erhöht.



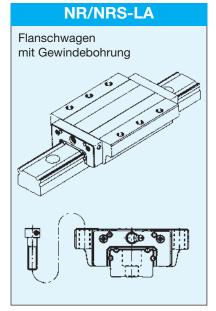
Typenauswahl und Merkmale


Typen für hohe Belastung

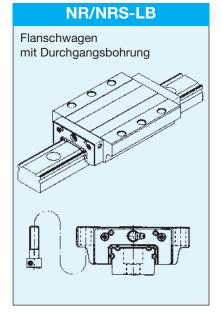
Gewinde sind im Wagen eingebracht. Einsatz bei begrenztem Bauraum.



Gewindebohrungen befinden sich im Flansch. Einfache Befestigung von oben.

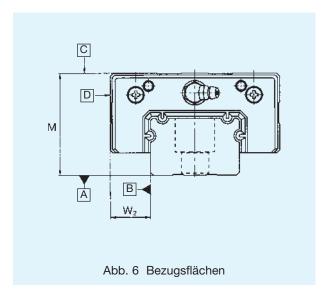


Befestigung über Durchgangsbohrungen von unten.


Typen für extrem hohe Belastung

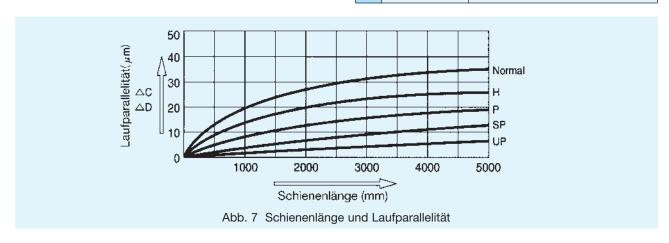
Langwagen (mehr Kugeln) bei gleichem Querschnitt wie NR/NRS-R.

Langwagen (mehr Kugeln) bei gleichem Querschnitt wie NR/NRS-A.



Langwagen (mehr Kugeln) bei gleichem Querschnitt wie NR/NRS-B.

Genauigkeitsklassen


Die Typen NR und NRS können in fünf verschiedenen Genauigkeitsklassen geliefert werden. Tabelle 3 gibt Auskunft über die jeweilige Toleranz.

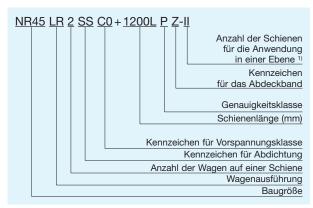
Tab. 3 Genauigkeitsklassen

Einheit: mm

iao.	o deridaigkeitsr		oit. IIIIII							
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse		Ultra- präzisions Klasse				
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01				
NR .	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003				
NRS	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01				
25X - 30 35	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 7)								
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 7)					
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02				
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003				
NR NRS	Maßtoleranz der Breite W ₂	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02				
45 55	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02	0,01	0,007	0,005				
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 7)								
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 7)					
	Kennzeichen	Normal	Н	Р	SP	UP				
	Maßtoleranz der Höhe M	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03				
NR	Abweichung der Höhe M zwischen den Paaren	0,03	0,02	0,01	0,007	0,005				
NRS 65	Maßtoleranz der Breite W ₂	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03				
75 85 100	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,025	0,015	0,010	0,007				
100	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 7)					
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 7)					

Vorspannungsklassen

In Tabelle 4 sind die Vorspannungsklassen mit dem entsprechenden Radialspiel aufgeführt. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.


Tab. 4 Vorspannungsklassen

Einheit: μm

	Vor	rspannungskla	sse
Baugröße	Normal	Leicht	Mittel
	_	C1	C0
NR/NRS25X	0 ~ -3	- 3 ∼ - 6	-6 ∼ -9
NR/NRS30	0 ~ -4	- 4 ∼ - 8	-8 ~ -12
NR/NRS35	0 ~ -4	- 4 ∼ - 8	-8 ~ -12
NR/NRS45	0 ~ -5	- 5 ∼ - 10	-10 ~ -15
NR/NRS55	0 ∼ -6	- 6 ∼ - 11	-11 ∼ -16
NR/NRS65	0 ∼ -8	-8 ~ -14	-14 ~ -20
NR/NRS75	0 ~ -10	-10 ~ -17	-17 ~ -24
NR/NRS85	0 ~ -13	-13 ∼ -20	-20 ~ -27
NR/NRS100	0 ~ -14	-14 ∼ -24	-24 ~ -34

Anm.: Die Vorspannungsklasse "Normal" wird nicht bezeichnet. Wird die Vorspannungsklasse "Leicht" bzw. "Mittel" gewünscht, muß das entsprechende Symbol in der Bestellbezeichnung angegeben werden (siehe Aufbau der Bestellbezeichnung).

Aufbau der Bestellbezeichnung

Das Zeichen "II" ist keine Stückzahlangabe, sondern legt den Paralleleinsatz fest. Für diese Montagevariante sind zwei Schienen erforderlich.

Zulässiges statisches Moment M₀

Beim Einsatz eines Führungswagens oder zweier Wagen, die direkt aneinander auf einer Führungsschiene montiert sind, wirkt je nach Lage des Kraftangriffspunktes eine zusätzliche Momentbelastung auf den bzw. die Führungswagen.

Tabellen 5a und 5b geben Auskunft über das zulässige statische Moment.

Tab. 5a Zulässiges statisches Moment beim Typ NR

Einheit: kNm

Momente	M	l _A	M	l _B	M _C 1)
Baugröße	1 Wagen	2 Wagen	1 Wagen	2 Wagen	
NR25X	0,771	3,86	0,469	2,33	0,91
NR25XL	1,26	6,29	0,775	3,82	1,21
NR30	1,26	6,63	0,778	4,05	1,47
NR30L	2,18	10,6	1,33	6,47	1,95
NR35	1,75	9,47	1,08	5,8	2,24
NR35L	3,14	15,5	1,92	9,43	3,03
NR45	3,37	17,7	2,07	10,8	4,45
NR45L	5,93	28	3,59	16,9	5,82
NR55	5,39	27,8	3,3	16,9	6,98
NR55L	8,87	43,8	5,41	26,6	9,05
NR65	8,76	44,7	5,39	27,3	11,6
NR65L	16,8	79,9	10,1	48	15,9
NR75	14,4	73,3	8,91	44,7	19,3
NR75L	25,4	118	15,4	71,4	25,2
NR85	20,3	102	12,4	62,6	26,8
NR85L	34,7	160	21	96,2	34,6
NR100	34	167	20,7	101	43,4
NR100L	47,3	238	29,2	146	54,6

Der M_C-Wert gilt für einen Wagen. Bei einer Anwendung mit zwei Wagen verdoppelt sich der Wert.

Tab. 5b Zulässiges statisches Moment beim Typ NRS Einheit: kNm

M_C 1) Momente M_B 1 Wagen 2 Wagen 1 Wagen 2 Wagen Baugröße NRS25X 0,568 2,84 0,568 2,84 0,633 NRS25XL 0,926 0,926 0,846 4,6 4,6 NRS30 0.926 4.86 0.926 4.86 1.02 NRS30L 1,6 7,83 1,6 7,83 1,36 NRS35 1,28 6,92 1,28 6,92 1,54 NRS35L 2,29 2,29 11,3 11,3 2,09 NRS45 13 13 2,47 2,47 3,09 NRS45L 4,34 20,5 4,34 20,5 4,06 NRS55 3,97 20,5 3,97 20,5 4,86 NRS55L 6,49 32 6,49 32 6,28 NRS65 6,45 32,9 6,45 32,9 8,11 NRS65L 12,3 58,6 12,3 58,6 11,1 53,8 NRS75 10,6 53,8 10.6 13,4 NRS75L 18.6 87 18.6 87 17,6 NRS85 14.9 75,3 14.9 75,3 18.7 NR85L 25,4 117 25,4 117 24,2 25,1 123 30,4 NR100 25,1 123 NR100L 174 34,6 174 34,6 38,1

Berechnung der Lebensdauer

Die Lebensdauer der Linearführung SNR/SNS wird nach folgender Formel bestimmt:¹⁾

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_C}\right)^3 \times 50$$

L : Nominelle Lebensdauer (km) Die nominelle Lebensdauer L ist statistisch als die Gesamtlaufstrecke definiert, die 90% einer größeren Menge gleicher Führungen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor erste Anzeichen einer Werkstoffermüdung auftreten.

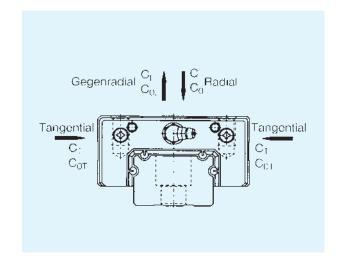
C: Dynamische Tragzahl (N)
PC: Berechnete Belastung (N)

 f_T : Temperaturfaktor f_C : Kontaktfaktor f_W : Belastungsfaktor

Aus der errechneten nominellen Lebensdauer L kann die Lebensdauer L_h (in Stunden) nach folgender Formel errechnet werden:

$$L_h = \frac{L \times 10^3}{2 \times \ell_S \times n_1 \! \times \! 60}$$

L_h: Zeitbezogene Lebensdauer (h)


 ℓ_{S} : Hublänge (m)

n₁: Anzahl der Zyklen pro Minute (min⁻¹)

Variation der Tragzahlen

Tragzahlen

Linearführungen des Typs NR und NRS können Belastungen aus allen Richtungen aufnehmen. Die in den Maßtabellen weiter hinten angegebenen Tragzahlen beziehen sich bei der Baureihe NRS auf Belastungen aus allen Hauptrichtungen (radial, gegenradial, tangential). Beim Typ NR sind die Tragzahlen getrennt für die einzelnen Hauptrichtungen angegeben.

Tab. 6 Verhältnis der Tragzahlen beim Typ NR

Belastungs- richtungen	Dynamische Tragzahl	Statische Tragzahl
Radial	С	C ₀
Gegenradial	C _L =0,78C	C _{0L} =0,71C ₀
Tangential	C _T =0,48C	C _{0T} =0,45C ₀

Aquivalente Belastung

Für den Typ NRS errechnet sich die äquivalente Belastung wie folgt:

$$P_{\mathsf{E}} = |P_{\mathsf{R}} - P_{\mathsf{L}}| + P_{\mathsf{T}}$$

Bei gleichzeitiger Gegenradial- und Tangentialbelastung wird die äquivalente Belastung beim Typ NR wie folgt berechnet:

$$P_E = X \times P_L + Y \times P_T$$

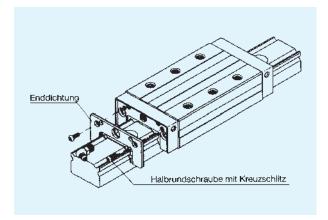
P_E : Äquivalente Belastung (gegenradial oder tangential) (N)

 P_L : Gegenradialbelastung (N) P_T : Tangentialbelastung (N) X, Y : Äquivalenzfaktor (siehe Tabelle 7)

Tab. 7 Äquivalenzfaktor

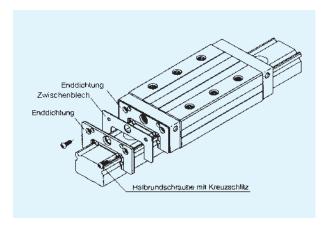
	P _E	Х	Υ
P _L /P _T ≥1	Äquivalente Gegenradialbelastung	1	2
P _L /P _T <1	Äquivalente Tangentialbelastung	0,5	1

 $^{^{1)}}$ Ausführliche Informationen, insbesondere zu den Faktoren f_T , f_C und f_W , finden Sie im Kapitel zur Lebensdauerberechnung.

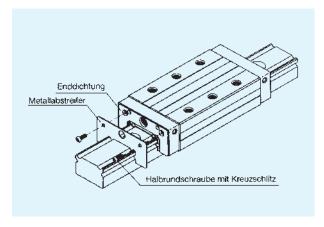


Abdichtung

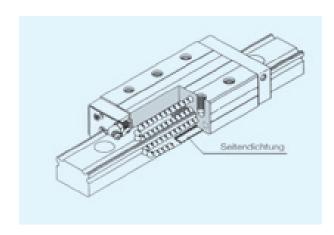
Je nach Bedarf stehen zum Abdichten folgende Dichtungsarten für den Typ NR zur Verfügung. Bitte beachten Sie die Tabelle zu den Kombinationsmöglichkeiten weiter unten.


Enddichtung

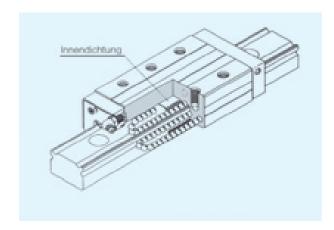
Standardmäßig vorgesehen.


Doppeldichtung

Zum verstärkten Staubschutz ist die Doppeldichtung als Zubehör erhältlich.


Metallabstreifer

Der Metallabstreifer schützt gegen heiße Späne und andere Fremdpartikel.


Seitendichtung

Für eine verbesserte Abdichtung der Wagenunterseite.

Innendichtung

Zur effektiven Innenabdichtung.

Schmiersystem QZ

Siehe S. 354.

Lamellen-Kontaktabstreifer LaCS

Siehe S. 364.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 8 mit der Angabe der entsprechenden Länge L des Führungswagens.

Tab. 8

S	ymbol	Abdichtungszubehör
	UU	Mit beidseitigen Enddichtungen
	SS	Mit End-, Seiten- und Innendichtungen
	ZZ	Mit End-, Seiten- und Innendichtungen sowie Metallabstreifern
	DD	Mit Doppel-, Seiten- und Innendichtungen
	KK	Mit Doppel-, Seiten- und Innendichtungen sowie Metallabstreifern

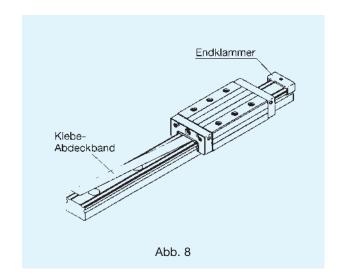
Tab. 9 Kombinationsmöglichkeiten bei Abdichtungen mit entstehender Längenvariation des Führungswagens

Baugröße	oh	ohne		IU	S	S	С	D	Z	ZZ	ŀ	Κ
NR/NRS25X	0	-1,2	0	_	0	-	0	7,4	0	6,2	0	13,8
NR/NRS30	0	-0,9	0	_	0	-	0	9,0	0	6,4	0	15,4
NR/NRS35	0	-1,0	0	_	0	_	0	10,2	0	7,6	0	17,8
NR/NRS45	0	-1,0	0	_	0	-	0	10,2	0	8,4	0	18,6
NR/NRS55	0	-2,4	0	_	0	-	0	10,0	0	8,4	0	18,6
NR/NRS65	0	-2,6	0	-	0	-	0	10,6	0	8,2	0	18,8
NR/NRS75	0	-3,4	0	_	0	-	0	11,0	0	8,6	0	19,6
NR/NRS85	0	-1,1	0	_	0	-	0	15,9	0	11,7	0	25,3
NR/NRS100	0	-6,6	0	_	0	-	0	17,2	0	10,4	0	27,6

o: Kombinationsmöglichkeit vorhanden

Dichtungswiderstand

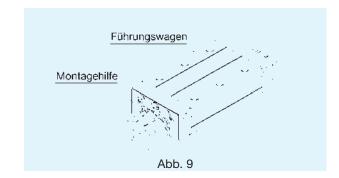
In Tabelle 10 ist der maximale Dichtungswiderstand eines abgeschmierten Führungswagens mit montierten Enddichtungen angegeben.

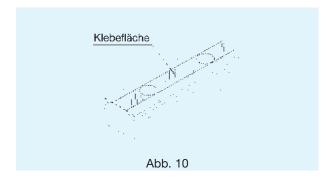

Tab.10 Dichtungswiderstand Einheit: N

Baugröße	Dichtungswiderstand
NR/NRS25X	15
NR/NRS30	17
NR/NRS35	23
NR/NRS45	24
NR/NRS55	29
NR/NRS65	42
NR/NRS75	42
NR/NRS85	42
NR/NRS100	51

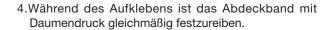
Klebe-Abdeckband SP

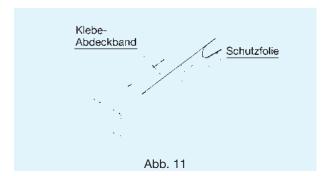
Das Klebe-Abdeckband aus dünnem Stahlblech (1.4301) verhindert besonders effektiv das Eindringen von Spänen, Staub, Kühlflüssigkeit und anderen Fremdpartikeln über die Befestigungsbohrungen der Führungsschiene in den Führungswagen.


Das Klebe-Abdeckband wird gleichzeitig mit der Endklammer des Typs EP an beiden Schienenenden fixiert.

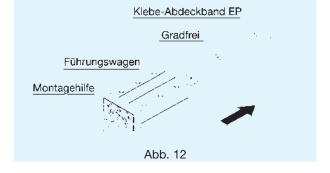


Befestigung des Klebeabdeckbandes


1. Zuerst müssen die Führungswagen von der Schiene auf entsprechende Montagehilfen gezogen werden.



2. Anschließend sind die Schienenoberflächen sorgfältig zu reinigen. Zum Entfernen von Öl und Fett empfiehlt sich als Lösungsmittel z.B. Industriealkohol.

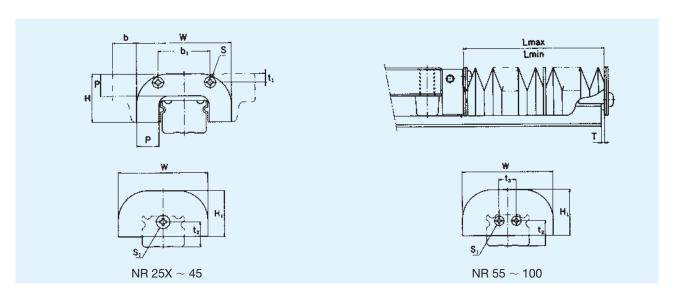


3. Danach wird die Schutzfolie nach und nach entfernt und das Abdeckband ohne zu knicken aufgeklebt.

5. Danach können die Führungswagen wieder auf die Führungsschiene aufgezogen werden.

6. Das Klebeabdeckband wird weiterhin durch die Endklammern an den Schienenenden dauerhaft fixiert. Die Endklammern selbst werden über die oben sitzenden Madenschrauben befestigt. Die seitlichen Gewindebohrungen dienen zur Befestigung von Faltenbälgen.

- Wichtig: 1. Die Madenschrauben zur Befestigung der Endklammern dürfen nicht übermäßig stark angezogen werden.
 - 2. Beim Arbeiten mit dem Klebeabdeckband, das aus sehr dünnem Stahlblech besteht, sind wegen der Verletzungsgefahr Arbeitsschutzmittel wie Handschuhe zu tragen.

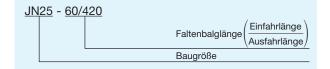


Faltenbalg

Für die Linearführungen NR und NRS ist als Option ein einfacher Faltenbalg lieferbar. Der Faltenbalg empfiehlt sich besonders bei kritischen Umgebungsbedingungen (z.B. Spritzwassereinwirkung).

Metall-Teleskopabdeckung

Für einen effektiven Staubschutz empfehlen wir eine Metall-Teleskopabdeckung wie in Abb. 14.

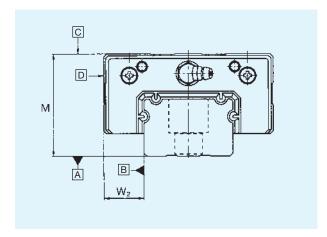


Tab. 11 Faltenbalgabmessungen

Einheit: mm

		Abmessungen												
Baugröße	W	Н	H ₁	Р	b ₁	t ₁	t ₂	t ₃	Befestigungsschraube am Wagen Schraubengröße S × Gewindelänge	Befestigungsschraube an Schiene Schraubengröße S ₁ × Gewindelänge	b A/B	Т	A Lmax Lmin	passende Führung
JN25	48	25,5	25,5	10	26,6	4,6	13	_	M3 × 5	$M4 \times 4$	11	1,5	7	NR/NRS25X
JN30	60	31	31	14	34	5,5	17	_	M4 × 8	$M4 \times 4$	15	1,5	9	NR/NRS30
JN35	70	35	35	15	36	6	20,5	l	M4 × 8	M5 × 4	15	2	10	NR/NRS35
JN45	86	40,5	40,5	17	47	6,5	24		M5 × 10	$M5 \times 4$	17	2	10	NR/NRS45
JN55	100	49	49	20	54	10	29,5	18	M5 × 10	M5 × 4	20	2	13	NR/NRS55
JN65	126	57,5	57,5	20	64	13,5	36,2	20	M6 × 12	M6 × 5	22	3,2	13	NR/NRS65
JN75	145	64	64	30	80	10,5	34,2	26	M6 × 12	M6 × 5	25	3,2	20	NR/NRS75
JN85	156	70,5	70,5	30	110	15,5	39,5	28	M6 × 12	M6 × 5	39,5	3,2	20	NR/NRS85
JN100	200	82	82	30	140	15	40	34	M8 × 16	M6 × 5	30	3,2	20	NR/NRS100

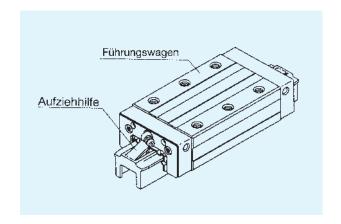
Aufbau der Bestellbezeichnung



Montagehinweis

Anschlaghöhen und Ausrundungsradien

Für die Montageflächen der Führungswagen und Schienen werden die in Tabelle 12 angegebenen Anschlaghöhen empfohlen. Die Ausrundungen an den Montageflächen sollten so gefertigt sein, daß Berührungen mit den angefasten Flächen des Wagens bzw. der Schiene vermieden werden. Wir empfehlen die Ausrundungen entsprechend der in Tabelle 12 angegebenen Maximalradien auszuführen.



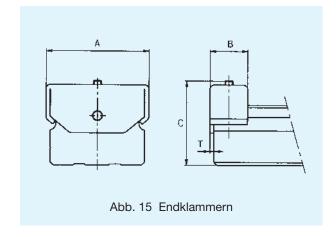
Tab. 12 Anschlaghöhe und Ausrundungsradius Einheit: mm

Baugröße	Ausrundungs- radius r (max.)	Anschlaghöhe für Schiene H ₁	Ŭ	Е
NR/NRS25X	0,5	5	5	5,5
NR/NRS30	1,0	5	5	7
NR/NRS35	1,0	6	6	9
NR/NRS45	1,0	8	8	11,5
NR/NRS55	1,5	10	10	14
NR/NRS65	1,5	10	10	15
NR/NRS75	1,5	12	12	15
NR/NRS85	1,5	14	14	17
NR/NRS100	2,0	16	16	20

Aufziehhilfe

Wenn die Führungswagen der Typen NR und NRS von der Schiene gezogen werden, fallen die Kugeln heraus. Um dies zu vermeiden, sollte eine spezielle Aufziehhilfe benutzt werden.

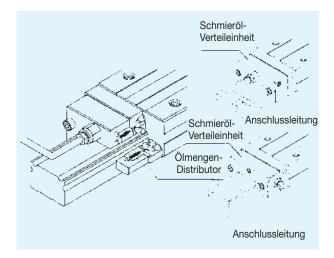
Endklammern

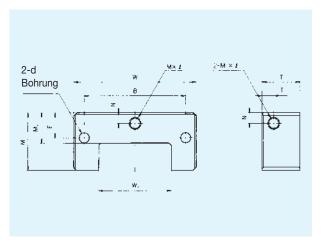

Um ein versehentliches Abziehen des Führungswagens zu vermeiden, werden die Führungsschienen mit Endklammern geliefert.

Werden die Endklammern im Betrieb nicht mehr benötigt, ist zu beachten, daß der Führungswagen nicht über die Schiene hinausfährt.

Die Endklammern werden außerdem als Befestigungselemente für Abdeckbänder benutzt.

Tab. 13 Abmessungen der Endklammern Einheit: mm


Baugröße	А	В	С	Т
NR/NRS25X	26	14	25	1,5
NR/NRS30	31	14	31	1,5
NR/NRS35	38	16	32,5	2
NR/NRS45	49	18	41	2
NR/NRS55	57	20	46,5	2
NR/NRS65	69,4	22	59	3,2
NR/NRS75	81,7	28	56	3,2
NR/NRS85	91,4	22	68	3,2
NR/NRS100	106,4	25	73	3,2



Schmieröl-Verteileinheit

Für die Baureihe NR ist auch eine Schmieröl-Verteileinheit erhältlich. Dieses spezielle Schmieradapter ermöglicht eine gleichmäßige Verteilung des Schmieröls auf die vier Kugelumläufe unabhängig von der Einbaulage der Führung.

Einbaulage und Schmierung

T규터 Linearführungen können in acht Einbaulagen, wie in Kapitel 8.5 dargestellt, montiert werden. Bei Bestellung eines Führungssystems sollte die Einbaulage angegeben werden, damit bei einer geplanten Ölschmierung die richtigen Schmierkanäle vorgesehen werden können.

Merkmale

In der Schmieröl-Verteileinheit sind Ölmengen-Distributoren integriert, die direkt die vier Kugelumläufe mit Schmieröl versorgen. Dabei können die Anschlussleitungen über M8-Gewindebohrungen an der Stirnseite oder an den Seitenflächen der Verteileinheit angebracht werden.

Aufgrund der Schmierkanäle innerhalb der Verteileinheit werden die Kugelreihen gleichmäßig mit einer bestimmten Ölmenge geschmiert, so daß eine übermäßige Schmierung und damit ein zu hoher Ölverbrauch vermieden wird. Dies ist auch unabhängig von der Einbaulage.

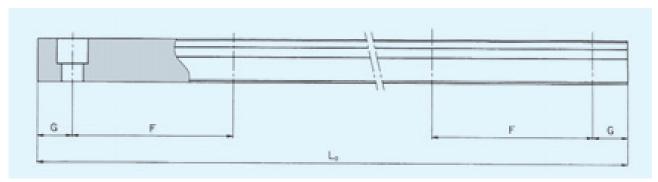
Bei Werkzeugmaschinen können die Schmieröl-Verteileinheiten zur Versorgung mit Öl-Mengen-Impulsen an die Zentralschmieranlage angeschlossen werden.

Spezifikation

Viskosität des Schmieröls	ISO-VG 32 ~ ISO-VG 64
Ölmenge	0,03 x 4, 0,06 x 4 cm ³ /Impuls
Anschlussleitung	Ø 4, Ø 6
Material	Aluminiumlegierung

Einheit: mm

Тур	Breite W	Höhe M		W ₁	M ₁	В	Е	Ν	T ₁	d	Ölimpuls- Menge [cm³]
A30N	56	29	25	29	14,5	46	14	5,3	5,3	3,5	
A35N	66	33	25	35	17	54	16,5	6	5,3	4,5	0,03 x 4
A45N	81	38	25	48	20	67	16,5	7	7,8	6,6	
A55N	94	45,5	25	56	22	76	20,5	7	7,8	6,6	
A65N	119	55,5	25	67	26,3	92	25,5	11,5	7,8	9	0,06 x 4
A85N	147	68,5	25	92	34	114	32	15,5	7,8	9	


Anm.: Die Maße für die Gewindebohrungen M x ℓ und M1 x ℓ_1 sind M8 x 8.

Standard- und Maximallängen der Führungsschienen

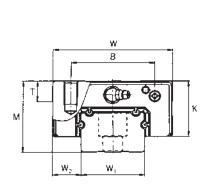
Die Standard- und Maximallängen der Führungsschienen sind in der Tabelle 14 angegeben. Längen, die die in der Tabelle angeführten Maximallängen überschreiten, werden als gestoßene Schienen geliefert. Bei der Bestellung von Überlängen wird der Wert G (Stoßstelle) nach Tabelle 14

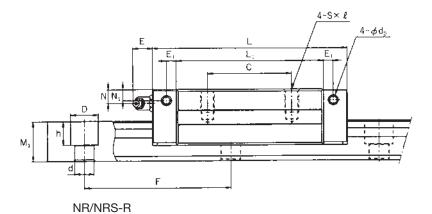
empfohlen. Ist das Maß G größer als der angegebene Wert, neigen die Schienenenden nach der Montage zur Instabilitat und die Genauigkeit kann beeinträchtigt werden. Gestoßene Schienen werden so gefertigt, daß kein Versatz an den Stoßstellen entsteht.

Tab. 14 Standard- und Maximallängen der Führungsschienen

Einheit: mm

Baugröße	NR25X NRS25X	NR30 NRS30	NR35 NRS35	NR45 NRS45	NR55 NRS55	NR65 NRS65	NR75 NRS75	NR85 NRS85	NR100 NRS100
Standardlänge der Führungsschiene (L ₀)	230 270 350 390 470 510 590 630 710 750 830 950 990 1070 1110 1190 1230 1310 1350 1430 1470 1550 1590 1710 1830 1950 2070 2190 2310 2430 2470	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620	1280 1580 2030 2630	1530 1890 2250 2610	1340 1760 2180 2600
F	40	80	80	105	120	150	150	180	210
G	15	20	20	22,5	30	35	40	45	40
Maximallänge	3000	3000	3000	3000	3000	3000	3000	3000	3000


Anm.: Die Maximallängen variieren je nach Genauigkeitsklasse Sollten keine gestoßenen Schienen einsetzbar sein, wenden Sie sich bitte an הואלונים

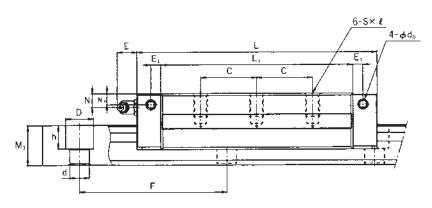


NR/NRS

Schmalwagen

NR/NRS-R (Schwerlasttyp) NR/NRS-LR (Super-Schwerlasttyp)

Baugröße 1)		Haupt- nessun		Abmessungen Führungswagen											
baugrobe "	Höhe M	Breite W	Länge L	В	С	$S imes \ell$	L ₁	Т	К	N	N ₁	Е	E ₁	d ₀	
NR/NRS25XR NR/NRS25XLR	31	50	83 102	32	35 25	M6 × 8	62,4 81,6	10	25,5	7	7	10	4	3,9	
NR/NRS30R NR/NRS30LR	38	60	98 120,5	40	40 30	M8 × 10	70,9 93,4	10	31	7	7	9,5	5	3,9	
NR/NRS35R NR/NRS35LR	44	70	109,5 135	50	50 36	M8 × 12	77,9 103,4	12	35	8	8	9	6	5,2	
NR/NRS45R NR/NRS45LR	52	86	139 171	60	60 40	M10 × 17	105 137	15	40,5	10	8	14	7	5,2	
NR/NRS55R NR/NRS55LR	63	100	163 200,5	65	75 47,5	M12 × 18	123,6 160,8	18	49	11	10	13,5	8	5,2	
NR/NRS65R NR/NRS65LR	75	126	186 246	76	70 55	M16 × 20	143,6 203,6	22	60	16	15	13,5	9	8,2	
NR/NRS75R NR/NRS75LR	83	145	218 274	95	80 65	M18 × 25	170,2 226,2	26	68	18	17	13	9	8,2	
NR/NRS85R NR/NRS85LR	90	156	247 303	100	80 70	M18 × 25	194,9 251	28	73	20	20	13	10	8,2	
NR/NRS100R NR/NRS100LR	105	200	294 334	130	150 100	M18 × 27	223,4 263,4	35	85	23	23	10	12	8,2	

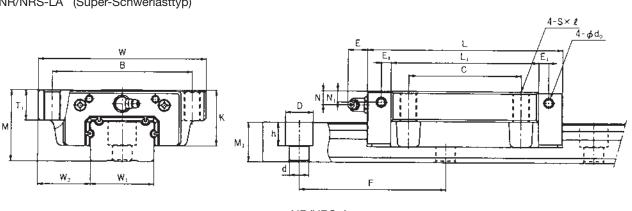

¹⁾ Der Aufbau der Bestellbezeichnung ist auf S. 264 erklärt.

²⁾ Die Standardlängen der Führungsschienen sind auf S. 273 aufgeführt.

³⁾ Die Tragzahlen beim Typ NRS gelten für radiale, gegenradiale und tangentiale Belastungen.

 $^{^{4)}}$ Die zulässigen statischen Momente M_A , M_B und M_C sind auf S. 265 angegeben.

NR/NRS-LR


Schmier-	Abmessung Schmier- Führungsschie				Tragz NRS	ahlen S ^{3) 4)}	Ra	Tra dial	_	len NF radial		ential	Gew	vicht	
nippel	W ₁ 0 -0,05	W_2	Höhe M ₁	F	$d \times D \times h$	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-M6F	25	12,5	17	40	6 × 9,5 × 8,5	25,9 34,5	59,8 79,7	33,0 44,0	84,6 113,0		60,1 80,2	15,8 21,1	38,1 50,9	0,43 0,55	3,1
B-M6F	28	16	21	80	7 × 11 × 9	38,2 51,0	86,1 115,0	48,7 64,9	122,0 162,0		88,6 115,0	23,4 31,2	54,9 72,9	0,74 1,0	4,3
B-M6F	34	18	24,5	80	9 × 14 × 12	49,5 67,2	109 148	63,1 85,7	155,0 210,0		110,1 149,1	30,3 41,1	69,8 94,5	1,1 1,4	6,2
B-PT1/8	45	20,5	29	105	14 × 20 × 17	75,3 98,8	163 214	96,0 126,0	231,0 303,0		164,0 215,1	46,1 60,5	104,0 136,4	2,0 2,8	9,8
B-PT1/8	53	23,5	36,5	120	16 × 23 × 20	103 133	220 284	131,0 170,0	310,0 402,0	102,2 132,6	220,1 285,4	62,9 81,6	139,5 180,9	3,3 4,3	14,5
B-PT1/8	63	31,5	43	150	18 × 26 × 22	148 204	309 425	189,0 260,0		147,4 202,8	309,6 426,0	90,7 124,8	196,2 270,0	6,0 8,7	20,3
B-PT1/8	75	35	44	150	22 × 32 × 26	212 278	431 566	271,0 355,0		211,0 277,0	433,0 568,0	130,0 170,0	275,0 360,0	8,7 11,6	24,6
B-PT1/8	85	35,5	48	180	24 × 35 × 28	264 342	531 687	336,0 435,0		262,1 339,3	533,2 690,1	161,3 208,8	338,0 437,4	12,3 15,8	30,5
B-PT1/4	100	50	57	210	26 × 39 × 32	376 470	737 920		1040,0 1300,0		738,4 923,0	229,9 287,5	468,0 585,0	21,8 26,1	42,6

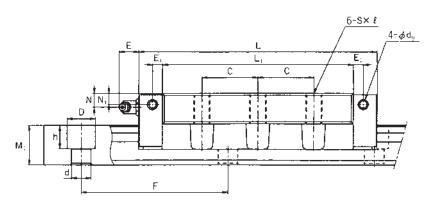
NR/NRS

Flanschwagen mit Gewindebohrung

NR/NRS-A (Schwerlasttyp) NR/NRS-LA (Super-Schwerlasttyp)

NR/N	IRS-A
------	-------

Baugröße 1)		Haupt- nessun		Abmessungen Führungswagen										
Daugione /	Höhe M	Breite W	Länge L	В	С	$S imes \ell$	L ₁	Т	K	N	N ₁	Е	E ₁	d ₀
NR/NRS25XA NR/NRS25XLA	31	72	83 102	59	45 22,5	M8 × 16	62,4 81,6	16	25,5	7	7	10	4	3,9
NR/NRS30A NR/NRS30LA	38	90	98 120,5	72	52 26	M10 × 18	70,9 93,4	18	31	7	7	9,5	5	3,9
NR/NRS35A NR/NRS35LA	44	100	109,5 135	82	62 31	M10 × 20	77,9 103,4	20	35	8	8	9	6	5,2
NR/NRS45A NR/NRS45LA	52	120	139 171	100	80 40	M12 × 22	105 137	22	40,5	10	8	14	7	5,2
NR/NRS55A NR/NRS55LA	63	140	163 200,5	116	95 47,5	M14 × 24	123,6 160,8	24	49	11	10	13,5	8	5,2
NR/NRS65A NR/NRS65LA	75	170	186 246	142	110 55	M16 × 28	143,6 203,6	28	60	16	15	13,5	9	8,2
NR/NRS75A NR/NRS75LA	83	195	218 274	165	130 65	M18 × 30	170,2 226,2	30	68	18	17	13	9	8,2
NR/NRS85A NR/NRS85LA	90	215	247 303	185	140 70	M20 × 34	194,9 251	34	73	20	20	13	10	8,2
NR/NRS100A NR/NRS100LA	105	260	294 334	220	150 100	M20 × 38	223,4 263,4	38	85	23	23	10	12	8,2


¹⁾ Der Aufbau der Bestellbezeichnung ist auf S. 264 erklärt.

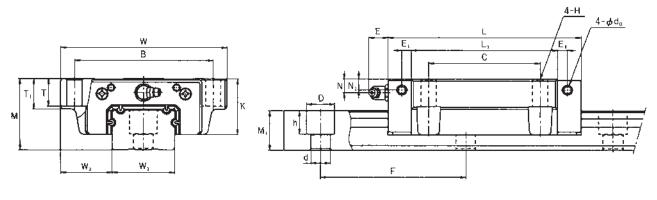
²⁾ Die Standardlängen der Führungsschienen sind auf S. 273 aufgeführt.

³⁾ Die Tragzahlen beim Typ NRS gelten für radiale, gegenradiale und tangentiale Belastungen.

 $^{^{4)}}$ Die zulässigen statischen Momente M_A , M_B und M_C sind auf S. 265 angegeben.

NR/NRS-LA

Einheit: mm


Schmier-			Abmes hrungs										ential	Gewicht	
nippel	W ₁ -0,05	W ₂	Höhe M ₁	F	$d \times D \times h$	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-M6F	25	23,5	17	40	$6 \times 9,5 \times 8,5$	25,9 34,5	59,8 79,7	33,0 44,0	84,6 113,0		60,1 80,2	15,8 21,1	38,1 50,9	0,58 0,77	3,0
B-M6F	28	31	21	80	7 × 11 × 9	38,2 51,0	86,1 115	48,7 64,9	122,0 162,0	· ·	88,6 115,0	23,4 31,2	54,9 72,9	1,1 1,4	5,2
B-M6F	34	33	24,5	80	9 × 14 × 12	49,5 67,2	109 148	63,1 85,7	155,0 210,0		110,1 149,1	30,3 41,1	69,8 94,5	1,5 1,9	7,3
B-PT1/8	45	37,5	29	105	14 × 20 × 17	75,3 98,8	163 214	96,0 126,0	231,0 303,0		164,0 215,1	46,1 60,5	104,0 136,4	2,7 3,5	12,0
B-PT1/8	53	43,5	36,5	120	16 × 23 × 20	103 133	220 284	131,0 170,0	310,0 402,0	102,2 132,6	220,1 285,4	62,9 81,6	139,5 180,9	4,4 5,7	18,0
B-PT1/8	63	53,5	43	150	18 × 26 × 22	148 204	309 425	189,0 260,0		147,4 202,8	309,6 426,0	90,7 124,8	196,2 270,0	7,6 10,9	28,1
B-PT1/8	75	60	44	150	22 × 32 × 26	212 278	431 566	271,0 355,0		211,0 277,0	433,0 568,0	130,0 170,0	275,0 360,0	11,3 15,0	34,0
B-PT1/8	85	65	48	180	24 × 35 × 28	264 342	531 687	336,0 435,0		262,1 339,3	533,2 690,1	161,3 208,8	338,0 437,4	16,2 20,7	44,6
B-PT1/4	100	80	57	210	26 × 39 × 32	376 470	737 923,0	479,0 599,0	1040,0 1300,0		738,4 923,0	229,9 287,5	468,0 585,0	26,7 31,2	66,7

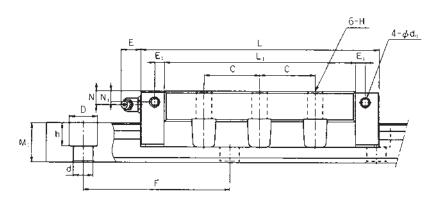
NR/NRS

Flanschwagen mit Durchgangsbohrung

NR/NRS-B (Schwerlasttyp) NR/NRS-LB (Super-Schwerlasttyp)

NR/NRS-B

Baugröße 1)	Haupt- abmessungen			Abmessungen Führungswagen											
Daugione /	Höhe M	Breite W	Länge L	В	С	Н	L ₁	Т	T ₁	K	N	N ₁	Е	E ₁	d ₀
NR/NRS25XB NR/NRS25XLB	31	72	83 102	59	45 22,5	7	62,4 81,6	12	16	25,5	7	7	10	4	3,9
NR/NRS30B NR/NRS30LB	38	90	98 120,5	72	52 26	9	70,9 93,4	14	18	31	7	7	9,5	5	3,9
NR/NRS35B NR/NRS35LB	44	100	109,5 135	82	62 31	9	77,9 103,4	16	20	35	8	8	9	6	5,2
NR/NRS45B NR/NRS45LB	52	120	139 171	100	80 40	11	105 137	20	22	40,5	10	8	14	7	5,2
NR/NRS55B NR/NRS55LB	63	140	163 200,5	116	95 47,5	14	123,6 160,8	22	24	49	11	10	13,5	8	5,2
NR/NRS65B NR/NRS65LB	75	170	186 246	142	110 55	16	143,6 203,6	25	28	60	16	15	13,5	9	8,2
NR/NRS75B NR/NRS75LB	83	195	218 274	165	130 65	18	170,2 226,2	26	30	68	18	17	13	9	8,2
NR/NRS85B NR/NRS85LB	90	215	247 303	185	140 70	18	194,9 251	28	34	73	20	20	13	10	8,2
NR/NRS100B NR/NRS100LB	105	260	294 334	220	150 100	20	223,4 263,4	32	38	85	23	23	10	12	8,2

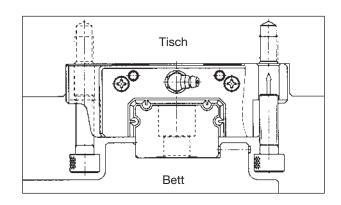

¹⁾ Der Aufbau der Bestellbezeichnung ist aut S. 264 erklärt.

²⁾ Die Standardlängen der Führungsschienen sind auf S. 273 aufgeführt.

³⁾ Die Tragzahlen beim Typ NRS gelten für radiale, gegenradiale und tangentiale Belastungen.

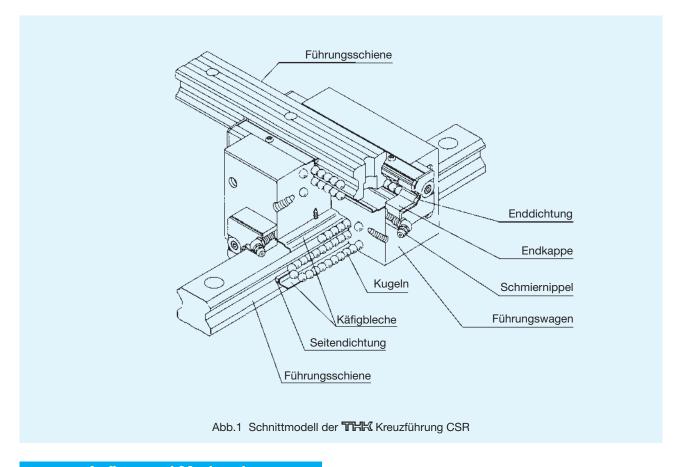
⁴⁾ Die zulässigen statischen Momente M_A, M_B und M_C sind auf S. 265 angegeben.

NR/NRS-LB


Einheit: mm

Schmier-			Abmes ihrungs			Tragzahlen Tragzahlen NR 4) NRS 3) 4) Radial Gegenradial Tangential					ential	Gewicht			
nippel	W ₁ -0,05	W ₂	Höhe M ₁	F	$d \times D \times h$	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-M6F	25	23,5	17	40	6 × 9,5 × 8,5	25,9 34,5	59,8 79,7	33,0 44,0	84,6 113,0		60,1 80,2	15,8 21,1	38,1 50,9	0,58 0,77	3,0
B-M6F	28	31	21	80	7 × 11 × 9	38,2 51,0	86,1 115	48,7 64,9	122,0 162,0		88,6 115,0	23,4 31,2	54,9 72,9	1,1 1,4	5,2
B-M6F	34	33	24,5	80	9 × 14 × 12	49,5 67,2	119 148	63,1 85,7	155,0 210,0		110,1 149,1	30,3 41,1	69,8 94,5	1,5 1,9	7,3
B-PT1/8	45	37,5	29	105	14 × 20 × 17	75,3 98,8	163 214	96,0 126,0	231,0 303,0	, .	164,0 215,1	46,1 60,5	104,0 136,4	2,7 3,5	12,0
B-PT1/8	53	43,5	36,5	120	16 × 23 × 20	103 133	220 284	131,0 170,0	310,0 402,0	102,2 132,6	220,1 285,4	62,9 81,6	139,5 180,9	4,4 5,7	18,0
B-PT1/8	63	53,5	43	150	18 × 26 × 22	148 204	309 425	189,0 260,0		147,4 202,8	309,6 426,0	90,7 124,8	196,2 270,0	7,6 10,9	28,1
B-PT1/8	75	60	44	150	22 × 32 × 26	212 278	431 566	271,0 355,0	1 '	211,0 277,0	433,0 568,0	130,0 170,0	275,0 360,0	11,3 15,0	34,0
B-PT1/8	85	65	48	180	24 × 35 × 28	264 342	531 687	336,0 435,0		262,1 339,3	533,2 690,1	161,3 208,8	338,0 437,4	16,2 20,7	44,6
B-PT1/4	100	80	57	210	26 × 39 × 32	376 470	737 920		1040,0 1300,0		738,4 923,0	229,9 287,5	468,0 585,0	26,7 31,2	66,7

Beim Einsatz zu beachten


Einbau von NR...B und NR...LB

Wenn die Befestigungsschrauben bei den Typen NR...B und NR...LB mit der Montagefläche in Berührung kommen können, empfehlen wir folgende Konstruktion (s. Abb. rechts).

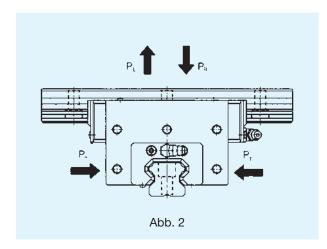
THK Kreuzführung CSR

Aufbau und Merkmale

Die THK Kreuzführung CSR vereinigt die Funktionen zweier Führungswagen des Typs HSR, die um 90° versetzt mit ihren Montageflächen gegeneinander verschraubt sind. Aufgrund der äußerst präzisen Fertigung - die Rechtwinkligkeit der sechs Wagenflächen werden mit einer Abweichung von 2 µm/100 mm gefertigt - wird mit hoher Genauigkeit eine Rechtwinkligkeit der Führungsschienen zueinander erzielt. Durch den Einsatz der THK Kreuzführung CSR wird weiterhin der konstruktive Aufbau von XY-Kreuztischen wesentlich vereinfacht und kompakter gestaltet, da eine bisher notwendige Zwischenkonstruktion entfällt.

Hohe Tragzahlen in allen Richtungen

Durch die optimale Anordnung der vier Kugelreihen in einem Kontaktwinkel von jeweils 45° weist der Führungswagen vom Typ CSR in allen Hauptrichtungen (radial, gegenradial und tangential) gleich große Tragzahlen auf. Somit ist der Typ CSR für ein breites Anwendungsspektrum ausgelegt.


Hohe Steifigkeit

Die optimale Anordnung der vier Kugelreihen erlaubt eine hohe Aufnahme von Momentbelastungen. Zusätzlich kann die Steifigkeit mittels einer Vorspannung der Kugeln ohne wesentliche Beeinflussung der leichtgängigen Laufeigenschaften weiter erhöht werden. Im Vergleich zu bisherigen XY-Tischen mit entsprechenden Zwischenkonstruktionen weisen die Lösungen mit dem Typ CSR eine um 50% verbesserte Steifigkeit auf. Daher eignet sich dieser Typ besonders zur Realisierung von hochsteifen Tischsystemen.

Tragzahlen

Tragzahlen

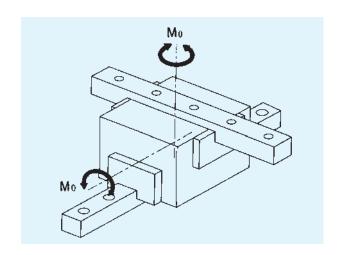
Der Typ CSR besitzt pro Führungswagen gleiche Tragzahlen in allen Hauptrichtungen (radial, gegenradial und tangential). Die Tragzahlen sind in den Maßtabellen angegebenen.

Äquivalente Belastung

Bei gleichzeitiger Belastung des Führungswagens aus unterschiedlichen Richtungen wird die äquivalente Belastung wie folgt berechnet:

$$P_{E} = |P_{R} - P_{L}| + P_{T}$$

P_E: Äquivalente Belastung (N) - Radial

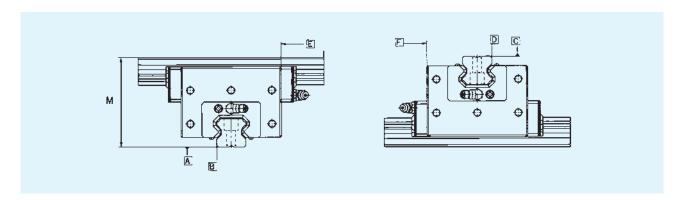

- Gegenradial

- Tangential : Radialbelastung (N)

 P_L : Gegenradialbelastung (N) P_T : Tangentialbelastung (N)

Zulässiges statisches Moment Mo

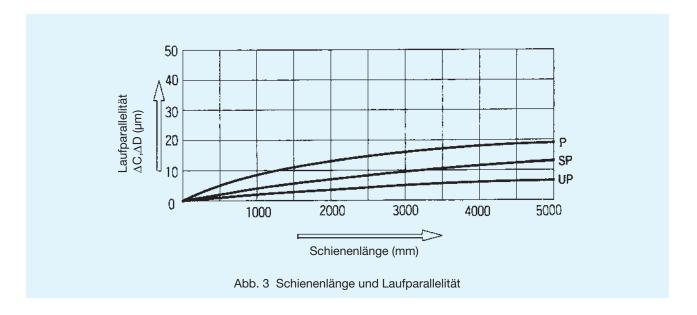
Durch die Belastung eines Führungswagens können je nach Kraftangriffspunkt auch Momente auf den Führungswagen wirken. In diesen Fällen ist gemäß den Angaben in Tabelle 1 der geeignete Typ zu wählen.


Tab. 1 Zulässiges statisches Moment Einheit: kNm

Baugröße	M ₀
CSR 15	0,0805
CSR 20S	0,19
CSR 20	0,27
CSR 25S	0,307
CSR 25	0,459
CSR 30S	0,524
CSR 30	0,751
CSR 35	1,2
CSR 45	2,43

Genauigkeitsklassen

Die Kreuzführung CSR ist in der Präzisionsklasse, der Superpräzisionsklasse und der Ultrapräzisionsklasse lieferbar.



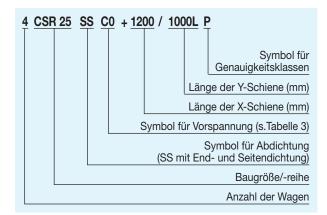
Tab. 2 Genauigkeitsklassen

Einheit: mm

Bau- größe	Genauigkeits- klasse	Präzisions Klasse	Super- präzisions Klasse	Ultra- präzisions Klasse						
	Kennzeichen	Р	SP	UP						
	Abweichung der Höhe M zwischen den Paaren	0,01	0,007	0,005						
CSR 15	Rechtwinkligkeit der Fläche D der Führungsschie- ne zur Fläche B	0,005	0,004	0,003						
20S 20	Laufparallelität der Fläche E des Führungswa- gens zur Fläche B	Δ C (nach Abb. 3)								
	Laufparallelität der Fläche F des Führungswa- gens zur Fläche D	2	∆ D (nach Abb. 3	3)						
	Abweichung der Höhe M zwischen den Paaren	0,01	0,007	0,005						
CSR	Rechtwinkligkeit der Fläche D der Führungsschie- ne zur Fläche B	0,008	0,006	0,004						
25S 25	Laufparallelität der Fläche E des Führungswa- gens zur Fläche B	Δ C (nach Abb. 3)								
	Laufparallelität der Fläche F des Führungswa- gens zur Fläche D	1	Δ D (nach Abb. 3)							
	Abweichung der Höhe M zwischen den Paaren	0,01	0,007	0,005						
CSR 30S	Rechtwinkligkeit der Fläche D der Führungsschie- ne zur Fläche B	0,008	0,006	0,005						
30 35	Laufparallelität der Fläche E des Führungswa- gens zur Fläche B		∆ C (nach Abb. 3	3)						
	Laufparallelität der Fläche F des Führungswa- gens zur Fläche D	Į.	∆ D (nach Abb. 3	3)						
	Abweichung der Höhe M zwischen den Paaren	0,012	0,008	0,006						
CSR	Rechtwinkligkeit der Fläche D der Führungsschie- ne zur Fläche B	0,012	0,008	0,006						
45	Laufparallelität der Fläche E des Führungswa- gens zur Fläche B	1	∆ C (nach Abb. 3	3)						
	Laufparallelität der Fläche F des Führungswa- gens zur Fläche D	1	∆ D (nach Abb. 3	3)						

Einheit: µm

Vorspannung


Tabelle 3 gibt die Vorspannungsklassen für die einzelnen Baugrößen an. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

Tab. 3 Vorspannungsklassen

Symbol	Normal	Leichte Vorspannung	Mittlere Vorspannung								
Baugröße	_	C1	C0								
CSR15	-4~+2	-12~-4	_								
CSR 20S CRS 20	-5~+2	-14~-5	-23~-14								
CSR 25S CSR 25	-6~+3	-16~-6	-26~-16								
CSR 30S CSR 30	-7~+4	-19~-7	-31~-19								
CSR 35	-8~+4	-22~-8	-35~ -22								
CSR 45	-10~+5	-25~-10	-40~-24								

Anm.: Bei der Normalklasse ist keine Angabe in der Bestellbezeichnung erforderlich. Bei leichter oder mittlerer Vorspannung muß das entsprechende Symbol angegeben werden.

Aufbau der Bestellbezeichnung

Abdichtung

Für die Kreuzführung des Typs CSR können verschiedene Abdichtungen entsprechend den Umgebungsbedingungen ausgewählt werden. Die Erklärungen zu den verschiedenen Abdichtungen sind bei der Baureihe HSR aufgeführt (siehe S. 233).

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 4 mit der Angabe der Variation der entsprechenden Länge L des Führungswagens.

Tab. 4 Kombinationsmöglichkeiten bei Abdichtungen und dadurch entstehende Längenvariationen des Führungswagens

Einheit: mm

Baugröße	oh	nne	U	IU	S	S	С	D	Z	ZZ	K	ίΚ	L	.L	F	RR
CSR15	0	-5,0	0	_	0	_	0	5,2	\triangle	1,6	\triangle	6,8	0	_	0	_
CSR20	0	-6,0	0	_	0	_	0	6,6	0	2,6	0	9,2	0	_	0	-
CSR25	0	-7,0	0	_	0	_	0	7,6	0	2,6	0	10,2	0	-	0	_
CSR30	0	-7,0	0	_	0	_	0	7,6	0	2,6	0	10,2	0	-	0	_
CSR35	0	-7,0	0	_	0	-	0	7,6	0	2,6	0	10,2	0	1	0	_
CSR45	0	-7,0	0	_	0	_	0	7,2	0	5,2	0	12,4	0	-	0	_

Anmerkung: O: Kombinationsmöglichkeit vorhanden

스: Kombinationsmöglichkeit vorhanden, aber ohne Schmiernippel. Fragen Sie hierzu '피내시

Dichtungswiderstand

In Tabelle 5 sind die maximalen Dichtungswiderstände eines abgeschmierten Führungswagens mit montierten Enddichtungen angegeben.

Tab.5 Dichtungswiderstand

Einheit: N

Baugröße	Dichtungswiderstand
CSR15	2,0
CSR20	2,5
CSR25	3,9
CSR30	7,8
CSR35	11,8
CSR45	19,6

Standard- und Maximallängen der Führungsschienen

Bei der Baureihe CSR werden die gleichen Führungsschienen mit den entsprechenden Standard- und Maximallängen wie bei der Baureihe HSR verwendet.

Montagehinweis

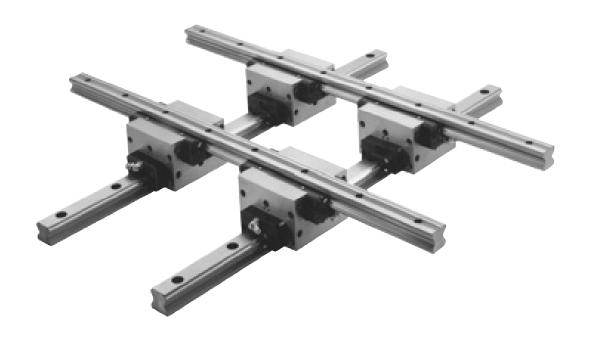
Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die die Führungsschienen angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 6 angegeben. Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, daß Berührungen mit den angefasten Kanten der Führungsschiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 6 angegebenen Maximalradien.

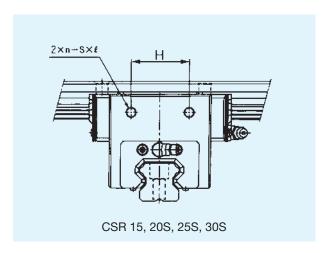


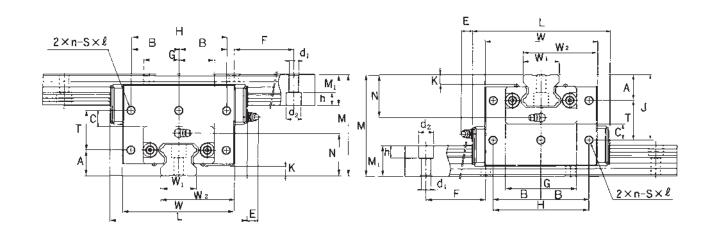
Tab. 6 Schulterhöhen und Ausrundungen Einheit: mm Schulterhöhe Ausrundungsan Führungsschiene Baugröße radius Е r (max.) H₁ **CSR 15** 0,5 3 3,5 CSR₂₀ 3,5 0,5 4,5 **CSR 25** 1,0 5 5,5 5 **CSR 30** 1,0 7 **CSR 35** 1.0 6 7,5 CSR 45 1,0 8 10

Anwendungsbeispiel


Vier Führungswagen des Typs CSR sind an einer quadratischen Unterkonstruktion angeschraubt. Dieser sogenannte Innensattel ist einfach zu montieren und auszurichten. Die

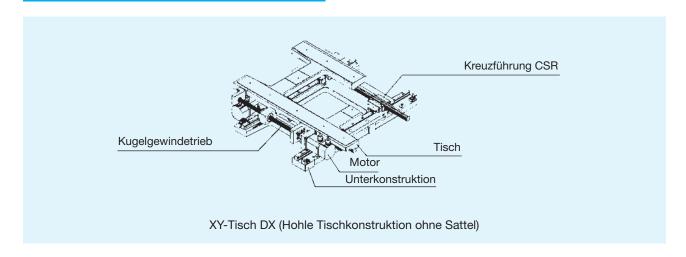
daraus resultierende X,Y-Führungseinheit ist hochpräzise und sehr steif gegenüber auftretenden Momenten.


Kreuzführung CSR


	Abı	nessun	gen		Abmessungen Führungswagen								
Baugröße	Höhe	Breite	Länge										
	М	W	L	Ι	В	Α	Т	n−S×ℓ	J	С	G	K	N
CSR 15	47	38,8	56,5	20	-	_	_	2-M 4×6	34,8	11,3	32	3,5	19,5
CSR 20 S CSR 20	57	50,8 66,8	74 90	30 56	 28	— 13	 24	2-M 5 × 8 5-M 5 × 8	42,5 37	13,3 7,8	42	4	25
CSR 25 S CSR 25	70	59,5 78,6	83 102,5	34 64	— 32	— 18	<u> </u>	2-M 6 × 10 5-M 6 × 10	52 44	17 9	46	5,5	30
CSR 30 S CSR 30	82	70,4 93	98 120,5	40 76	— 38	<u> </u>	 32	2-M 6 × 10 5-M 6 × 10	61 53	20 12	58	7	35
CSR 35	95	105,8	135	90	45	24	37	5-M 8×14	61	14	68	7,5	40
CSR 45	118	129,8	171	110	55	30	45	5-M10 × 15	75	16	84	10	50

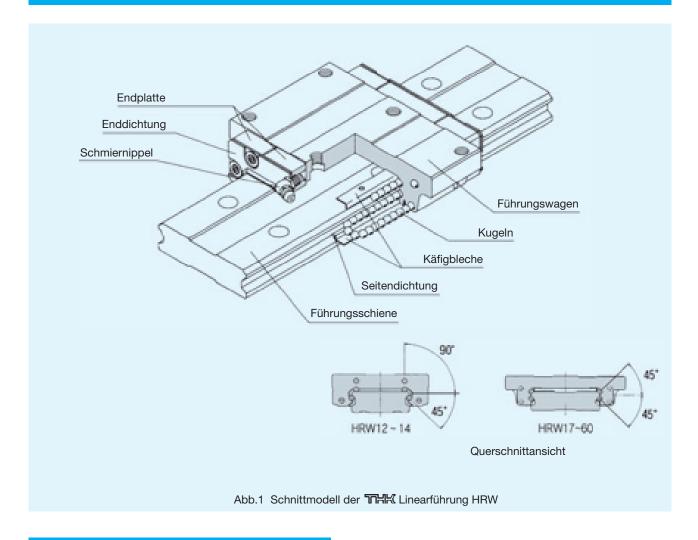
¹⁾ Siehe S. 240 für Standardschienenlängen.

 $^{^{2)}}$ Die zulässigen statischen Momente M_{0}^{τ} finden Sie auf S. 281.



Einheit: mm

Е	Schmiernippel	Breite W ₁ ±0,05	W ₂	Abmessu Höhe M ₁	ungen Füh Teilung F	rungsschiene ¹⁾ $d_1 \times d_2 \times h$	Tragz C [kN]	zahl ²⁾ C ₀ [kN]	Ge ^v Wagen [kg]	wicht Schiene [kg/m]
5,5	PB1021B	15	26,9	15	60	$4,5 \times 7,5 \times 5,3$	8,33	13,5	0,34	1,5
12	B-M6F	20	35,4 43,4	18	60	6 × 9,5 × 8,5	13,8 21,3	23,8 31,8	0,73 1,3	2,3
12	B-M6F	23	41,25 50,8	22	60	7×11×9	19,9 27,2	34,4 45,9	1,2 2,2	3,3
12	B-M6F	28	49,2 60,5	26	80	9 × 14 × 12	28,0 37,3	46,8 62,5	2,0 3,6	4,8
12	B-M6F	34	69,9	29	80	9 × 14 × 12	50,2	81,5	5,3	6,6
16	B-PT1/8	45	87,4	38	105	14 × 20 × 17	80,4	127,5	9,8	11,0


Anwendungsbeispiel

冗岩 Linearführung HRW

Breite Schiene, Typ für gleiche Tragzahlen in allen Hauptrichtungen

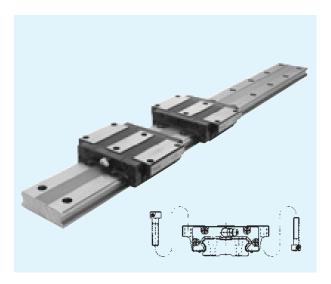
Aufbau und Merkmale

Bei der Thik Linearführung HRW laufen zwischen Führungswagen und Führungsschiene vier Kugelreihen in präzisionsgeschliffenen Kreisbogenlaufrillen, die annähernd den gleichen Durchmesser haben wie die Kugeln selbst. Durch die optimale Anordnung der vier Kugelreihen in einem Kontaktwinkel von jeweils 45° weist der Führungswagen in radialer, gegenradialer und tangentialer Hauptrichtung gleich große Tragzahlen auf (außer HRW12 und 14). Zusätzlich ermöglicht diese Anordnung die Aufbringung einer Vorspannung zur Steifigkeitsverbesserung ohne nennenswerten Anstieg des Reibungskoeffizienten. Dadurch ist der Typ HRW bestens geeignet für den Einbau in horizontalen und vertikalen Achsen(außer HRW12 und 14). Die Führungswagen sind sehr niedrig und massiv gebaut, und zusammen mit den sechs Gewindebohrungen für die Anschlusskonstruktion werden sehr steife Konstruktionen auch bei gegenradialer oder seitlicher Belastung realisiert.

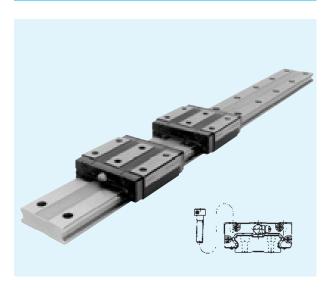
Die THKLinearführung HRW ist ideal für Einschienenanwendungen bei beengten Einbauräumen oder bei Anwendungen, die aufgrund hoher Momentbelastung eine sehr steife Linearführung benötigen.

Kompakt und hoch belastbar

Kennzeichnend für diese Baureihe ist die große Anzahl von tragenden Kugeln für eine Steifigkeit des Führungswagens in allen Richtungen. Weiterhin sind die Führungsschienen sehr breit ausgelegt, so daß eine einzelne von ihnen Momentbelastungen aufnehmen kann. Dazu gewährleistet das hohe axiale Flächenträgheitsmoment der Schiene eine ausgezeichnete tangentiale Steifigkeit. Maßnahmen zur Steifigkeitsverbesserung wie Schulterkanten oder Anschlagflächen sind daher nicht erforderlich.


Ruhige Laufeigenschaften

Endplatten aus Kunststoff mit speziellen Umlenkstücken gewährleisten eine gleichmäßige und geräuscharme Zirkulation der Kugeln innerhalb des Führungswagens. So beträgt z.B. bei der Baugröße HRW27 der Geräuschpegel weniger als 50 dB bei einer Verfahrgeschwindigkeit von 50 m/min.


Typenübersicht

HRW-CA

Dieser Typ besitzt mit seinem breiten und niedrigen Profil gleiche Tragzahlen in allen Hauptrichtungen. Eine Montage ist bei diesem Typ von oben oder unten möglich.

HRW-CR

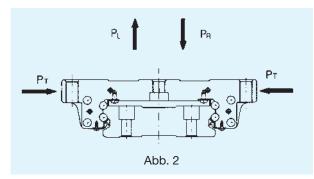
Der Führungswagen ist schmaler gebaut als der des Typs HRW-CA. Die Gewindebohrungen ermöglichen eine einfache Befestigung an die Anschlusskonstruktion.

HRW-LR

Diese kompakte Miniaturführung zeichnet sich durch ihr niedriges Profil aus. Die flache und breite Führungsschiene mit einem Kontaktwinkel der vier Kugellaufreihen von 45° bzw. 90° eignet sich besonders für Radialbelastungen.

Variation der Tragzahl

Tragzahlen für HRW17~60


Die THK Linearführung HRW17~60 kann aus allen Richtungen gleich belastet werden. Die in den Maßtabellen angegebenen Tragzahlen beziehen sich auf Belastungen in radialer, gegenradialer und tangentialer Richtung.

Äquivalente Belastung

Bei gleichzeitiger Belastung des Führungswagens aus unterschiedlichen Richtungen wird die äquivalente Belastung mit folgender Formel ermittelt:

$$P_F = |P_R - P_I| + P_T$$

P _F : äquivalente Belastung	(N)
P _B : radiale Belastung	(N)
P _L : gegenradiale Belastung	(N)
P _T : tangentiale Belastung	(N)

Tragzahlen für Miniaturführung Typ HRW

Die Miniaturführungen Typ HRW 12 und 14 können aus allen vier Hauptrichtungen Belastungen aufnehmen. Die in der Maßtabelle weiter hinten angegebenen Tragzahlen beziehen sich auf die Radialbelastung. Die Tragzahlen in gegenradialer und tangentialer Richtung werden nach Tabelle 1 berechnet.

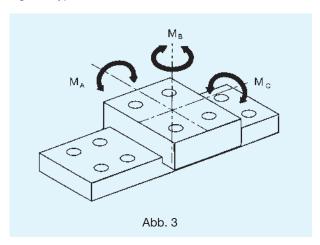
Tab. 1 Verhältnis der Tragzahlen beim Typ HRW

Belastungsrichtung	Dyn. Tragzahl	Stat. Tragzahl
Radial	С	C ₀
Tangential	C _T =0,48C	$C_{0T} = 0,35C_0$
Gegenradial	C _L =0,78C	$C_{0L} = 0.71C_0$

Äquivalente Belastung

Die äquivalente Belastung eines Führungswagens des Typs HRW bei gleichzeitiger gegenradialer und tangentialer Belastung wird wie folgt berechnet:

$$P_F = X \times P_1 + Y \times P_T$$


P _F :	äquivalente Belastung in gegenradiale	er
_	oder tangentialer Richtung	(N)
P_L :	Gegenradialbelastung	(N)
P_{T}^{-} :	Tangentialbelastung	(N)
X, Y:	Äguivalenzfaktoren	(siehe Tab. 2)

Tab. 2 Äquivalenzfaktoren

Aufteilung	P _E	Χ	Υ
$P_L/P_T \ge 1$	äquivalente Gegenradialbelastung	1	2
$P_L/P_T < 1$	äquivalente Tangentialbelastung	0,5	1

Zulässiges statisches Moment Mo

Bei einer Belastung eines Führungswagen können je nach Kraftangriffspunkt Momente auf den Wagen wirken. In diesen Fällen ist gemäß den Werten in Tabelle 3 der geeignete Typ zu wählen.

Tab. 3 Zulässiges statisches Moment¹⁾ Einheit: kNm

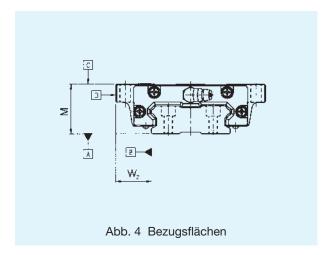
Symbol	N	l _A	N	1 _B	M _C
Baugröße	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]
HRW12	0,0262	0,138	0,013	0,069	0,051
HRW14	0,0499	0,273	0,025	0,137	0,112
HRW17	0,0417	0,244	0,0417	0,244	0,128
HRW21	0,0701	0,398	0,0701	0,398	0,194
HRW27	0,156	0,874	0,156	0,874	0,398
HRW35	0,529	2,89	0,529	2,89	1,49
HRW50	1,25	6,74	1,25	6,74	3,46
HRW60	1,76	12,3	1,76	12,3	5,76

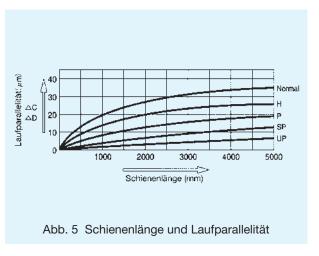
- ¹⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.
 - 2 Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

Genauigkeitsklassen

Die Genauigkeit wird, wie Tabelle 4 zeigt, nach der Laufparallelität, den Maßtoleranzen von Höhe und Breite sowie den Differenzen von Höhe und Breite zwischen den Wagenpaaren bei mehreren eingesetzten Führungswagen auf einer Schiene bzw. auf mehreren in einer Ebene parallel verlaufenden Schienen definiert.

Laufparallelität

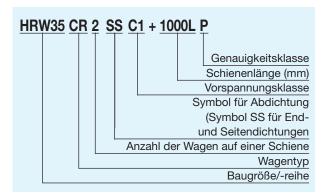

Die Laufparallelität bezeichnet den Parallelitätsfehler zwischen den beiden Bezugsflächen von Führungsschiene und Führungswagen. Bei der Messung wird die Führungsschiene erst auf der Bezugsfläche festgeschraubt, dann wird der Führungswagen über der gesamten Schienenlänge verfahren.


Abweichung der Höhe M zwischen Paaren

Die Abweichung der Höhe M zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Höhe M, die an jedem der in einer Ebene montierten Führungswagen gemessen worden sind.

Abweichung der Breite W₂ zwischen Paaren

Die Abweichung der Breite W_2 zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Breite W_2 , die an jedem der auf einer Schiene montierten Führungswagen gemessen worden sind.



Tab. 4 Genauigkeitsklassen

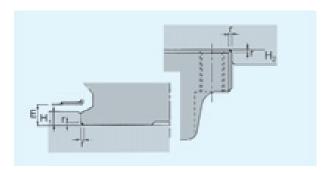
lab.	4 Genauigkeitsk	dassen			Einhe	it: mm						
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse		Ultra- präzisions Klasse						
	Kennzeichen	Normal	H	Р	SP	UP						
	Maßtoleranz der Höhe M	±0,08	±0,04	±0,02	±0,01	_						
	Abweichung der Höhe M zwischen den Paaren	0,015	0,007	0,005	0,003	_						
HRW 12	Maßtoleranz der Breite W ₂	±0,05	±0,025	±0,015	±0,010	_						
14	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	±0,007	±0,005	_						
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)							
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)							
	Kennzeichen	Normal	Н	Р	SP	UP						
	Maßtoleranz der Höhe M	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008						
	Abweichung der Höhe M zwischen den Paaren	0,02	0,01	0,006	0,004	0,003						
HRW 17	Maßtoleranz der Breite W ₂	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008						
21	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	0,006	0,004	0,003						
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)										
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)							
	Kennzeichen	Normal	Н	Р	SP	UP						
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01						
	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	H P SP O O O O O O O O O	0,003							
HRW 27	Maßtoleranz der Breite W ₂	±0,1	±0,04			0 -0,01						
35	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003						
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)										
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)							
	Kennzeichen	Normal	Н	Р	SP	UP						
	Maßtoleranz der Höhe M	±0,1	±0,05			0 -0,02						
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003						
HRW	Maßtoleranz der Breite W ₂	±0,1	±0,05		-	0 -0,02						
50 60	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02			0,005						
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)							
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)							

Aufbau der Bestellbezeichnung

Vorspannung

Tabelle 5 gibt die Vorspannungsklassen mit dem entsprechenden Radialspiel an. Bei vorgespannten Führungssystemen sind die angegebenen Werte negativ.

Tab. 5 Vorspannungsklassen für Tvp HRW Einheit: um

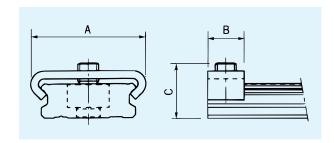

	0	71	
Symbol	Normal	Leichte Vorspannung	Mittlere Vorspannung
Baugröße	-	C1	C0
HRW12	±1,5	- 4 ∼ - 1	_
HRW14	±2	- 5 ~ - 1	_
HRW17	- 3 ~ +2	- 7 ~ - 3	
HRW21	− 4 ~ +2	−8 ~ −4	
HRW27	− 5 ~ +2	–11 ~ – 5	_
HRW35	- 8 ~ +4	−18 ~ −8	− 28 ~ − 18
HRW50	− 10 ~ +5	− 24 ~ − 10	− 38 ~ − 24
HRW60	-12 ~ +5	− 27 ~ − 12	− 42 ~ − 27

Anm.: Das Normalspiel wird nicht gekennzeichnet. Wird leichte Vorspannung C1 oder mittlere Vorspannung C0 gewünscht, muß das entsprechende Symbol in der Bestellbezeichnung angegeben werden.

Montagehinweis

Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 6 angegeben. Die Ausrundungen an den Schulterkanten müssen dabei so gefertig sein, daß Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 6 angegebenen Maximalradien.


Tab. 6 Schulterhöhe und Ausrundung

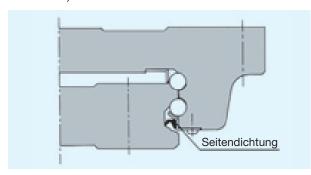
Einheit: mm

Tab: 6 Condition one and Adordinating Elimot: Till											
Bau- größe	Ausrundungs- radius r _{max.}	Schulterhöhe an Führungs- schiene H ₁	Schulterhöhe an Führungs- schiene H ₂	Е							
HRW12	0,5	1,5	4	2							
HRW14	0,5	1,5	5	2							
HRW17	0,4	2	4	2,5							
HRW21	0,4	2,5	5	3							
HRW27	0,4	2,5	5	3							
HRW35	0,8	3,5	5	4							
HRW50	0,8	3	6	3,4							
HRW60	1,0	5	8	6,5							

Stopper

Wird der Führungswagen bei den Baugrößen HRW12 und 14 von der Führungsschiene gezogen, fallen die Kugeln aus dem Wagen heraus. An den Schienenenden werden daher Stopper montiert, die den Wagen so gegen ein versehentliches Herunterziehen von der Führungsschiene sichern.

Baugröße	Α	В	С
HRW12	22	7	10,5
HRW14	28,6	7,6	11,2



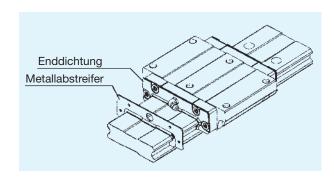
Abdichtung

Für die Linearführung HRW können verschiedene Abdichtungen entsprechend den Umgebungsbedingungen aus-

Seitendichtungen

Für eine verbesserte Abdichtung der Unterseite des Führungswagens sind Seitendichtungen erhältlich (außer Baureihe HRW17-21).

Bezeichnung der Abdichtung


In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 7 mit der Angabe der Variation der Länge L des Führungswagens.

gewählt werden. Die Erklärungen zu den verschiedenen Abdichtungen sind bei der Baureihe HSR aufgeführt.

Metallabstreifer

Metallabstreifer dienen zum Schutz gegen heiße Metallspäne und andere größere Fremdpartikel.

Tab. 8

Symbol	Abdichtungszubehör
UU	mit beidseitigen Enddichtungen
SS	mit End- und Seitendichtungen
ZZ	mit End- und Seitendichtungen sowie Metallabstreifern
DD	Mit Doppel- und Seitendichtungen
KK	Mit Doppel- und Seitendichtungen sowie Metallabstreifern

Tab. 7 Kombinationsmöglichkeiten bei Abdichtungen und dadurch entstehende Längenvariationen des Führungswagens

Einheit: mm

Baugröße	ohne		UU		S	SS)D	ZZ		KK	
HRW12	0	-0,9	0	_	0	_	×		×		×	
HRW14	0	-0,9	0	-	0	-	×		×		×	
HRW17	0	-1,8	0	-	×		_	3,0	\triangle	2,6	_	7,6
HRW21	0	-1,8	0	_	×		_	5,2	\triangle	3,8	\triangle	10,0
HRW27	0	-6,2	0	_	0	_	0	6,0	0	2,6	0	8,8
HRW35	0	-7,4	0	_	0	_	0	6,8	0	5,0	0	12,2
HRW50	0	-7,5	0	_	0	-	0	6,7	0	2,3	0	9,5
HRW60	0	-9,5	0	_	0	_	0	10,7	0	6,1	0	16,9

Anmerkung: O: Kombinationsmöglichkeit vorhanden

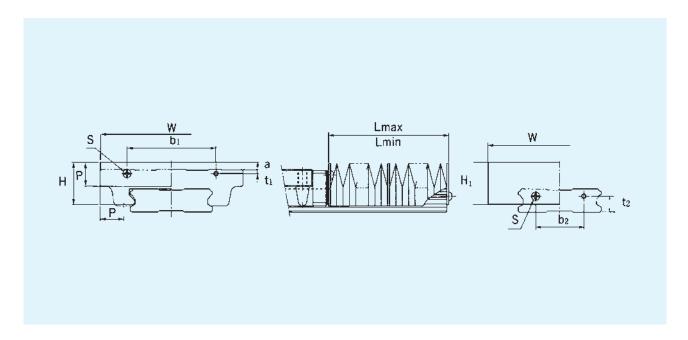
 \times : keine Kombinationsmöglichkeit

스: Kombinationsmöglichkeit vorhanden, aber ohne Schmiernippel. Fragen Sie hierzu '대내

Dichtungswiderstand

Tabelle 9 gibt Maximalwerte für den Dichtungswiderstand eines abgeschmierten Führungswagens mit Enddichtungen an (Symbol UU in der Bestellbezeichnung).

Tab. 9 Dichtungswiderstand


Dichtungswiderstand Baugröße HRW12 0,2 HRW14 0,3 HRW17 2,9 HRW21 4,9 HRW27 4,9 HRW35 9,8 HRW50 14.7 HRW60 19,6

Einheit: N

Spezial-Faltenbalg

Die Abmessungen des Spezial-Faltenbalgs für den Typ HRW sind in der nachfolgenden Tabelle angegeben. Bei Bestellung verwenden Sie bitte die unten angegebene Bestellbezeichnung.

Einheit: mm

		Hauptabmessungen A												
Baugröße	W	Н	H ₁	P		t ₂	$\begin{array}{c c} \text{Befestigungs-} \\ \text{schrauben} \\ \text{s} \times \ell & \text{a} \end{array}$		b	Lmax Lmin	Passende Führung			
JHRW17	68	22	23	15	43	3	18	6	M3 × 61)	8	4	5	HRW17	
JHRW21	75	25	26	17	48	3	22	7	M3 × 6	8	3,5	6	HRW21	
JHRW27	85	33,5	33,5	20	48	3	20	10	M3 × 6	10	2,5	7	HRW27	
JHRW35	120	35	35	20	75	3,5	40	13	M3 × 6	6	-	7	HRW35	
JHRW50	164	42	42	20	78	9	50	16	M4 × 8	_	1	7	HRW50	
JHRW60	180	51	51	25	120	8	60	24	M5 × 10	-	_	9	HRW60	

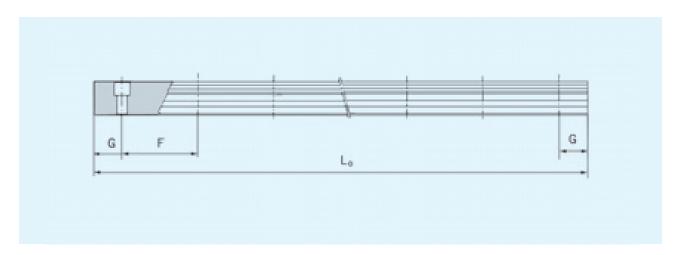
¹⁾ Der Faltenbalg Typ JHRW17 wird schienenseitig mit Schrauben der Größe M3 x 6 befestigt. Zur Befestigung am Führungswagen werden M2,5 x 8 Schrauben verwendet. Bei allen anderen Typen sind die Befestigungsschrauben an Wagen und Schiene gleich (wie in Tabelle angegeben).

Bestellbezeichnung

Berechnung der Faltenbalglänge

Lmin =
$$\frac{S}{(A-1)}$$
 S: Hublänge (mm)

 $Lmax = Lmin \times A$ A: Ausdehnungsgrad



Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungsschienen beim Typ HRW sind in Tabelle 5 angegeben. Bei Längen größer als die angegebenen Maximallängen werden die Führungsschienen in mehreren Stücken als Stoßversion geliefert.

Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zu Instabilität, mit der Folge, daß die Genauigkeit beeinträchtigt werden kann.

Werden zwei oder mehrere Führungsschienen bestellt, ist die Gesamt-Schienenlänge anzugeben. Bei Führungsschienen, die als Stoßversion geliefert werden, werden die Schienenenden nicht mit einer Fase versehen.

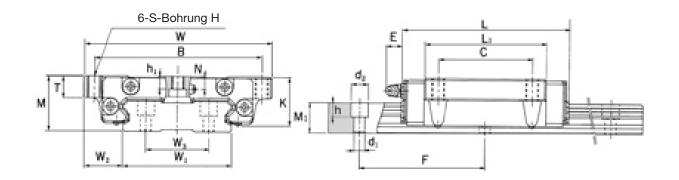
Tab. 5 Standard- und Maximallängen der Führungsschienen

Einheit: mm

		J	Ü					
Baugröße	HRW12	HRW14	HRW 17	HRW 21	HRW 27	HRW 35	HRW 50	HRW 60
	70	70	110	130	160	280	280	570
	110	110	190	230	280	440	440	885
	150	150	310	380	340	760	760	1200
Standard-	190	190	470	480	460	1000	1000	1620
länge	230	230	550	580	640	1240	1240	2040
(L ₀)	270	270		780	820	1560	1640	2460
	310 310						2040	
	390	390						
	470	470						
		550						
		670						
F	40	40	40	50	60	80	80	105
G	15	15	15	15	20	20	20	22,5
Maximallänge	(1000)	(1430)	1900	1900	3000	3000	3000	3000
			(800)	(1000)	(1200)			

Anm.: Sind keine gestoßenen Führungsschienen für Überlängen einsetzbar, wenden Sie sich bitte an TIHK. Die Werte in () sind die Maximallängen bei korrosionsbeständigen Führungsschienen.

HRW-CA


	Hau	ptabmes	sungen	Abmessungen Führungswagen										
Baugröße	Höhe M	Breite W	Länge L	В	С	S	н	h ₁	L ₁	Т	К	N	Е	
HRW17CA HRW17CAM ¹⁾	17	60	51	53	26	M4	3,3	3,2	33,6	6	14,5	4	2	
HRW21CA HRW21CAM ¹⁾	21	68	59	60	29	M5	4,4	3,7	40	8	18	4,5	12	
HRW27CA HRW27CAM ¹⁾	27	80	73	70	40	M6	5,3	6	51,8	10	24	6	12	
HRW35CA HRW35CAM ¹⁾	35	120	107	107	60	M8	6,8	8	77,6	14	31	8	12	
HRW50CA	50	162	141	144	80	M10	8,6	14	103,5	18	46,6	14	16	
HRW60CA	60	200	159	180	80	M12	10,5	15,5	117,5	25	53,5	15	16	

¹⁾ Bei den Baugrößen HRW17~35 können Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl geliefert werden.

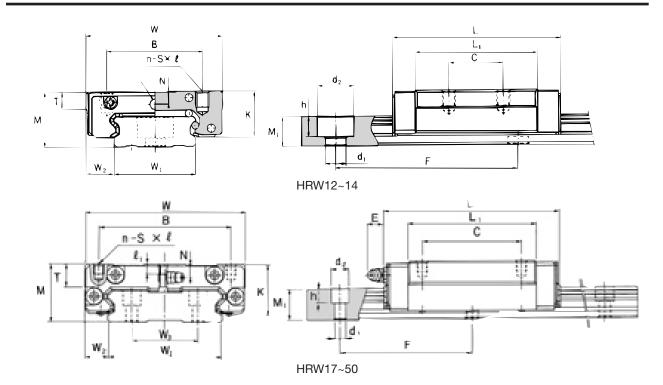
2) Die zulässigen statischen Momente M_A, M_B und M_C finden Sie auf S. 290.

3) Die Standard- und Maximallängen für Führungsschienen finden Sie auf Seite 295.

Einheit: mm

	Breite	,	Abmessu	ingen Fü	hrungssch	niene ²⁾	Tragzahlen ³⁾		Gewicht	
Schmiernippel	W ₁ ±0,05	W ₁ Höhe Teilung		$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]		
PB107	33	13,5	18	9	40	$4,5\times7,5\times5,3$	4,31	8,14	0,15	2,1
B-M6F	37	15,5	22	11	50	$4,5\times7,5\times5,3$	6,18	11,5	0,25	2,9
B-M6F	42	19	24	15	60	$4,5\times7,5\times5,3$	11,5	20,4	0,5	4,3
B-M6F	69	25,5	40	19	80	7 × 11 × 9	27,2	45,9	1,4	9,9
B-PT1/8	90	36	60	24	80	9 × 14 × 12	50,2	81,5	4,0	14,6
B-PT1/8	120	40	80	31	105	11 × 17,5 × 14	63,8	102	5,7	27,8

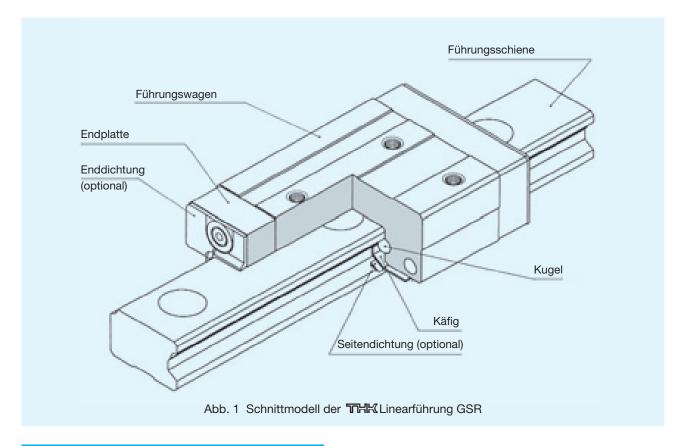
HRW-CR



	Hauptabmessungen Abmessungen Führungswag							wagen		ı		
Baugröße	Höhe M	Breite W	Länge L	В	С	$s \times \ell (\ell_1)$	n	L ₁	Т	K	N	Е
HRW12LRM ¹⁾	12	30	37	21	12	$M3 \times 0,5 \times 3,5 (-)$	4	27	4	10	2,8	_
HRW14LRM ¹⁾	14	40	44,5	28	15	M3 × 0,5 × 4 (-)	4	32,9	5	12	3,3	_
HRW17CR HRW17CRM ¹⁾	17	50	51	29	15	M4 × 5 (-)	4	33,6	6	14,5	4	2
HRW21CR HRW21CRM ¹⁾	21	54	59	31	19	M5 × 6 (-)	4	40	8	18	4,5	12
HRW27CR HRW27CRM ¹⁾	27	62	73	46	32	M6 × 6 (6)	6	51,8	10	24	6	12
HRW35CR HRW35CRM ¹⁾	35	100	107	76	50	M8 × 8 (8)	6	77,6	14	31	8	12
HRW50CR	50	130	141	100	65	M10 × 15 (15)	6	103,5	18	46,6	14	16

¹⁾ Bei den Baugrößen HRW17 ~ 35 können Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl geliefert werden.

 ²⁾ Die zulässigen statischen Momente M_A, M_B und M_C finden Sie auf S. 290.
 3) Die Standard- und Maximallängen für Führungsschienen finden Sie auf Seite 295.



Einheit: mm

	Breite	Abmessungen Führungsschiene ²⁾						hlen ³⁾	Gewicht	
Schmiernippel	W ₁ ±0,05	W ₂	W ₃	Höhe M ₁	Teilung F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
Ø 2,2 Lochbohrung	18	6	_	6,5	40	4,5 x 8 x 4,5	3,29	7,16	0,045	0,79
Ø 2,2 Lochbohrung	24	8	_	7,2	40	4,5 x 7,5 x 5,3	5,38	11,4	0,080	1,20
PB107	33	8,5	18	9	40	4,5 x 7,5 x 5,3	4,31	8,14	0,12	2,1
B-M6F	37	8,5	22	11	50	4.5 x 7,5 x 5.3	6,18	11,5	0,19	2,9
B-M6F	42	10	24	15	60	4,5 x 7,5 x 5,3	11,5	20,4	0,37	4,3
B-M6F	69	15,5	40	19	80	7 x 11 x 9	27,2	45,9	1,2	9,9
B-PT1/8	90	20	60	24	80	9 x 14 x 12	50,2	81,5	3,2	14,6

THK Linearführung GSR

Aufbau und Merkmale

Die spezielle Kontaktgeometrie der THK Linearführung GSR basiert auf der Kreisbogenrille. Damit ist es möglich, Höhendifferenzen und Parallelitätsfehler der Montagefläche so auszugleichen, dass die leichtgängige Bewegung bewahrt bleibt und die Lebensdauer kaum beeinflußt wird. Der Typ GSR eignet sich daher besonders dort, wo genaue Montageflächen nur schwer zu realisieren sind.

Die obere Fläche des Führungswagens hat eine leichte Schräge, so daß beim Anbringen des Führungswagens an die Tischplatte bereits durch das Anziehen der Befestigungsschrauben ein spielfreier Zustand erreicht wird. Ist eine höhere Steifigkeit erforderlich, wird nur vor dem Anziehen der Befestigungsschrauben eine Distanzscheibe zwischen Führungswagen und Tischplatte eingefügt, um so eine entsprechende Vorspannung zu erzielen.

Austauschbarkeit

Die Führungsschienen und Führungswagen sind frei austauschbar. Durch Bevorratung langer Schienen besteht die Möglichkeit, beliebige Längen selbst zuzuschneiden und einzusetzen.

Geräuscharm

Kunststoffendplatten mit speziellen Umlenkstücken und abgerundeten Übergangsbereichen führen zu einem ruhigen und gleichmäßigen Lauf der Kompaktführung.

Aus allen Richtungen belastbar

Die THK Linearführung GSR ist so konstruiert, daß sie aus allen Richtungen belastet werden kann. Der Typ GSR findet sein Einsatzgebiet daher auch dort, wo gegenradiale und tangentiale Kräfte sowie unterschiedliche Momentbelastungen wirken.

Kompakte Bauweise

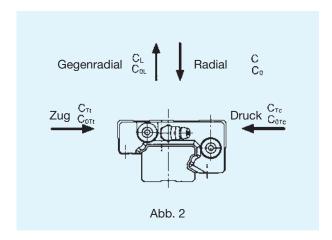
Der Typ GSR zeichnet sich durch eine äußerst geringe Bauhöhe aus, so daß eine stabile Linearbewegung bei kompakter Konstruktion der Maschine möglich ist.

Typenauswahl

Grundmodell des Wagentyps GSR-T

Verkürzte Form des Wagentyps GSR-T

Standardschiene des Typs GSR für die Befestigung von oben.


Für die Befestigung von unten sind Gewindebohrungen in der Führungsschiene eingebracht.

Zahnstange und Führungsschiene sind aus einem Stück gefertigt. Daher ist eine Konstruktion mit einem Antrieb auf kleinem Raum verfügbar (siehe Kapitel GSR-R).

Tragzahlen

Die Linearführung GSR kann im allgemeinen Radial-, Gegenradial- und Tangentialbelastungen aufnehmen.

In den Maßtabellen weiter unten ist die Radialbelastung für die Tragzahlen eines Führungswagens angegeben. Dagegen werden die gegenradialen und tangentialen Tragzahlen aus den Faktoren in Tabelle 1 bestimmt.

Tab. 1 Verhältnis der Tragzahlen beim Tvp GSR

	3	,,
Belastungs- richtungen	Dynamische Tragzahl	Statische Tragzahl
Radial	С	C ₀
Gegenradial	C _L = 0,93C	$C_{0L} = 0.90C_0$
Tangential (Zug)	$C_{Tt} = 0.84C$	$C_{0Tt} = 0.78C_0$
Tangential (Druck)	$C_{Tc} = 0.93C$	$C_{0Tc} = 0.90C_0$

Äquivalente Belastung

Wird der Führungswagen gleichzeitig aus verschiedenen Richtungen belastet, muß die äquivalente Belastung wie folgt ermittelt werden:

$$P_E = X \times P_R + Y \times P_{Tt}$$

$$P_E = P_L + P_{Tc}$$

P_F: Äquivalente Belastung (N) - radial

- gegenradial

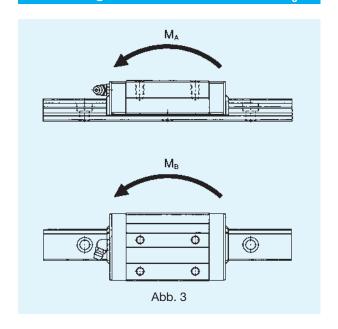
- tangential (Zug)

- tangential (Druck)

P_R: Radialbelastung (N)

P_L: Gegenradialbelastung (N)

(N) P_{Tt}: Tangentialbelastung (Zug)


 P_{Tc} : Tangentialbelastung (Druck) (N)

X,Y: Äquivalenzfaktoren (siehe Tabelle 2)

Tab. 2 Äquivalenzfaktoren

	P _E	Х	Υ
P _R /P _T	Äquivalente Radialbelastung	1	1,280
P _R /P _T	Äquivalente Tangentialbelastung (Zug)	0,781	1

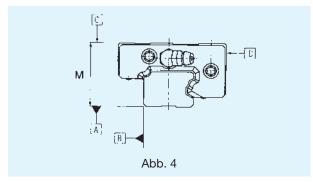
Zulässiges statisches Moment Mo

Auf einen Führungswagen können Momentbelastungen in Richtung Ma und Ma wirken. Desweiteren kann bei zwei parallel verlaufenden Führungsschienen eine Momentbelastung in Richtung $M_{\rm C}$ wirken. In Tabelle 3 sind die zulässigen Momente für die Richtungen MA und MB angegeben. Das zulässige Moment M_C ist nicht angegeben, da es von der Distanz der parallel verlaufenden Schienen abhängt.

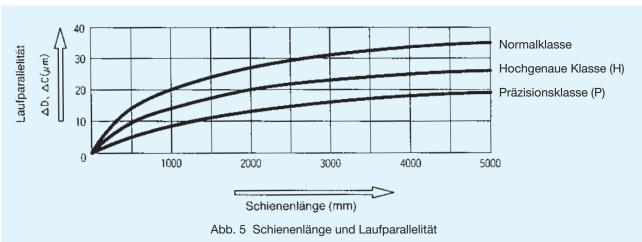
Tab. 3 Zulässiges statisches Moment¹⁾ Einheit: kNm

Symbol	N	Λ _A	M _B			
Baugröße	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]	2 Wagen [kNm]		
GSR15T	0,0525	0,292	0,0452	0,252		
GSR15V	0,0252	0,158	0,0218	0,136		
GSR20T	0,102	0,564	0,0885	0,486		
GSR20V	0,0498	0,307	0,0431	0,265		
GSR25T	0,177	0,956	0,152	0,831		
GSR25V	0,0858	0,522	0,0742	0,451		
GSR30T	0,282	1,54	0,243	1,32		
GSR35T	0,421	2,28	0,362	1,96		

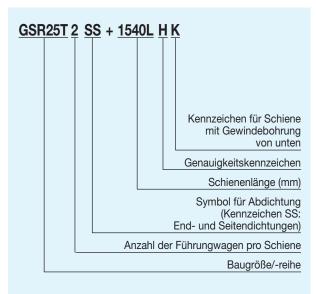
^{1) 1} Wagen: Zulässiges statisches Moment für einen Führungswagen.


2 Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

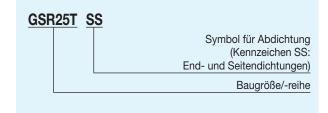
Einheit: mm


Genauigkeitsklassen

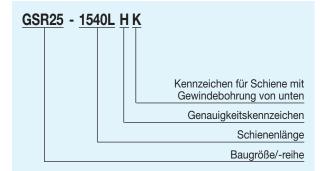
Die THK Linearführung GSR kann in den drei Genauigkeitsklassen Normal-, Hochgenaue und Präzisionsklasse geliefert werden (Tab. 4). Die Toleranz für die Höhe M ist gültig für alle Genauigkeitsklassen. Sie ist in Tabelle 4 angegeben.


Tab. 4 Genauigkeitsklassen

Bau- größe	Genauigkeits- klasse	Normal Klasse	Hoch- genaue Klasse	Präzisions Klasse					
	Kennzeichen	Normal	Н	Р					
GSR	Maßtoleranz der Höhe M		±0,02						
15 20	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)							
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)							
GSR	Maßtoleranz der Höhe M		±0,03						
25 30 35	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)							
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)							



Aufbau der Bestellbezeichnung


Kombination von Führungswagen und Schienen

Nur Führungswagen

Nur Führungsschienen

Abdichtung

Für die Linearführung GSR können verschiedene Abdichtungen entsprechend den Umgebungsbedingungen ausgewählt werden.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen siehe Tabelle 5.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 6 mit der Angabe der entsprechenden Länge L des Führungswagens.

Tab. 5

Symbol	Abdichtungszubehör
UU	mit beidseitigen Enddichtungen
SS	mit End- und Seitendichtungen
ZZ	mit End- und Seitendichtungen sowie Metallabstreifern
DD	Mit Doppel- und Seitendichtungen
KK	Mit Doppel- und Seitendichtungen sowie Metallabstreifern

Tab. 6 Kombinationsmöglichkeiten bei Abdichtungen und dadurch entstehende Längenvariationen des Führungswagens

Einheit: mm

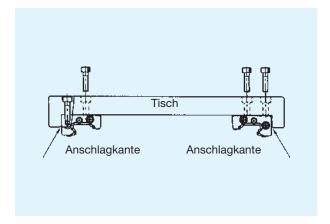
Baugröße	oh	nne	U	IU	S	SS	D	D	Z	Z	ŀ	Κ
GSR15	0	-4,8	0	_	0	_	0	5,0	0	6,8	0	11,8
GSR20	0	-6,0	0	-	0	-	0	6,6	0	3,6	0	10,2
GSR25	0	-7,0	0	-	0	-	0	7,0	0	3,6	0	10,6
GSR30	0	-7,0	0	-	0	_	0	7,6	0	4,2	0	11,8
GSR35	0	-7,0	0	_	0	_	0	7,6	0	4,2	0	11,8

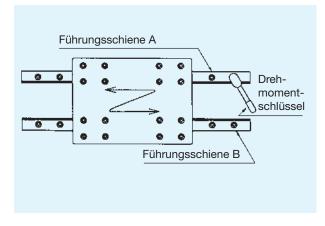
Anmerkung: O: Kombinationsmöglichkeit vorhanden

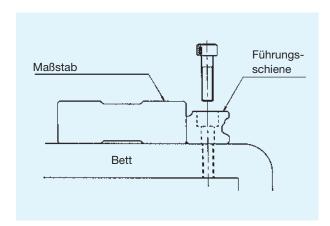
Dichtungswiderstand

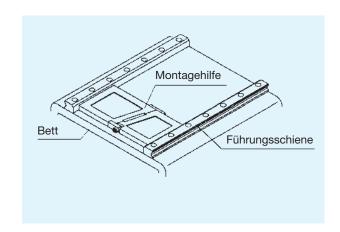
Tabelle 7 gibt den maximalen Dichtungswiderstand eines abgeschmierten Führungswagens mit Enddichtungen an (Symbol UU in der Bestellbezeichnung).

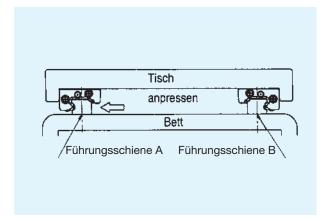
Tab. 7 Dichtungswiderstand


Einheit: N


Baugröße	Dichtungswiderstand
GSR15	2,5
GSR20	3,1
GSR25	4,4
GSR30	6,3
GSR35	7,6


Montageanleitung

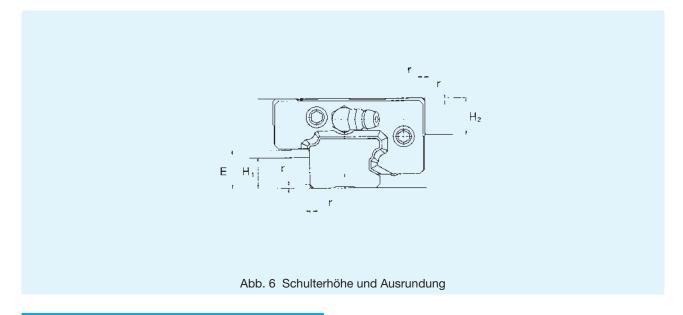

- Der Tisch wird an die Bezugsfläche des Führungswagens angeschlagen und festgeschraubt.
 (Bitte zuerst die äußeren Schrauben festziehen!)
- Der Tisch wird mehrere Male verfahren und der Verschiebewiderstand geprüft, gleichzeitig wird die Führungsschiene A mittels eines Drehmomentschlüssels befestigt.



 Die Führungsschiene B wird auf das Bett gelegt, am Präzisions-Stahllineal ausgerichtet und mittels eines Drehmomentschlüssels befestigt. Bei der Montage mehrerer gleicher GSR-Anwendungen wird empfohlen, eine Hilfsvorrichtung, wie die unten beschriebene, zu konstruieren und damit die Führungsschiene gleichzeitig mit der horizontalen Ausrichtung zu montieren.

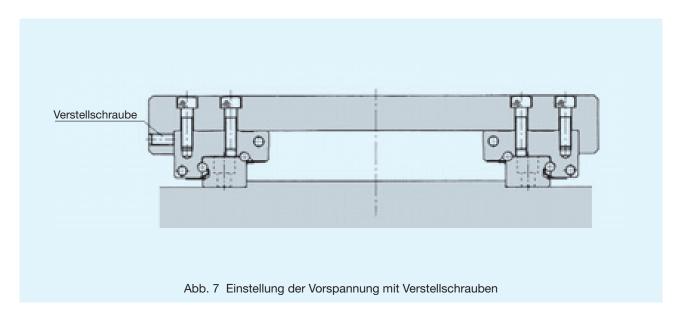
 Auf dem Bett wird die Führungsschiene A provisorisch installiert und die vormontierte Tischeinheit aufgezogen.
 Die Führungsschiene A wird an die Führungswagen gepreßt und gleichzeitig provisorisch festgeschraubt.

Montagehinweis


Schulterhöhe und Ausrundung

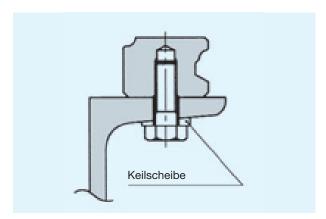
Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schultern aufweisen, gegen die Führungswagen und -schiene angepreßt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 8 angegeben. Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, dass Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 8 angegebenen Maximalradien.

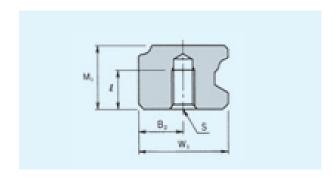
Tab. 8 Schulterhöhe und Ausrundung


				-	
Ва	augröße	Ausrundungs- radius r max.	Schulterhöhe der Schiene H ₁	Schulterhöhe des Wagens H ₂	E
G	SR15	0,6	7	7	8
G	SR20	0,8	9	8	10,4
G	SR25	0,8	11	11	13,2
G	SR30	1,2	11	13	15
C	2SB35	1.2	13	1/	175

Einheit: mm

Einstellung der Vorspannung


Die Steifigkeit des Systems kann durch Vorspannung erhöht werden. Die Vorspannung kann mit Hilfe von Verstellschrauben eingestellt werden, die über die Schulterkanten des Tisches gegen die Führungswagen drücken.


Von unten verschraubbarer Typ GSR-K

In die Unterseite der Führungsschiene sind Gewindebohrungen eingebracht. Eine einfache Montage auf Doppel T-Träger aus Stahl oder U-Profilträger ist daher möglich.

- Wählen Sie die Länge der Gewindeschraube bitte so, daß in der Gewindebohrung oberhalb der Schraube noch ca. 2-3 mm Freiraum bleibt.
- Für die Montage der Führungsschienen an Stahlträgern sind Keilscheiben zu verwenden.
- Den Aufbau der Bestellbezeichnung entnehmen Sie bitte der Seite 303.

Da die Montagelöcher nicht auf der Oberseite der Führungsschienen vorhanden sind, kann das Eindringen von Fremdstoffen (z. B. Späne) weitgehend verhindert werden.

Tab.9 Position und Tiefe der Gewindebohrung

Einheit: mm

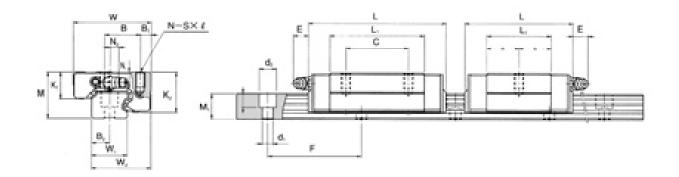
Baugröße	W ₁	B ₂	M ₁	Sxℓ
GSR 15	15	7,5	11,5	M 4 x 7
GSR 20	20	10	13	M 5 x 8
GSR 25	23	11,5	16,5	M 6 x 10
GSR 30	28	14	19	M 8 x 12
GSR 35	34	17	22	M 10 x 14

Standardlänge und Maximallänge der Führungsschienen

Die Tabelle 10 zeigt die Standard- und Maximallängen der Führungsschienen des Typs GSR. Werden unterschiedliche Längen benötigt, ist es möglich und auch wirtschaftlicher, aus bevorrateten Maximallängen beliebige Längen zuzuschneiden.

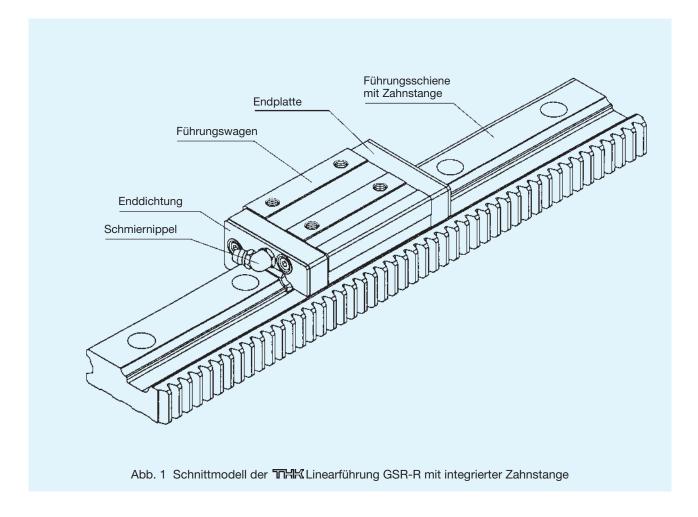
Tab. 10 Standard- und Maximallängen Einheit: mm

	GSR15	GSR20	GSR25	GSR30	GSR35
	460	460	460	1240	1240
Führungsschiene	820	820	820	1720	1720
Standardlänge	1060	1060	1060	2200	2200
(L ₀)	1600	1600	1600	3000	3000
F	60	60	60	80	80
G	20	20	20	20	20
Maximallänge	2000	3000	3000	3000	3000



	Haupt	abmess	ungen	Abmessungen Führungswagen									
Baugröße ¹⁾	Höhe M	Breite W	Länge L	В	B ₁	С	$N-S imes \ell$	K ₁	K ₂	L ₁	N ₁	N ₂	Е
GSR 15 T GSR 15 V	20	32	60 47,1	15	5	26 —	4-M4 × 7 2-M4 × 7	12	17,5	40,2 27,5	4,5	3	5,5
GSR 20 T GSR 20 V	24	43	74 58,1	20	7	30 —	4-M5 × 8 2-M5 × 8	13,6	20,6	50,2 34,3	5	_	12
GSR 25 T GSR 25 V	30	50	88 69	23	7	40 —	4-M6 × 10 2-M6 × 10	16,8	25,5	60,2 41,2	7	_	12
GSR 30 T	33	57	103	26	8	45	4-M8 × 12	18	28,5	70,3	7	_	12
GSR 35 T	38	68	117	32	9	50	4-M8 × 15	20,5	32,5	80,3	8	_	12

 $^{^{1)}}$ Zur Zusammensetzung der Bestellbezeichnug siehe S. 303. $^{2)}$ Die zulässigen Momente $\rm M_A,\,M_B$ und $\rm M_C$ sind auf S. 302 angegeben.



Einheit: mm

	Abmessungen Führungsschiene						Tragzahl ²⁾		Gewicht	
Schmiernippel	Breite			Höhe			С	C ₀	Wagen	Schiene
	$W_{1-0,05}^{0}$	W_2	B ₂	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[kg]	[kg/m]
Eintreibnippel PB-107	15	25	7,5	11,5	60	$4,5\times7,5\times5,3$	5,69 4,31	8,43 5,59	0,13 0,08	1,2
B-M6F	20	33	10	13	60	$6 \times 9,5 \times 8,3$	9,22 7,01	13,2 8,82	0,25 0,17	1,8
B-M6F	23	38	11,5	16,5	60	7 × 11 × 9	13,5 10,29	19,0 12,65	0,5 0,29	2,6
B-M6F	28	44,5	14	19	80	9 × 14 × 12	18,8	25,9	0,6	3,6
B-M6F	34	54	17	22	80	11 × 17,5 × 14	25,1	33,8	1,0	5,0

THK Linearführung GSR-R mit integrierter Zahnstange

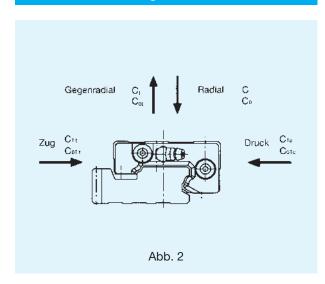
Aufbau und Merkmale

Bei der THK Linearführung GSR-R mit integrierter Zahnstange ist die Zahnstange ein fester Bestandteil der Schiene, wodurch eine kompakte Antriebskonstruktion ermöglicht wird. Die Führungswagen sind auf der THK Kompaktführung GSR und GSR-R beliebig kombinierbar.

Die Verfahrstrecke bei einer Ritzelumdrehung ergibt sich durch die abgerollte bzw. gestreckte Länge des Teilkreisdurchmessers (B in der Maßtabelle) des Ritzels. Dieser ist so bestimmt, daß die abgerollte Länge immer ganze Millimeter ergibt. Dies vereinfacht den Einsatz von Servo- oder Linearmotoren. Da die Schienenhöhe der GSR-Führung mit und ohne Zahnstange gleich ist, ist eine parallele Anordnung ohne konstruktiven Mehraufwand möglich.

Das parallele Ausrichten der Schiene mit dem Antriebselement ist bei der Montage nicht mehr erforderlich. Die ausreichende Zahnfestigkeit ist dadurch gegeben, daß die Höhe der Zahnstange der Schienenhöhe entspricht.

Um eine lange Lebensdauer zu erreichen, wird ein bewährter, hochwertiger Stahl verwendet und die Verzahnungsoberfläche induktionsgehärtet.


Typenübersicht

Weniger steife Anschlußkonstruktion möglich

Da Zahnritzel und Zahnstange ineinander greifen, braucht keine große Antriebskraft vom Ritzel übertragen zu werden. Daher sind auch leichte Konstruktionen ohne große Tischsteifigkeit und ohne steife Antriebsspindel-Lagerung möglich.

Tragzahlen

Die Linearführung GSR-R kann im allgemeinen Radial-, Gegenradial- und Tangentialbelastungen aufnehmen.

In den Maßtabellen weiter unten ist die Radialbelastung für die Tragzahlen eines Führungswagens angegeben. Dagegen werden die gegenradialen und tangentialen Tragzahlen aus den Faktoren in Tabelle 1 bestimmt.

Tab. 1 Verhältnis der Tragzahlen beim Typ GSR-R

Richtungen	Dynamische Tragzahl	Statische Tragzahl		
Radial	С	C ₀		
Gegenradial	$C_{L} = 0.93C$	$C_{0L} = 0.90C_0$		
Tangential (Zug)	$C_{Tt} = 0.84C$	$C_{0Tt} = 0.78C_0$		
Tangential (Druck)	$C_{Tc} = 0.93C$	$C_{0Tc} = 0,90C_0$		

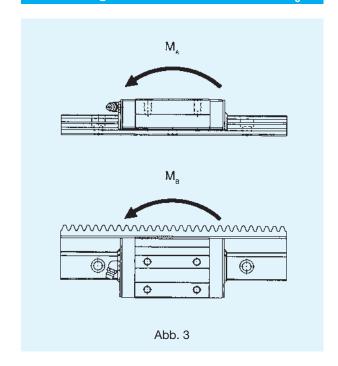
Äquivalente Belastung

Wird der Führungswagen gleichzeitig aus verschiedenen Richtungen belastet, muß die äquivalente Belastung wie folgt ermittelt werden:

$$P_E = X \times P_R + Y \times P_{Tt}$$

$$P_{E} = P_{L} + P_{Tc}$$

P_F: Äquivalente Belastung (N)


- radial
- gegenradial
- tangential (Zug)
- tangential (Druck)

P _R : Radialbelastung	(N)
P _L : Gegenradialbelastung	(N)
P _{Tt} : Tangentialbelastung (Zug)	(N)
P _{Tc} : Tangentialbelastung (Druck)	(N)
X,Y: Äquivalenzfaktoren	(siehe Tabelle 2)

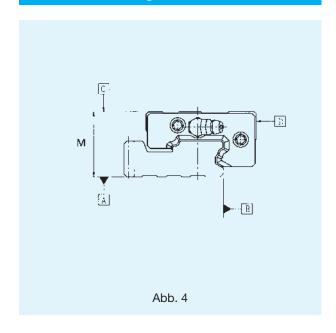
Tab. 2 Äquivalenzfaktoren

$P_{\rm E}$	Χ	Υ
Äquivalente Radialbelastung	1	1,280
Äquivalente Tangentialbelastung (Zug)	0,781	1

Zulässiges statisches Moment Mo

Auf einen Führungswagen können Momentbelastungen in Richtung M_A und M_B wirken. Desweiteren kann bei zwei parallel verlaufenden Führungsschienen eine Momentbelastung in Richtung M_{C} wirken. In Tabelle 3 sind die zulässigen Momente für die Richtungen M_A und M_B angegeben. Das zulässige Moment M_C ist nicht angegeben, da es von der Distanz der parallel verlaufenden Schienen abhängt.

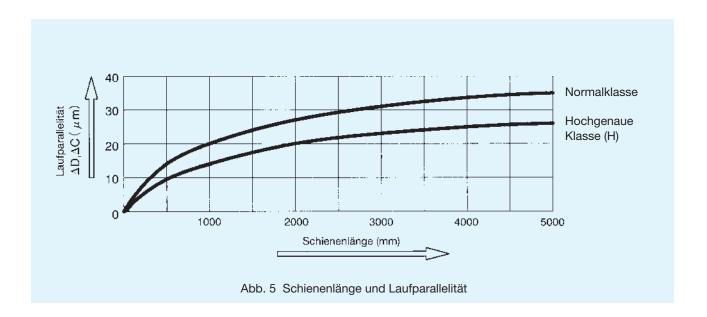
Tab. 3 Zulässiges statisches Moment¹⁾ Einheit: kNm


Symbol	N	Λ _A	M_B			
Baugröße	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]	2 Wagen [kNm]		
GSR25T-R	0,177	0,965	0,152	0,831		
GSR25V-R	0,0858	0,522	0,0742	0,451		
GSR30T-R	0,282	1,54	0,243	1,32		
GSR35T-R	0,421	2,28	0,362	1,96		

¹⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

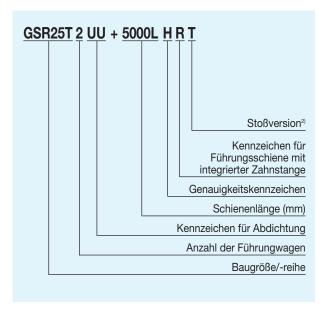
Genauigkeitsklassen

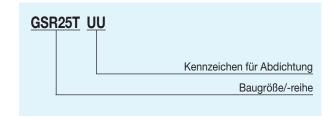


Die THK Linearführung GSR-R kann in den beiden Genauigkeitsklassen Normalklasse und hochgenaue Klasse geliefert werden.

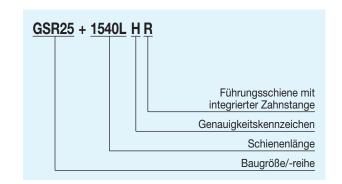
Tab. 4 Genauigkeitsklassen

Einheit: mm


Bau- größe	Genauigkeits- klasse	Normal Klasse	Hoch- genaue Klasse						
	Kennzeichen	Normal	Н						
GSR	Maßtoleranz der Höhe M	±0,03							
25 30 35	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)							
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)							


Aufbau der Bestellbezeichnung

Kombination von Führungswagen und Führungsschienen¹⁾



- Diese Bestellbezeichnung kennzeichnet ein Set aus einer Schiene und zwei Wagen.
- ²⁾ Die Schienenlängen bei Stoßversionen erfragen Sie bitte bei '미래남.

Nur Führungswagenagen

Nur Führungsschiene mit Zahnstange

Abdichtung

Dichtungswiderstand

In Tabelle 5 ist der maximale Dichtungswiderstand eines abgeschmierten Führungswagens mit montierten Enddichtungen angegeben.

Für die Linearführung GSR-R können verschiedene Abdichtungen entsprechend den Umgebungsbedingungen ausgewählt werden. Siehe dazu die Beschreibung auf S. 233 zum Typ HSR.

Tab. 5 Dichtungswiderstand Einheit: N

Baugröße	Dichtungswiderstand
GSR25R	4,4
GSR30R	6,3
GSR35R	7,6

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen siehe Tabelle 6.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 7 mit der Angabe der entsprechenden Länge L des Führungswagens.

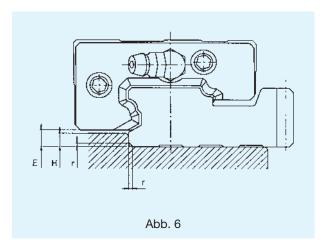
Tab. 6

Symbol	Abdichtungszubehör								
UU	mit beidseitigen Enddichtungen								
SS	mit End- und Seitendichtungen								
ZZ	mit End- und Seitendichtungen sowie Metallabstreifern								
DD	Mit Doppel- und Seitendichtungen								
KK	Mit Doppel- und Seitendichtungen sowie Metallabstreifern								

Tab. 7 Kombinationsmöglichkeiten bei Abdichtungen und dadurch entstehende Längenvariationen des Führungswagens

Einheit: mm

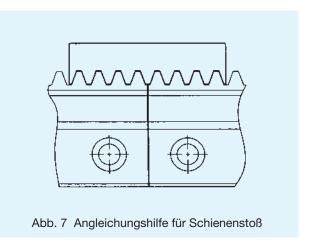
Baugröße	ohne		UU		SS		DD		ZZ		KK	
GSR25R	0	-7,0	0	-	0	-	0	7,0	0	3,6	0	10,6
GSR30R	0	-7,0	0	-	0	-	0	7,6	0	4,2	0	11,8
GSR35R	0	-7,0	0	_	0	-	0	7,6	0	4,2	0	11,8


Anmerkung: o: Kombinationsmöglichkeit vorhanden

Wichtige Montagemaße

Schulterhöhe und Ausrundung

Für die Montageflächen von Führungswagen und -schienen ist zur Erleichterung der üblichen Montage und zur Erreichung einer hohen Genauigkeit eine Anschlagkante notwendig. Beim Typ GSR-R befindet sich die Anschlagkante auf der anderen Seite als bei der Standardschiene (Tabelle 8).



Tab. 8 Schulterhöhe und Ausrundung Einheit: mm

Baugröße	Ausrundungs- radius r max.	Schulterhöhe Schiene H	Е		
GSR 25	0,8	4	4,5		
GSR 30	1,2	4	4,5		
GSR 35	1,2	4,5	5,5		

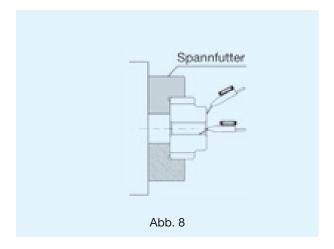
Stoßen der Zahnstange

Die Genauigkeit der Endenbearbeitung beträgt hinsichtlich der Standardteilung P -0,1~0,2 mm. Die Verwendung einer Angleichungshilfe (Abb. 7) erleichtert das Ausrichten des Schienenstoßes. Diese Vorrichtung ist ebenfalls bei

Zahnschmierung

Um eine gute Gleitfähigkeit sowie einen verschleißarmen Betrieb zu gewährleisten, ist es unbedingt erforderlich, die Zahnstange ausreichend mit geeignetem Schmierstoff zu versorgen. Für Zahnstange und Führungswagen kann der gleiche Schmierstoff verwendet werden. Wir empfehlen dazu ein Lithiumseifen-Fett NLGI 2.

Ritzel


Weiterbearbeitung des Ritzels

Bei dem Ritzel des Typs C kann eine weitere Bearbeitung der Bohrung oder der Paßfedernut problemlos durchgeführt werden, da nur die Verzahnung gehärtet ist. Die Weiterbearbeitung sollte wie folgt durchgeführt werden:

- 1. Zuerst ist das Ritzel in ein selbstzentrierendes Spannfutter mit ungehärteten Backen einzuspannen.
- Bei der Bearbeitung des Ritzels dient die Bohrung als Bezugsseite. Daher ist das Ritzel nach der Bohrung zu zentrieren.

Weiterhin sollte die seitliche Abweichung des eingespannten Ritzels mittels einer Messuhr überprüft werden.

3. Der Durchmesser der Bohrung darf max. 60 ~ 70 % des Ritzeldurchmessers betragen.

Überprüfung der Ritzelstärke

Bei Einsatz der Linearführung GSR mit Zahnstange und Ritzel muß die Festigkeit überprüft werden.

- 1. Berechnung der maximalen Antriebskraft, die auf das Ritzel wirkt.
- 2. Den Stoßbelastungsfaktor (siehe Tab. 10) durch die zulässige Übertragungskraft (siehe Tab. 9) teilen.
- 3. Anschließend wird die maximale Antriebskraft (siehe Punkt 1) mit der zulässigen Übertragungskraft (siehe Punkt 2) verglichen. Hier muß die Antriebskraft kleiner als die zulässige Übertragungskraft sein.

Berechnungsbeispiel:

Beispiel einer Zuführeinheit mit der Kompaktführung Typ GSR-R in horizontaler Lage. Auf die Einheit wirkt eine mittlere Stoßbelastung. Die äußere Belastung ist gleich Null.

Daten:

überprüftes Ritzel:GP6-20AGewicht (Tisch + Werkstück):m = 100 kgGeschwindigkeit:v = 1 m/s

Beschleunigungs- und

Verzögerungszeit: $T_1 = 0.1s$

Berechnung

maximale Antriebskraft
 Berechnung der Beschleunigungs- und Verzögerungszeit

$$Fmax = m \times \frac{V}{T_1} = 1,00 \text{ kN}$$

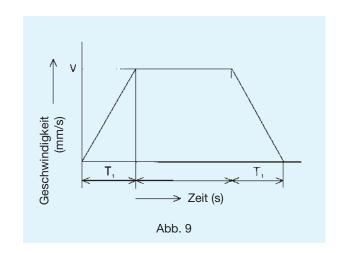
2. Zul. Übertragungskraft

Pmax =
$$\frac{\text{Zul. }\ddot{\text{U}}\text{bertragungskraft (s. Tab. 9)}}{\text{Stoßbelastungsfaktor (s. Tab. 10)}} = \frac{2,33}{1,25} = 1,86 \text{ kN}$$

3. Vergleich der zulässigen Übertragungskraft am Ritzel mit der maximalen Antriebskraft.

Fmax < Pmax

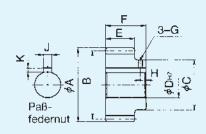
Daraus geht hervor, daß das Ritzel für diese Anwendung geeignet ist.


Tab. 9 Zulässige Übertragungskraft

Baugröße	Zul.	Passende		
Ritzel	Übertragungskraft	Führung		
GP6-20A	2,33			
GP6-20C	2,05	GSR25-R		
GP6-25A	2,73	GOLLEGIA		
GP6-25C	2,23			
GP8-20A	3,58			
GP8-20C	3,15	GSR30-R		
GP8-25A	4,19	00110011		
GP8-25C	3,42			
GP10-20A	5,19			
GP10-20C	4,57	GSR35-R		
GP10-25A	6,06	G0133-N		
GP10-25C	4,96			

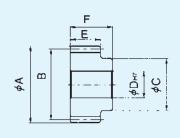
Einheit: kN

Tab. 10 Stoßbelastungsfaktor


Stöße	auf das Führungss	system				
gleich-	mittlere	größere				
mäßige	Stoß-	Stoß-				
Last	belastung	belastung				
1,0	1,25	1,75				

Abmessungen Ritzel

Ritzel Typ A mit Paßfedernut (gesamte Oberfläche ist gehärtet)



Einheit mm

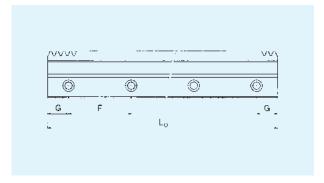
		Anzahl	Außen-	Teilkreis-		Loch-	Zahn-	Gesamt-			Раß-	passende	
Baugröße	Teilung	-	durchmesser			bohrung		breite			federnut	Führung	
Ritzel			А	В	С	D	Е	F	G	Н	J×K		
GP6-20A	6	20	42,9	38,2	30	18	16,5	24,5	M3	4	6×2,8	GSR25R	
GP6-25A		25	51,9	47,75	35	18		24,0	1410	4	0/2,0	GONZON	
GP8-20A	8	20	57,1	50,93	40	20	19	26	МЗ	5	8×3,3	GSR30R	
GP8-25A		25	69,1	63,67	40	20	13	20	M4	3	0,0,0	GSNJUN	
GP10-20A	10	20	70,4	63,67	45	25	22	30	M4	5	8×3,3	GSR35R	
GP10-25A	10	25	86,4	79,58	60	25		30	1014	3	10×3,3	GOLIOON	

- 1) Auf Anfrage werden auch Ritzel mit einer unterschiedlichen Anzahl der Zähne, mit einer größeren oder kleineren Lochbohrung usw. gefertigt.
- 2) Bitte geben Sie bei einer Bestellung die in der Tabelle angegebenen Typenbezeichnungen an.

Ritzel Typ C mit unbearbeiteter Bohrung (nur die Verzahnung ist gehärtet)

Einheit mm

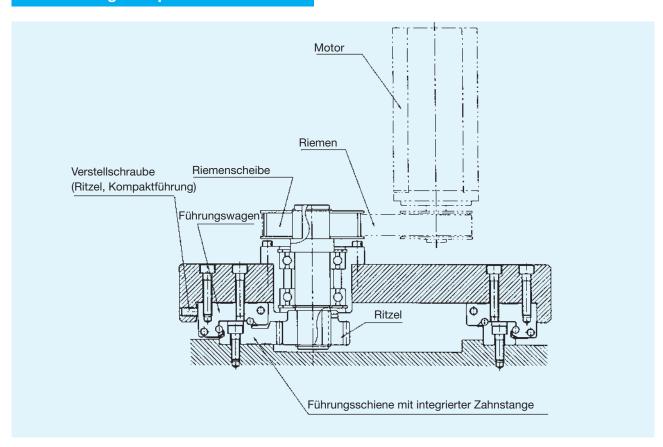
	Anzahl Außen- Teilkreis-			Loch-	Zahn-	Gesamt-	passende			
Baugröße	Teilung Zähne		durchmesser	durchmesser		bohrung	breite	breite	Führung	
Ritzel			А	В	С	D	Е	F		
GP6-20C	6	20	42,9	38,2	30	12	16,5	24,5	GSR25R	
GP6-25C	0	25	51,9	47,75	35	15	10,5	24,5	GOLIZOIT	
GP8-20C	8	20	57,1	50,93	40	18	19	26	GSR30R	
GP8-25C	O	25	69,1	63,67	40	18	19	26	GORJUR	
GP10-20C	10	20	70,4	63,67	45	18	22	30	- GSR35R	
GP10-25C	10	25	86,4	79,58	60	18	22	30		


- 1) Auf Anfrage werden auch Ritzel mit einer unterschiedlichen Anzahl der Zähne, mit einer größeren oder kleineren Lochbohrung usw. gefertigt.
- 2) Bitte geben Sie bei einer Bestellung die in der Tabelle angegebenen Typenbezeichnungen an.

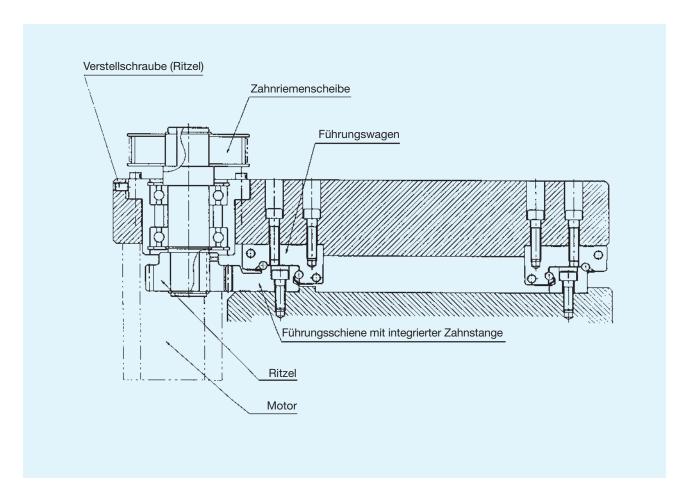
Standard- und Maximallängen

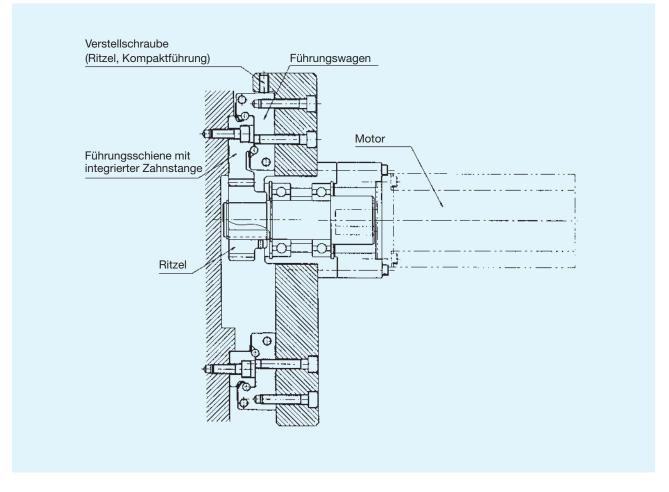
Die Standardlängen der Führungsschienen GSR-R mit Zahnstange finden Sie in Tabelle 11.

Sind die Verfahrwege länger als die in der Tabelle angegebenen Schienenlängen, können die Schienen einfach zusammengesetzt werden.

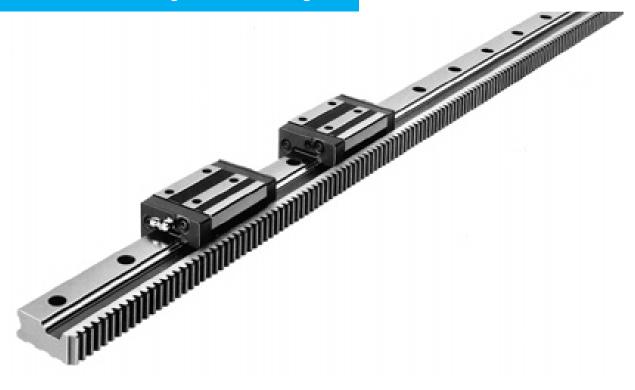


Tab. 11. Standardschienlängen GSR-R


Einheit: mm

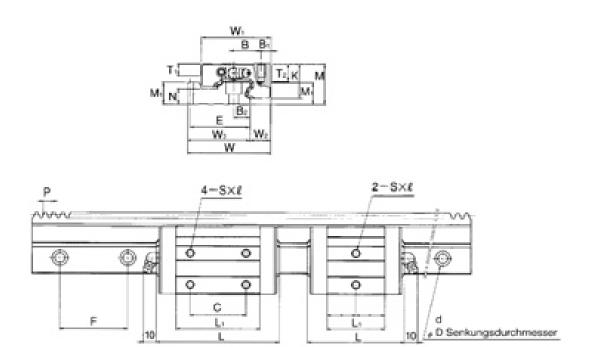

Baureihe	Standardlänge L ₀	F	G
CCDOED	1500	60	30
GSR25R	2004	60	42
CCDOOD	1504	00	32
GSR30R	2000	80	40
CCDOED	1500	00	30
GSR35R	2000	80	40

Montagebeispiele für Ritzel



GSR-R mit integrierter Zahnstange

	Standard-		Abstand			Abmessungen Führungsschiene ⁴							
Baugröße ¹⁾	teilung P		Profilbezugslinie Schienenaußenkante E	Breite W	Höhe M	W_2	W_3	B_2	Höhe M ₁	N	$d \times D \times h$		
GSR25T-R GSR25V-R	6	1,91	43	59,91	30	15	44,91	11,5	16,5	11,5	7 × 11 × 9		
GSR30T-R	8	2,55	48	67,05	33	16,5	50,55	14	19	12	9 × 14 × 12		
GSR35T-R	10	3,18	57	80,18	38	20	60,18	17	22	14,5	11 × 17,5 × 14		


¹⁾ Die Zusammensetzung der Bestellbezeichnung finden Sie auf S. 314.

²⁾ THK produziert auch Schrägverzahnung und Standardmodule nach DIN 780.

³⁾ Die Überprüfungsmethode zur Ritzelstärke finden Sie auf S. 316.

⁴⁾ Die Standardschienenlängen finden Sie auf S. 318.

Einheit: mm

					Abn	nessun	gen Führung	gswage	n			Trag	zahl	Gewicht	
				Länge							Schmier- nippel	С	C_0	Wagen	Schiene
F	W ₁	B ₁	В	L	L ₁	С	S×ℓ	T ₁	T ₂	К		[kN]	[kN]	[kg]	[kg/m]
60	50	7	23	88 69	60,2 41,2	40	M6 × 10	9	13	25,5	B-M6F	13,5 10,29	19,0 12,65	0,5 0,29	4,7
80	57	8	26	103	70,3	45	M8 × 12	10	15	28,5	B-M6F	18,8	25,9	0,6	5,9
80	68	9	32	117	80,3	50	M8 × 15	12	16	32,5	B-M6F	25,1	33,8	1,0	8,1

THK Linearführung HR Extrem flachbauender Typ

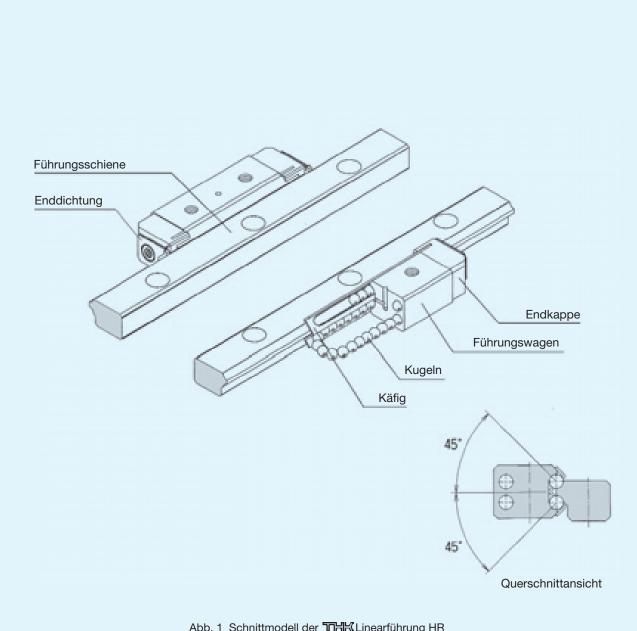


Abb. 1 Schnittmodell der THK Linearführung HR

Aufbau und Merkmale

Bei der THK Linearführung HR zirkulieren zwei Kugellaufreihen innerhalb des Führungswagens. Käfigbleche schützen die Kugeln vor dem Herausfallen aus dem Führungswagen. Im belasteten Bereich laufen die Kugeln zwischen den feingeschliffenen Laufrillen von Führungswagen und -schiene, bis sie durch die in den Endkappen integrierten Umlenkstücke und die Rücklaufkanäle zurückgeführt werden. Die Konstruktion der Endkappen gewährleistet dabei eine hohe Laufruhe bei geringen Reibungsverlusten.

Wird die Linearführung HR als Set in einer Ebene montiert, können aufgrund der Anordnung der Kugelreihen (Kontaktwinkel von jeweils 45°) gleiche Tragzahlen in radialer, gegenradialer und tangentialer Richtung aufgenommen werden. Die niedrige Bauhöhe ermöglicht ein kompaktes Führungssystem.

Im Gegensatz zu Kreuzrollenführungen kann hier das Spiel leicht eingestellt werden. Es ist möglich, das System vorzuspannen und auch Montagefehler auszugleichen.

Hohe Genauigkeiten

Bei Kreuzrollenführungen sind alle vier Führungsschienen fest an den Montageflächen eingebaut. Daher ist es sehr zeitaufwendig, das Spiel mit der erforderlichen Genauigkeit einzustellen.

Beim Typ HR läßt sich dies einfacher einstellen, da die Laufwagen auf der Schiene montiert und justiert werden. Kugeln werden in einem höheren Genauigkeitsgrad gefertigt als Rollen, deshalb wird eine höhere Genauigkeit bei einfacher Montage erzielt.

Einfache Montage

Eine begrenzte Abweichung zwischen zwei Führungsschienen hinsichtlich der Parallelität oder der Höhe hat keinen negativen Einfluß auf die Genauigkeit und den Verschiebewiderstand der Führung. Ein Verschleiß durch Vorspannung, wie beim System mit Vierpunktkontakt, tritt nicht auf, und das Führungssystem behält seine volle Leistungsfähigkeit ohne Beeinträchtigung der Linearbewegung.

Gleiche Belastungsaufnahme in allen Hauptrichtungen

Werden zwei Schienen parallel zueinander eingesetzt, erhält man ein flaches und kompaktes Führungssystem mit gleichen Tragzahlen in radialer, gegenradialer und tangentialer Richtung.

Es eignet sich besonders zur Aufnahme von Momentbelastungen. Wird das Führungssystem zusätzlich vorgespannt, erhöht sich die Steifigkeit, ohne daß die Leichtgängigkeit beeinflußt wird.

Kugelkäfig

Beim Kreuzrollensystem ist der Hub durch die Länge des Käfigs begrenzt, weil sich der Rollenkäfig bei jedem Hub mitbewegt. Der Führungswagen des Typs HR dagegen hat ein Kugelumlaufsystem mit eingebautem Käfig. Deshalb ist der Führungswagen über lange Zeit wartungsfrei und Hübe von unbegrenzter Länge sind möglich.

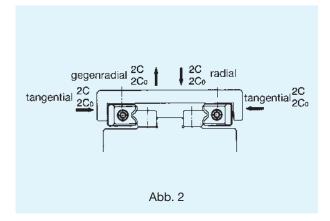
Lieferbar in rostbeständiger Ausführung

Führungswagen, Schienen und Kugeln können auf Anfrage auch in rostbeständiger Ausführung geliefert werden. Diese Führungen werden z.B. in Reinräumen, oder in Umgebungen eingesetzt, in denen eine Schmierung nicht möglich ist, oder wo Spritzwasser auftritt.

Typenauswahl

Die Führungswagen der Standard-Modelle der Linearführung HR haben Gewindebohrungen oder Durchgangsbohrungen für die Montage.

Der Super-Schwerlasttyp hat einen längeren Führungswagen mit einer größeren Anzahl von tragenden Kugeln.

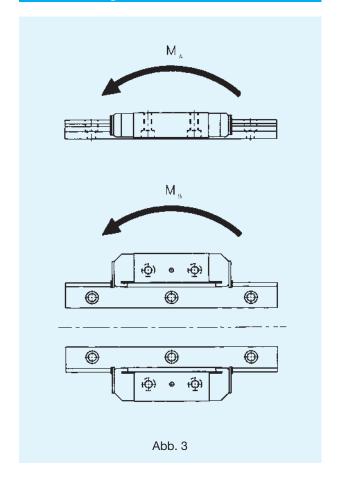


Variation der Tragzahlen

Tragzahlen

Wird die Linearführung HR als Set parallel eingesetzt, kann sie in alle Richtungen (radial, gegenradial und tangential) gleiche Tragzahlen aufnehmen.

Die Tragzahlen C und C_0 in der Tabelle gelten für einen Führungswagen.


Äquivalente Belastung

Wird der Führungswagen in alle drei Richtungen belastet, wird die äquivalente Belastung nach folgender Gleichung berechnet:

$$P_E = P_R (P_L) + \frac{1}{2} \times P_T$$

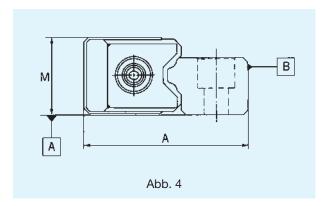
P _E : äquivalente Belastung	(N)
P _R : radiale Belastung	(N)
P _L : gegenradiale Belastung	(N)
P _T : tangentiale Belastung	(N)

Zulässiges statisches Moment

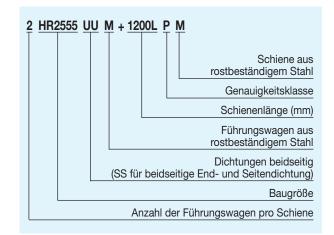
Auf ein Schienenpaar Führungswagen (1 Set) können Momentbelastungen aus allen Richtung wirken. In Tabelle 1 sind die zulässigen Momente für die Richtungen $\rm M_A$ und $\rm M_B$ für ein Set angegeben. Das zulässige Moment $\rm M_C$ ist nicht angegeben, da es von der Distanz der parallel verlaufenden Schienen abhängt.

Tab. 1 Zulässiges statisches Moment¹⁾ Einheit: kNm

	l.	1 _A	M _B		
Baugröße	1 Wagen [kNm]	2 Wagen [kNm]	1 Wagen [kNm]	2 Wagen [kNm]	
HR918	0,0229	0,17	0,0229	0,17	
HR1123	0,0414	0,272	0,0414	0,272	
HR1530	0,0982	0,641	0,0982	0,641	
HR2042	0,308	1,91	0,308	1,91	
HR2042T	0,53	2,99	0,53	2,99	
HR2555	0,783	4,41	0,783	4,41	
HR2555T	1,33	6,95	1,33	6,95	
HR3065	1,11	6,72	1,11	6,72	
HR3065T	1,89	10,4	1,89	10,4	
HR3575	1,53	8,84	1,53	8,84	
HR3575T	2,59	13,5	2,59	13,5	
HR4085	2,64	14,4	2,64	14,4	
HR4085T	4,48	23	4,48	23	
HR50105	5,15	28,9	5,15	28,9	
HR50105T	8,74	45,7	8,74	45,7	
HR60125	14,3	79,6	14,3	79,6	


¹⁾ 1 Wagen: Zulässiges statisches Moment für einen Führungswagen.

² Wagen: Zulässiges statisches Moment für zwei eng zusammengesetzte Führungswagen.

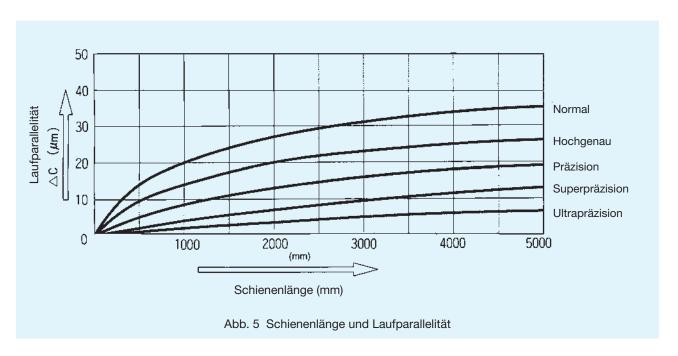


Genauigkeitsklassen

Die Genauigkeit der Linearführung HR ist in die Genauigkeitsklassen Normal, Hochgenau, Präzision, Superpräzision und Ultrapräzision eingeteilt (Tabelle 2).

Aufbau der Bestellbezeichnung

Anm.: Mit der oben aufgeführten Bestellbezeichnung werden zwei Schienen mit je zwei Wagen bestellt. (Bezeichnung der Einheit: Set).


Tab. 2 Genauigkeitsklassen

Einheit: mm

Symbol	Normal	Hochgenau	Präzision	Superpräzision	Ultrapräzision	
Genauigkeitsklasse	_	Н	Р	SP	UP	
Parallelität der Laufrillen zu den Flächen 🖺 und 🖪			ΔC (Abb. 5)			
Maßtoleranz für das Höhenmaß M	±0,1	±0,05	±0,025	±0,015	±0,01	
Abweichung des Höhenmaßes zwischen Paaren ¹⁾	0,03	0,02	0,01	0,005	0,003	
Maßtoleranz für die Gesamtbreite A	±(0,1	±0,05			
Abweichung der Gesamtbreite A zwischen Paaren ²⁾	0,03	0,015	0,01	0,005	0,003	

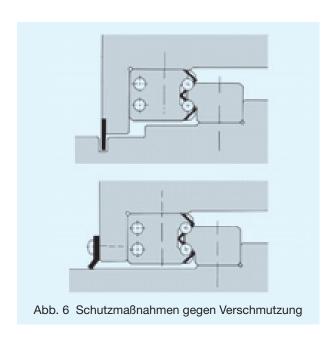
¹⁾ Die Abweichung der Höhe M zwischen Paaren bezieht sich auf ein Set, daß auf gleicher Ebene montiert ist. Ein Set besteht aus zwei Schienen mit jeweils mindestens einem Führungswagen.

²⁾ Die Abweichung der Gesamtbreite A zwischen Paaren bezieht sich auf die Führungswagen, die auf den Schienen montiert sind.

Abdichtung

An der Linearführung HR können Enddichtungen für einen verbesserten Staubschutz montiert werden (Symbol UU in der Bestellbezeichnung). Siehe dazu die Beschreibung zur Baureihe HSR.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 3 mit der Angabe der entsprechenden Länge L des Führungswagens.


Tab. 3 Kombinationsmöglichkeiten bei Abdichtungen und Längenvariationen des Führungswagens Einheit: mm

Baugröße	O	hne	Ul	J
HR918	0	_	0	
HR1123	0	-7,0	0	_
HR1530	0	-3,0	0	_
HR2042	0	-5,4	0	_
HR2555	0	-5,5	0	_
HR3065	0	-7,0	0	
HR3575	0	-7,0	0	
HR4085	0	-7,2	0	_
HR50105	0	-7,0	0	
HR60125	0	-7,0	0	

o: Kombinationsmöglichkeit vorhanden.

Staubschutz

Um den Führungswagen vor Verunreinigungen zu schützen, werden Dichtungen aus verschleißfestem Kunststoff eingesetzt. Werden weitere Schutzmaßnahmen erforderlich, können zusätzlich Faltenbälge oder Abdeckungen (siehe Abbildung 6) verwendet werden.

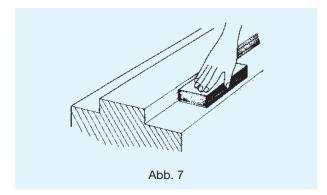
Dichtungswiderstand

Die Maximalwerte des Verschiebewiderstands für ein Set des Typs HR (Zwei Schienen, ein Führungswagen pro Schiene) mit Enddichtungen und Fettfüllung (Symbol UU für Enddichtungen) sind in Tabelle 4 aufgeführt.

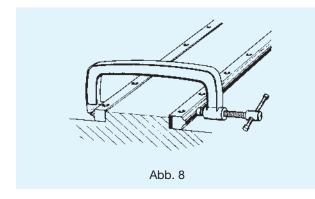
Tab. 4 Dichtungswiderstand

 "in	Ь	~:	t·	NI
 ш	11	eι	I -	ıvı

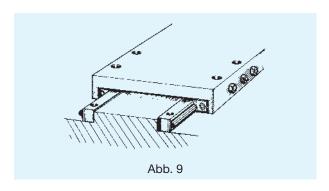
Baugröße	Dichtungswiderstand
HR918	0,5
HR1123	0,7
HR1530	1,0
HR2042 HR2042T	2,0
HR2555 HR2555T	2,9
HR3065 HR3065T	3,4
HR3575 HR3575T	3,9
HR4085 HR4085T	4,4
HR50105 HR50105T	5,9
HR60125	9,8


Anm.: Die Werte gelten für symmetrisch angeordnete Führungswagen.

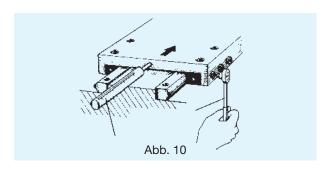
Montageanleitung


1. Die Montageflächen mit einem Ölstein abziehen, Grate, Unebenheiten und Schmutz entfernen.

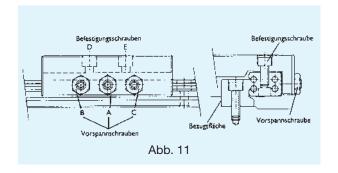
Anmerkung: Im Anlieferungszustand sind die THK Linearführungen mit einem Korrosionsschutzöl überzogen. Die Bezugsflächen von Schiene und Laufwagen entfetten und die Auflageflächen bzw. Anlageschultern mit einem dünnflüssigen Öl gegen Korrosion schützen.



 Die Führungsschienen mit Schraubzwingen oder ähnlichen Hilfsmitteln gegen die Bezugsflächen pressen. Die Befestigungsschrauben einsetzen und von der Mitte aus nach außen der Reihe nach mit einem Drehmomentschlüssel auf das empfohlene Drehmoment festziehen (siehe S. 108).

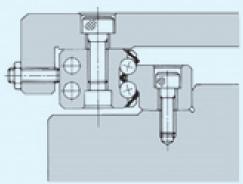

Anmerkung: Zur Befestigung der THK Führungsschienen saubere, neue Schrauben der Festigkeitsklasse 12.9 verwenden. Vor dem Einsetzen der Befestigungsschrauben die Montagelöcher im Maschinenbett entgraten. Schrauben von Hand in die Gewindegänge einfädeln und auf Gängigkeit prüfen. Durch gewaltsames Festziehen einer nicht richtig greifenden Schraube kann die Genauigkeit beeinträchtigt werden.

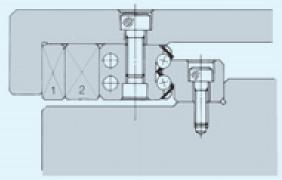
3. Die THK Führungswagen am Tisch montieren und die Befestigungsschrauben provisorisch festziehen. Den mit den Führungswagen versehenen Tisch auf die Führungsschienen vorsichtig aufschieben. Die Befestigungsschrauben der Führungswagen auf ca.1/3 des vorgeschriebenen Drehmoments anziehen.



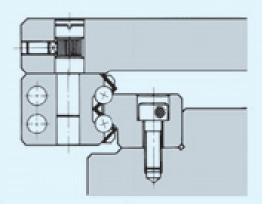
- Wie in Abbildung 8 gezeigt, sollten drei Spieleinstellschrauben je Schlitten verwendet werden. Zur Spieleinstellung die drei Einstellschrauben der Reihe nach abwechselnd anziehen.
- 5. Bei der Spieleinstellung bzw. bei der Einstellung der gewählten Vorspannung mit Hilfe einer Federwaage die vorgeschriebenen Werte des Verschiebewiderstands überprüfen und die Vorspannschrauben stufenweise auf das vorgeschriebene Anzugsmoment festziehen.

Anmerkung: Einstellen der Vorspannung (Beispiel: HR2042 mit C0-Vorspannung).


- a) Anziehen der Vorspannschraube A auf 60% des vorgeschriebenen maximalen Drehmomentwertes (1,5 Nm) (siehe S. 329).
- b) Anziehen der Vorspannschrauben B und C auf ca. 60% des vorgeschriebenen maximalen Drehmomentwertes (1,5 Nm).
- c) Anziehen der Vorspannschraube A auf ca. 80% des vorgeschriebenen maximalen Drehmomentwertes (2,0 Nm).
- d) Anziehen der Vorspannschrauben B und C auf ca. 80% des vorgeschriebenen maximalen Drehmomentwertes (2,0 Nm).
- e) Anziehen der Vorspannschraube A auf 100% des vorgeschriebenen maximalen Drehmomentwertes (2,5 Nm). Das endgültige Vorspannmoment ist in bis zu 4 Stufen aufzubringen.



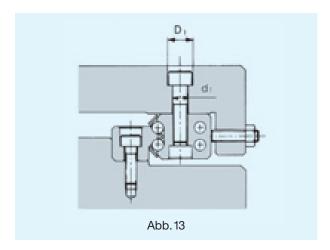
Beispiele zur Einstellung der Vorspannung


Die Vorspannschrauben sollten am Führungswagen in der Mitte der Seitenfläche angreifen.

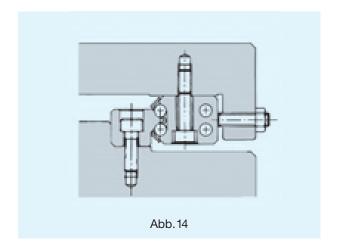
a) Vorspannschrauben
 Im Normalfall werden Vorspannschrauben zum Vorspannen der Führungswagen verwendet.

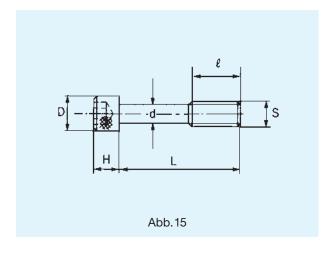
b) KeilleisteFür hohe Genauigkeit und Steifigkeit sind Keilleisten zu verwenden.

c) Exzenterbolzen
 Die Vorspannung kann auch mit entsprechend
 gefertigten Exzenterbolzen eingestellt werden.
 Hierfür ist aber eine Sonderbohrung im Lauf wagen erforderlich.


Einheit: mm

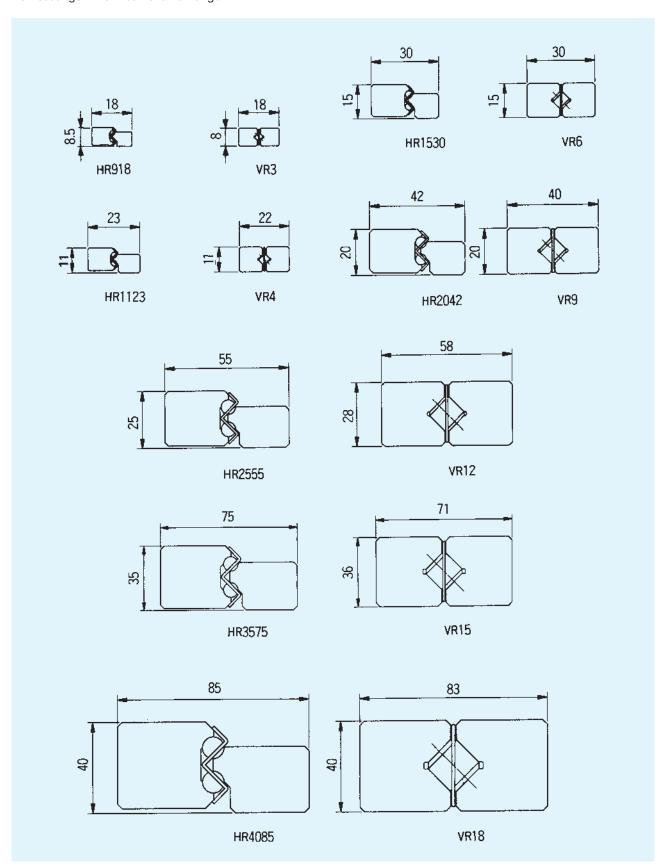
Zubehörteile


Spezial-Befestigungsschrauben


Um das Spiel der Führung einstellen zu können, sollten entsprechende Bohrungen wie in Abbildung 13 dargestellt, gefertigt werden.

Die Bohrungsdurchmesser d_1 und D_1 sind etwas größer zu wählen, damit eine geeignete Vorspannung eingestellt werden kann.

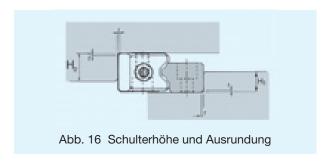
Ist die Einbaulage wie in Abbildung 14, müssen besondere Befestigungsschrauben (Tabelle 5) verwendet werden, um den Führungswagen zu montieren. Bitte setzen Sie sich in diesem Fall mit THK in Verbindung.


Tab.5 Spezial-Befestigungsschrauben

Bau- größe	S	d	D	Н	L	ℓ	passende Führungen
B3	М3	2,4	5,5	3	17	5	HR1530
B5	M5	4,1	8,5	5	22	7	HR2042
B6	M6	4,9	10	6	28	9	HR2555
B8	M8	6,6	13	8	34	12	HR3065
B10	M10	8,3	16	10	39	15	HR3575
B12	M12	10,1	18	12	45	18	HR4085
B14	M14	11,8	21	14	55	21	HR50105
B16	M16	13,8	24	16	66	24	HR60125

Dimensionsvergleich mit Kreuzrollenführungen

Die Linearführung HR hat im Querschnitt vergleichbare Abmessungen wie Kreuzrollenführungen.

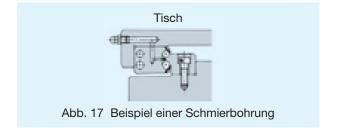


Montagehinweise

Schulterhöhe und Ausrundung

Für eine einfache und präzise Montage sollten die Anschlussflächen Schultern aufweisen, gegen die Führungswagen und -schiene angepreßt werden können. Erfordert die Konstruktion eine hohe Steifigkeit, sollte die Schulterhöhe mindestens die Größe der halben Blockhöhe haben. Dazu sind die entsprechenden Schulterhöhen in Tabelle 6 angegeben.

Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, daß Berührungen mit den angefasten Kanten von Führungswagen und -schienen vermieden werden, und sie müssen kleiner sein als die in Tabelle 6 angegebenen Maximalradien.

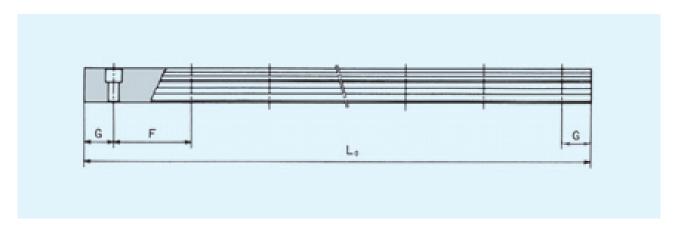


Tab. 6 Schulterhöhe und Ausrundung

Baugröße	Ausrundungs- radius r (max.)	Schulterhöhe an Schiene H ₁	Schulterhöhe an Wagen H ₂
HR 918	0,3	5	6
HR 1123	0,5	6	7
HR 1530	0,5	8	10
HR 2042	0,5	11	15
HR 2555	1,0	13	18
HR 3065	1,0	16	20
HR 3575	1,0	18	26
HR 4085	1,5	21	30
HR 50105	1,5	26	32
HR 60125	1,5	31	40

Schmierung

Der Führungswagen hat eine Schmierbohrung, die sich mittig auf der Wagenoberfläche befindet. Fertigen Sie eine Bohrung in den Tisch, wie in Abbildung 17 dargestellt, und montieren Sie einen Schmiernippel oder vergleichbaren Anschluss. Wird Öl als Schmierstoff eingesetzt, müssen zuvor die Schmierungswege überprüft werden.



Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungsschienen sind in Tabelle 7 angegeben. Bei Längen größer als die angegebenen Maximallängen werden die Führungsschienen in mehreren Stücken als Stoßversion geliefert.

Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zu Instabilität, mit der Folge, daß die Genauigkeit beeinträchtigt werden kann.

Werden zwei oder mehrere Führungsschienen bestellt, ist die Gesamt-Schienenlänge anzugeben. Bei Führungsschienen, die als Stoßversion geliefert werden, sind die Schienenenden nicht mit einer Fase versehen.

Tab. 7 Standard- und Maximallängen der Führungsschienen

Einheit: mm

Baugröße	HR918	HR1123	HR1530	HR2042	HR2555	HR3065	HR3575	HR4085	HR50105	HR60125
Ottor don't	70	110	160	220	280	280	570	780	1270	1530
	120	230	280	280	440	440	885	1020	1570	1890
Standard-	220	310	340	340	600	600	1200	1260	2020	2250
länge (L.)	295	390	460	460	760	760	1620	1500	2620	2610
(L ₀)			580	640	1000	1000	2040	1980		
					1240	1240	2460	2580		
F	25	40	60	60	80	80	105	120	150	180
G	10	15	20	20	20	20	22,5	30	35	45
Max. Länge	300	500	1600	2200	2600	3000	3000	3000	3000	3000

Anm.: Sind keine gestoßenen Führungsschienen für Überlängen einsetzbar, wenden Sie sich bitte an Tilk.

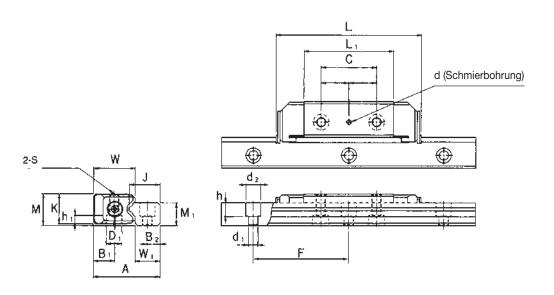
Tab. 8 Vorspannschrauben

Baugröße	Vorspann- schraube	Nor	mal		Vorspannung	Hohe Vorspannung C0		
		Anzugs-	Rollwider-	Anzugs-	Rollwider-	Anzugs-	Rollwider-	
		moment	stand	moment	stand	moment	stand	
		Nm	N	Nm	N	Nm	N	
HR918	M4	_	_	_	_	_	_	
HR1123	M5	0,15	< 0,6	0,22	1,0	_	_	
HR1530	M6	0,3	< 1,0	0,6	2,5 ± 0,5	_	_	
HR2042	M8	0,75	< 2,0	1,4	4,0 ± 2,0	2,5	10,0 ± 5,0	
HR2042T	M8	(0,75)	< 2,5	(1,4)	5,0 ± 2,0	(2,5)	12,5 ± 5,0	
HR2555	M10	1,1	< 4,0	2,0	9,0 ± 4,0	3,5	20,0 ± 5,0	
HR2555T	M10	(1,1)	< 5,0	(2,0)	11,0 ± 4,0	(3,5)	25,0 ± 5,0	
HR3065	M10	1,4	< 5,0	2,8	12,0 ± 5,0	5,0	24,0 ± 5,0	
HR3065T	M10	(1,4)	< 6,0	(2,8)	14,0 ± 5,0	(5,0)	30,0 ± 5,0	
HR3575	M12	1,9	< 5,0	4,0	12,0 ± 5,0	7,0	25,0 ± 5,0	
HR3575T	M12	(1,9)	< 6,0	(4,0)	14,0 ± 5,0	(7,0)	31,0 ± 5,0	
HR4085	M12	2,8	< 8,0	6,0	17,0 ± 7,0	10,0	35,0 ± 7,0	
HR4085T	M12	(2,8)	< 10,0	(6,0)	21,0 ± 7,0	(10,0)	43,5 ± 7,0	
HR50105	M14	_	< 10,0	_	22,0 ± 7,0	_	45,0 ± 7,0	
HR50105T	M14	_	< 12,5	_	27,5 ± 7,0	_	56,0 ± 7,0	
HR60125	M14	_	< 18,0	_	44,0 ± 12,0	_	88,0 ± 12,0	

Anm.: Rollwiderstand bezieht sich nur auf den Wagen, ohne Befettung, Belastung und Dichtung.

Standardtyp

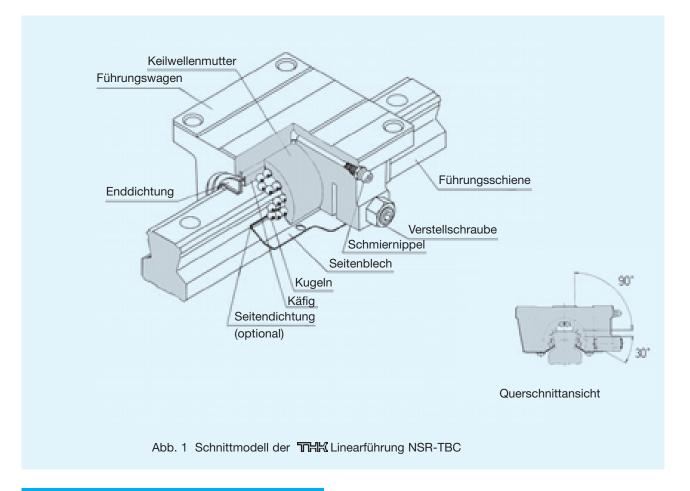
	Haup	tabmess	sungen				Abmess	sungen F	ührungs	wagen			
Baugröße ¹⁾	Höhe M	Breite A	Länge L	B ₁	С	S	Н	D ₁	h ₁	L ₁	K	W	d
HR 918 HR 918 M ²⁾	8,5	18	45	5,5	15	M3	-	-	-	25	8	11	1,5
HR 1123 HR 1123 M ²⁾	11	23	52	7	15	МЗ	2,55	5	3	30	10	13,2	2
HR 1530 HR 1530 M ²⁾	15	30	69	10	20	M4	3,3	6,5	3,5	40	14	18,7	2
HR 2042 HR 2042 M ²⁾	20	42	92	13	35	M6	5,3	10	5,5	56,6	19	25,5	3
HR 2042 T HR 2042 T M ²⁾	20	42	111	13	50	M6	5,3	10	5,5	75,7	19	25,5	3
HR 2555 HR 2555 M ²⁾	25	55	121,5	16	45	M8	6,8	11	7	80	24	32	3
HR 2555 T HR 2555 T M ²⁾	25	55	146,5	16	72	M8	6,8	11	7	105,4	24	32	3
HR 3065 HR 3065 T	30	65	145 173,5	19	50 80	M10	8,6	14	9	90 118,5	29	39	4
HR 3575 HR 3575 T	35	75	155 182,5	21,5	60 92,5	M12	10,5	18	12	103,8 131,5	34	43,5	4
HR 4085 HR 4085 T	40	85	178 216	24	70 110	M14	12,5	20	13	120,8 158,9	38	49	4
HR 50105 HR 50105 T	50	105	227 275	30	85 130	M16	14,5	23	15,5	150 197,5	48	62	5
HR 60125	60	125	329	35	160	M20	18	26	18	236	58	72	5


¹⁾ Zum Aufbau der Bestellbezeichnung siehe S. 325.

²⁾ Bei den Typen mit dem Symbol M sind Führungswagen, Führungsschienen und Kugeln aus rostbeständigem Stahl.

³⁾ Die Standardschienenlängen sind auf S. 332 angegeben.

 $^{^{\}rm 4)}$ Die zulässigen Momente $\rm M_A$ und $\rm M_B$ finden Sie auf S. 324.



Einheit: mm

	Abmessungen Führungsschiene ³⁾						hlen ⁴⁾	Gewicht	
Breite W ₁	B ₂	Höhe M ₁	J	F	$d_1 \times d_2 \times h$	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
6,7	3,5	6,5	8,7	25	3 × 5,5 × 3	1,57	3,04	0,01	0,3
9,5	5	8	11,6	40	$3,5 \times 6 \times 4,5$	2,35	4,31	0,03	0,5
10,7	6	11	13,5	60	$3,5\times 6\times 4,5$	4,31	7,65	0,08	1,0
15,6	8	14,5	19,5	60	$6 \times 9,5 \times 8,5$	9,9	17,2	0,13	1,8
15,6	8	14,5	19,5	60	$6 \times 9,5 \times 8,5$	13,6	22,9	0,26	1,8
22	10	18	27	80	9×14×12	18,6	30,5	0,43	3,2
22	10	18	27	80	9 × 14 × 12	25,1	40,8	0,5	3,2
25	12	22,5	31,5	80	9 × 14 × 12	24,2 32,1	38,6 51,6	0,7 0,9	4,6
30,5	14,5	26	37	105	11 × 17,5 × 14	30 40,2	47,8 63,6	1,05 1,4	6,4
35	16	29	42,5	120	14 × 20 × 17	44,1 59,5	68,6 91,7	1,53 1,7	8,0
42	20	37	51,5	150	18 × 26 × 22	70,7 96	107 143	3,06 3,5	12,1
51	25	45	65	180	22 × 32 × 25	141	206	7,5	19,3

THK Linearführung NSR-TBC Selbstausrichtender Radialtyp

Aufbau und Merkmale

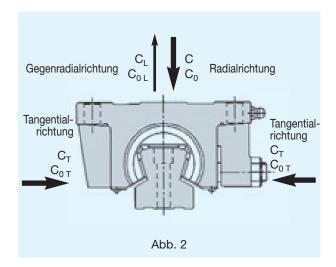
Die THK Linearführung NSR-TBC ist ein leistungsfähiges und robustes Linearführungssystem für den Einsatz in unterschiedlichen Anwendungsbereichen. Bei diesem Typ zirkulieren die Kugeln in vier Reihen über die feingeschliffenen Laufrillen der Führungsschiene und die Rücklaufkanäle innerhalb des Führungswagens. Auf diese Weise sind mit dem Typ NSR-TBC unbegrenzte Verfahrwege möglich.

Hohe Genauigkeit einfach zu realisieren

In das steife Gehäuse des Führungswagens aus Gußeisen ist eine Keilwellenmutter mit einer Kontaktwinkelanordnung von 90° in radialer und 30° in tangentialer Richtung integriert. Dieses Konstruktionsmerkmal ermöglicht dem Führungswagen über die Paßflächen der Mutter-Außenschale und der korrespondierenden Wagenfläche eine Selbstausrichtung, um Montagefehler oder weniger genau bearbeitete Montageflächen auszugleichen. Daher sind eine hohe Endgenauigkeit und gleichmäßige Linearbewegungen einfach zu realisieren.

Hohe Tragfähigkeit

Der Typ NSR-TBC ist besonders geeignet für hohe Radialbelastung. Im Vergleich zu Führungssystemen mit Kugelbuchsen gleicher Baugröße hat er eine um den Faktor 10 höhere Tragfähigkeit.


Die Einstellung einer Vorspannung ist über die Verstellschrauben am Führungswagen problemlos möglich.

Variation der Tragzahlen

Tragzahlen

Die THK Linearführung NSR-TBC kann aus allen Richtungen belastet werden. Die in den Maßtabellen angegebenen Tragzahlen beziehen sich auf Belastungen in radialer Richtung (siehe Abb. unten). Die Tragzahlen für Gegenradial- und Tangentialrichtung können der Tabelle 1 entnommen werden.

Tab. 1 Tragzahlen für verschiedene Belastungsrichtungen des Typs NSR-TBC

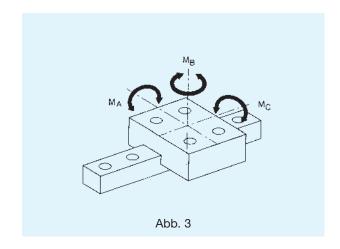
Baugröße	Richtung	Dynamische Tragzahl	Statische Tragzahl
	radial	С	C ₀
NSR-TBC	tangential	$C_{T} = 0,56C$	$C_{0T} = 0.43 C_0$
	gegenradial	$C_{L} = 0,62C$	$C_{0L} = 0.5 C_0$

Äquivalente Belastung

Die äquivalente Belastung eines Führungswagens bei gleichzeitiger gegenradialer und tangentialer Belastung wird wie folgt berechnet:

$$P_E = X \times P_L + Y \times P_T$$

P_{F}	: äquivalente Belastung	(N)
P_{L}^{-}	: gegenradiale Belastung	(N)
P_{T}^{-}	: tangentiale Belastung	(N)
X,Y	: Äquivalenzfaktoren (siehe Tab. 2)	


Tab. 2 Äquivalenzfaktoren

Aufteilung	P_{E}	Χ	Υ
$P_L/P_T \ge 1$	Gegenradialbelastung	1	1,155
$P_L/P_T < 1$	Tangentialbelastung	0,866	1

Zulässiges statisches Moment Mo

Bei einer Belastung eines einzelnen oder zweier zusammengesetzter Führungswagen können je nach Kraftangriffspunkt Momente auf den bzw. die Führungswagen wirken. In diesen Fällen ist gemäß den Werten in Tabelle 3 der geeignete Typ zu wählen.

Zu beachten ist, daß der Führungswagen des Typs NSR-TBC auf einer Einzelschiene das Moment M_{C} nicht aufnehmen kann.

Tab. 3 Zulässiges statisches Moment des Typs NSR-TBC

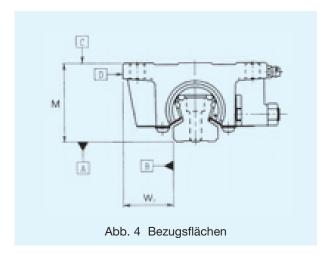
des Typs NSR	Einheit: kNm	
Moment Baugröße	M _A ¹⁾	M _B ¹⁾
NSR 20	0,31	0,27
NSR 25	0,53	0,46
NSR 30	0,85	0,74
NSR 40	1,7	1,5
NSR 50	2,7	2,4
NSR 70	9,8	4,9

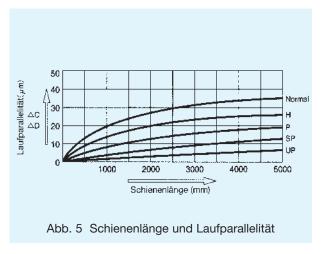
¹⁾ Die Werte gelten für zwei eng zusammengesetzte Wagen.

Genauigkeitsklassen

Die Genauigkeit von T⊓HK Linearführungen wird, wie Tabelle 4 zeigt, nach der Laufparallelität, den Maßtoleranzen von Höhe und Breite sowie den Differenzen von Höhe und Breite zwischen den Wagenpaaren bei mehreren eingesetzten Führungswagen auf einer Schiene bzw. auf mehreren in einer Ebene parallel verlaufenden Schienen definiert.

Laufparallelität


Die Laufparallelität bezeichnet den Parallelitätsfehler zwischen den beiden Bezugsflächen von Führungsschiene und Führungswagen. Bei der Messung wird die Führungsschiene erst auf der Bezugsfläche festgeschraubt, dann wird der Führungswagen über der gesamten Schienenlänge verfahren.


Abweichung der Höhe M zwischen Paaren

Die Abweichung der Höhe M zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Höhe M, die an jedem der in einer Ebene montierten Führungswagen gemessen worden sind.

Abweichung der Breite W₂ zwischen Paaren

Die Abweichung der Breite W2 zwischen Paaren ist die Differenz zwischen dem kleinsten und größten Wert der Breite W₂, die an jedem der auf einer Schiene montierten Führungswagen gemessen worden sind.

Tab

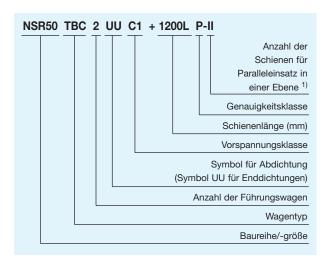
Laufparallelität der Bezugsfläche D
zur Fläche B

Δ D (nach Abb. 5)

Гаb.	4 Genauigkeitsk	dassen			Einhe	eit: mm			
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse	Super- präzisions Klasse	Ultra- präzisions Klasse			
Maß Höhe Abw Höhe den Maß	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008			
	Abweichung der Höhe M zwischen den Paaren	0,02	0,01	0,006	0,004	0,003			
	Maßtoleranz der Breite W ₂	±0,1	±0,03	0 -0,03	0 -0,015	0 -0,008			
20	Abweichung der Breite W ₂ zwischen den Paaren	0,02	0,01	0,006	0,004	0,003			
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)				
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)				
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01			
	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003			
NSR 25	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01			
30	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003			
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 5)							
	Laufparallelität der Bezugsfläche D zur Fläche B	Δ D (nach Abb. 5)							
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02			
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003			
NSR 40	Maßtoleranz der Breite W ₂	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02			
50	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02	0,01	0,007	0,005			
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)				
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 5)				
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03			
	Abweichung der Höhe M zwischen den Paaren	0,03	0,02	0,01	0,007	0,005			
NSR	Maßtoleranz der Breite W ₂	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03			
70	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,025	0,015	0,010	0,007			
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 5)				

Vorspannung

Tabelle 5 gibt die Vorspannungsklassen mit dem entsprechenden Radialspiel für den Typ NSR-TBC an. Bei vorgespannten Führungssystemen sind die angegebenen Werte negativ.

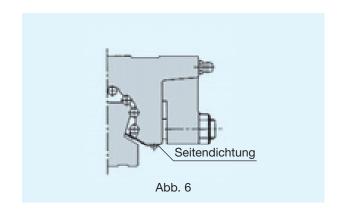

Einheit: µm

Tab. 5 Vorspannungsklassen

Symbol Baugröße	Normal	Leichte Vorspannung C1	Mittlere Vorspannung C0	
NSR20 NSR25	± 5	-15 ~ - 5	-25 ∼ -15	
NSR30				
NSR40 NSR50	± 8	-22 ~ - 8	-36 ~ -22	
NSR70	± 10	-26 ~ -10	- 42 ∼ - 26	

Anm.: Das Normalspiel wird nicht bezeichnet. Wird leichte Vorspannung C1 oder mittlere Vorspannung C0 gewünscht, muß das entsprechende Symbol in der Bestellbezeichnung angegeben werden.

Aufbau der Bestellbezeichnung



Das Zeichen "II" bezeichnet die geplante Montageanordnung zweier parallel verlaufender Führungsschienen.

Abdichtung

Seitendichtungen

Für eine verbesserte Abdichtung der Unterseite des Führungswagens sind neben Enddichtungen (UU) auch Seitendichtungen (SS) erhältlich.

Die Abdichtungsmöglichkeiten variieren je nach Baugröße. Beachten Sie bitte dazu die Angaben in Tabelle 6

Tab. 6 Kombinationsmöglichkeiten bei Abdichtungen und Längenvariationen des Führungswagens

Einheit: mm

Baugröße	ohne	UU	SS
NSR20	0	0	×
NSR25	0	0	×
NSR30	0	0	×
NSR40	0	0	0
NSR50	0	0	0
NSR70	0	0	0

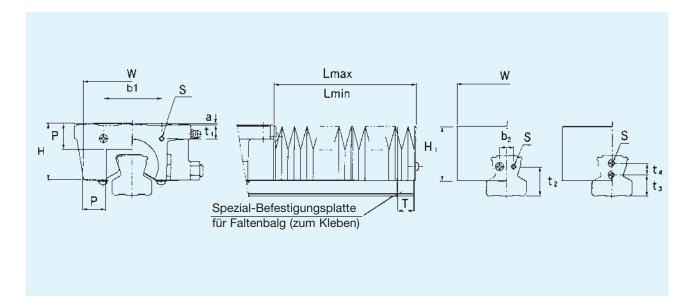
Anmerkung: O: Kombinationsmöglichkeit vorhanden.

×: keine Kombinationsmöglichkeit.

Dichtungswiderstand

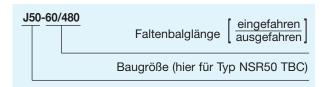
Die Maximalwerte des Dichtungswiderstands für einen Führungswagen des Typs NSR-TBC mit Enddichtungen (Symbol UU für Enddichtungen) und Fettfüllung sind in Tabelle 7 aufgeführt.

Tab. 7 Dichtungswiderstand


Einheit: N

Baugröße	Dichtungswiderstand			
NSR 20	4,9			
NSR 25	4,9			
NSR 30	6,9			
NSR 40	9,8			
NSR 50	14,7			
NSR 70	24,5			

Spezial-Faltenbalg für NSR-TBC

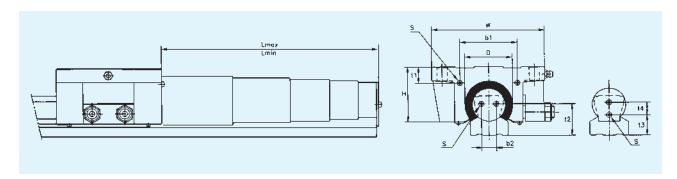

Die Abmessungen der Spezial-Faltenbälge für die Linearführung NSR-TBC können der nachfolgenden Tabelle entnommen werden. Bei Bestellung verwenden Sie bitte die unten stehende Bestellbezeichnung.

Einheit: mm

		Hauptabmessungen 1)														
	au- öße	W	Н	H ₁	Р	b ₁	t ₁	Т	b ₂	t ₂	t ₃	t ₄	Schrauben- größe S X Gewinde- länge	а	$\frac{L_{max}}{L_{min}}$	Passende Führung
J	20	65	39	43	20	26	8	14	_	_	9	8	M4 × 8	8	7	NSR20
J	25	75	43	45	20	40	11	14	_	_	12	8	M4 × 8	3	7	NSR25
J	30	85	46	46	20	50	12	14	12	25	_	_	M4 × 8	_	7	NSR30
J	40	115	59	59	25	60	13	14	16	32	_	_	M5 × 10	_	9	NSR40
J	50	115	66	66	25	75	11	14	20	32	_	_	M5 × 10	_	9	NSR50
J	70	124	84	78	25	96	16	_	36	40	_	_	M6 × 12	_	9	NSR70

Aufbau der Bestellbezeichnung

¹⁾ Die Faltenbalglänge wird wie folgt ermittelt:


$$L_{min} = \frac{S}{(A-1)}$$
 S: Hublänge (mm)

$$L_{max} = L_{min} \cdot A$$
 A: Ausdehnungsrate

Spezial-Teleskopabdeckung für NSR-TBC

Die Abmessungen der Spezial-Teleskopabdeckungen für die Linearführung NSR-TBC können der nachfolgenden Tabelle entnommen werden. Bei Bestellung verwenden Sie bitte die unten stehende Bestellbezeichnung.

Einheit: mm

Einheit: mm

Paugräßa		Hauptabmessungen										
Baugröße	W	(max)	Н	b ₁	t ₁	b ₂	t ₂	t ₃	t ₄	Schraubengröße S χ Gewinde- länge	Passende Führung	
TP 20	44	31	32	26	8	_	_	9	8	M4 × 8	NSR 20	
TP 25	56	36	40	40	11	_	_	12	8	M4 × 8	NSR 25	
TP 30	66	44	47	50	12	12	25	_	_	M4 × 8	NSR 30	
TP 40	82	57	58,5	60	13	16	32	_	_	M5 × 10	NSR 40	
TP 50	94	66	67	75	11	20	32	_	_	M5 × 10	NSR 50	

Einheit: mm

Bau- größe	Anzahl der Segmente	l min	- max	Hublänge
	4	200	690	490
	4	150	490	340
TP 20	3	200	530	330
	3	150	380	230
	4	100	290	190
	3	100	230	130
	4	250	890	640
	4	200	690	490
TP 25	3	250	680	430
5	4	150	490	340
	3	200	530	330
	3	150	380	230

Aufbau der Bestellbezeichnung

TP50-400/1790

Lmax (ausgefahrene Länge)

Lmin (eingefahrene Länge)

Baureihe/-größe (hier für Typ NSR50 TBC)

Bau- größe	Anzahl der Segmente	min	L max	Hublänge
	4	300	1090	790
	4	250	890	640
	3	300	830	530
	4	200	690	490
TP 30	3	250	680	430
	4	150	490	340
	3	150	380	230
	4	100	290	190
	5	400	1790	1390
	5	350	1540	1190
	4	400	1460	1060
TP 40	5	300	1290	990
	5	250	1040	790
	4	300	1060	760
TP 50	4	250	860	610
	4	200	660	460
	5	150	540	390
	4	150	460	310

Montagehinweis

Schulterhöhe und Ausrundung

Für eine einfache und sehr präzise Montage sollten die Anschlussflächen Schulterkanten aufweisen, gegen die Führungswagen und -schiene angedrückt werden können. Dazu sind die entsprechenden Schulterhöhen in Tabelle 8 angegeben.

Die Ausrundungen an den Schultern müssen dabei so gefertigt sein, daß Berührungen mit den angefasten Kanten von Führungswagen und -schiene vermieden werden, und sie müssen kleiner sein als die in Tabelle 8 angegebenen Maximalradien.

Tab. 8 Schulterhöhe und Ausrundungsradius

Einheit: mm

Bau- größe	Ausrundungs- radius r _{max} .	Schulter- höhe für Schiene H ₁	Schulter- höhe für Wagen H ₂	Е
NSR 20	1,0	5	5	5,5
NSR 25	1,0	6	6	6,5
NSR 30	1,0	7	6	9
NSR 40	1,0	7	8	10,5
NSR 50	1,0	7	8	8
NSR 70	1,0	7	10	9,5

Standard- und Maximallängen der Führungsschienen

Die Standard- und Maximallängen der Führungsschienen der Linearführung NSR-TBC sind in Tabelle 9 angegeben. Bei Längen größer als die angegebenen Maximallängen werden die Führungsschienen in mehreren Stücken als Stoßversion geliefert.

Bei Bestellung einer Sonderlänge ist das in der Tabelle angegebene Maß G zu berücksichtigen. Wird dieses Maß überschritten, neigt das Schienenende nach der Montage zur Instabilität, mit der Folge, daß die Genauigkeit beeinträchtigt werden kann.

Werden zwei oder mehr Führungsschienen bestellt, ist die Gesamt-Schienenlänge anzugeben. Bei Führungsschienen, die als Stoßversion geliefert werden, werden die Schienenenden nicht mit einer Fase versehen.

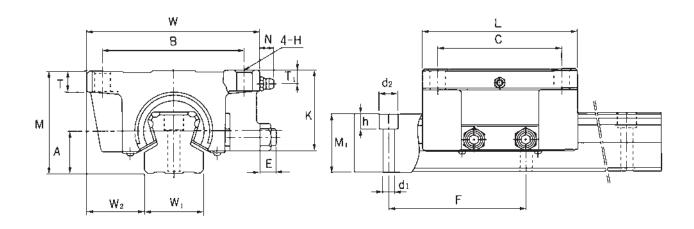
Tab. 9 Standard- und Maximallängen der Führungsschienen Typ NSR-TBC

Einheit: mm


Baugröße	NSR 20	NSR 25	NSR 30	NSR 40	NSR 50	NRS 70
	220	280	280	570	780	1270
	280	440	440	885	1020	1570
	340	600	600	1200	1260	2020
Standard-	460	760	760	1620	1500	2620
längen	640	1000	1000	2040	1980	
(L ₀)	820	1240	1240	2460	2580	
	1000	1640	1640	2985	2940	
	1240	2040	2040			
	1600	2520	2520			
		3000	3000			
F	60	80	80	105	120	150
G	20	20	20	22,5	30	35
Max. Längen	2200	3000	3000	3000	3000	3000

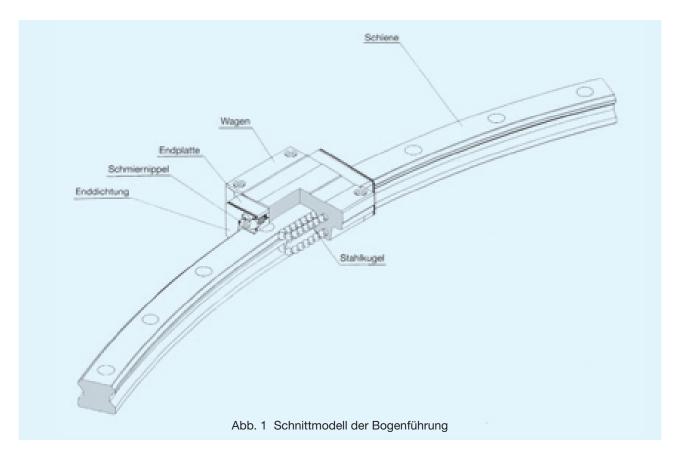
Anm.: Sind keine gestoßenen Führungsschienen für Überlängen einsetzbar, wenden Sie sich bitte an THK.

NSR-TBC


Selbstausrichtender Typ

Hauptabmessungen			Abmessungen Führungswagen								
Baugröße¹)	Höhe M	Breite W	Länge L	В	С	Н	Т	К	Е	T ₁	N
NSR 20 TBC	40	70	67	55	50	6,6	8	34,5	7	5,5	8,5
NSR 25 TBC	50	90	78	72	60	9	10	43,5	7,5	6	8,5
NSR 30 TBC	60	100	90	82	72	9	12	51	9,5	8	8,5
NSR 40 TBC	75	120	110	100	80	11	13	64	12	10	8,5
NSR 50 TBC	82	140	123	116	95	14	15	74	15	9	15
NSR 70 TBC	105	175	150	150	110	14	18	95,5	16,5	10	15

 $^{^{\}rm 1)}$ Zur Zusammensetzung der Bestellbezeichnung siehe S. 339. $^{\rm 2)}$ Die zulässigen Momente $\rm M_A$ und $\rm M_B$ finden Sie auf S. 337.


Einheit: mm

Schmier- nippel	Abmessungen Führungsschiene Breite Höhe Teilung $W_1 \pm 0.05$ W_2 M_1 F $d_1 \times d_2 \times h$				Tragzahlen ²⁾ C C ₀ [kN] [kN]		Gewicht Wagen Schiene [kg] [kg/m]		
A-M6F	23	23,5	23	60	6 × 9,5 × 8,5	9,41	18,6	0,62	3,1
A-M6F	28	31	28	80	7 × 11 × 9	14,9	26,7	1,13	4,7
A-M6F	34	33	34,5	80	7 × 11 × 9	22,5	38,3	1,8	7,2
A-M6F	45	37,5	44,5	105	9 × 14 × 12	37,1	62,2	3,5	12,2
A-PT1/8	48	46	47,5	120	11 × 17,5 × 14	55,1	87,4	5,2	14,3
A-PT1/8	63	56	62	150	14 × 20 × 17	90,8	152	9,4	27,6

THK Bogenführung HCR

Die THK Bogenführung vom Typ HCR ist eine einzigartige Präzisionsführung zur Realisierung sehr genauer Kreis- und Bogenbewegungen. Mit der Bogenführung hat THK eine Baureihe mit neuartigem Konzept entwickelt, das auf der vielfach bewährten, in allen Hauptrichtungen gleichmäßig belastbaren Linearführung HSR basiert.

Aufbau und Merkmale

Mehr Konstruktionsfreiheit

Im Vergleich zu Anwendungen mit Drehkugel- oder Kreuzrollenlagern können Einzelbewegungen je nach Anordnung
der Wagen voneinander unabhängig ausgeführt werden.
Außerdem kann die Konstruktion vereinfacht werden, da
die Führungswagen an den Belastungsschwerpunkten
plaziert werden können.

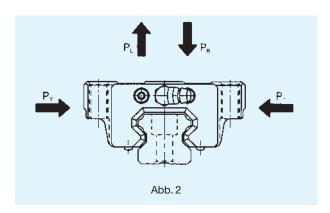
Einfache Montage

Im Gegensatz zu den bisherigen Lösungen mit Gleitführungen oder Stützrollen ist eine spielfreie und präzise Bewegung problemlos zu realisieren. Wagen und Schienen sind einfach mit Schrauben zu montieren.

Einfacher Aufbau

Der Grundaufbau der Bogenführung entspricht mit der kompakten Bauweise und den in allen Richtungen gleichen Tragzahlen dem Prinzip der bewährten Linearführung HSR.

Kostengünstige Anlagen mit Kreisbewegungen


Je größer der Radius der Kreisbewegung ist, desto günstiger läßt er sich verwirklichen. Selbst Kreisbewegungen mit Durchmessern von über 5 m, die mit herkömmlichen Drehlagern nicht realisiert werden können, sind mit der Bogenführung Typ HCR problemlos zu erzielen. Denkbar einfach gestalten sich dabei Montage, Demontage und Wiedermontage.

Hauptanwendungsbereiche

Optische Meßvorrichtungen, Werkzeugschleifmaschinen, medizinische Geräte wie Röntgengeräte, CT-Scanner und Liegen, Bühnen, automatische Parktürme, Vergnügungsgeräte, Werkzeugwechsler, Drehtische, Neige-Einrichtungen für Pendelwagen und Scheren-Stromabnehmer, Schwingungsdämpfer zum Schutz gegen Erdbeben usw.

Tragzahlen

Die Bogenführung des Typs HCR nimmt Belastungen aus allen vier Hauptrichtungen auf (radial, gegenradial und tangential).

Die Tragzahlen sind für alle Hauptrichtungen gleich und für einen Wagen auf einer Schiene definiert. Sie sind weiter hinten in den Maßtabellen angegeben.

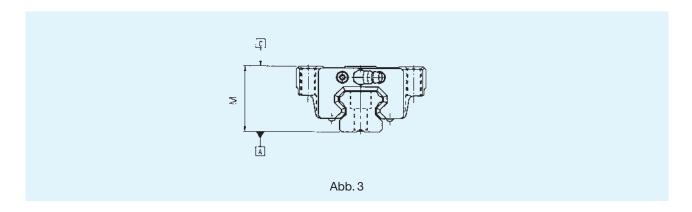
Äquivalente Belastung

Bei gleichzeitiger Belastung des Führungswagens aus unterschiedlichen Richtungen wird die äquivalente Belastung wie folgt berechnet:

$$P_E = P_R(P_L) + P_T$$

P _E :	 Äquivalente Belastung 	(N)

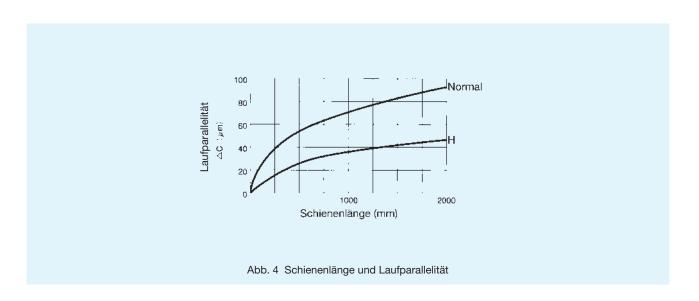
- radial


_ gegenradial

- tangential

P _R :	= Radialbelastung	(N)
P_L :	= Gegenradialbelastung	(N)
P_T :	= Tangentialbelastung	(N)

Genauigkeitsklassen



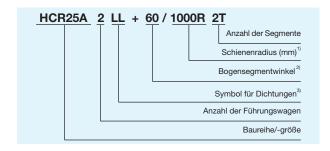
Die Bogenführung HCR ist in der Normalklasse (kein Symbol) und hochgenauen Klasse (H) lieferbar.

Tab. 2 Genauigkeitsklassen

Einheit: mm

Bau- größe	Genauigkeitsklassen	Normal —	Hochgenaue Klasse (H)	
HCR 12	Maßtoleranz für Höhe M	±0,2	±0,2	
15 25	Abweichung der Höhe zwischen den Paaren	0,05	0,03	
35	Laufparallelität Wagen- fläche C zur Fläche A	Δ C (siehe Abb. 4)		
	Maßtoleranz für Höhe M	±0,2	±0,2	
HCR 45 65	Abweichung der Höhe zwischen den Paaren	0,06	0,04	
	Laufparallelität Wagen- fläche C zur Fläche A	Δ C (siel	Δ C (siehe Abb. 4)	

Vorspannung


In Tabelle 3 sind die Vorspannungsklassen mit entsprechenden Radialspiel für den Typ HCR angegeben. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

Tab. 3 Vorspannungsklassen

_					
Εi	n	h	۱+۰	11	m
_		ш	IL.	ш	

Symbol	Normal	Leichte Vorspannung
Baugröße	-	C1
HCR12	-3~+3	-6∼-2
HCR15	-4~+2	-12~-4
HCR25	-6~+3	-16~-6
HCR35	-8~+4	-22~-8
HCR45	-10~+5	-25~-10
HCR65	-14~+7	-32~-14

Bestellbezeichnung

- 1) Wenn Sie Bogenführungen mit einem nicht in der Tabelle angegebenen Radius verwenden wollen, setzen Sie sich bitte mit THK in Verbindung.
- ²⁾ Der in der Tabelle angegebene Bogensegmentwinkel ist der maximal herstellbare Winkel. Bei größeren Winkeln werden Schienen auf Stoß gefertigt.
- ³⁾ Siehe dazu den Abschnitt "Staubschutz" weiter unten.

Abdichtung

Für die Bogenführung des Typs HCR können verschiedene Abdichtungen entsprechend den Umgebungsbedingungen ausgewählt werden.

Die Erklärungen zu den verschiedenen Abdichtungen sind bei der Baureihe HSR aufgeführt (siehe S. 233).

Bezeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 4 mit der Angabe der Variation der entsprechenden Länge L des Führungswagens.

Tab. 4 Abdichtungsmöglichkeit und Längenvariationen des Führungswagens

Einheit: mm

Baugröße	oh	ne	UU		SS		DD		ZZ		KK		LL		RR	
HCR12	0	-3,0	0	_	×		×		×		×		×		×	
HCR15	0	-1,9	0	_	0	_	\triangle	5,3	\triangle	1,3	\triangle	6,5	0	_	0	_
HCR25	0	-2,9	0	_	0	_	\triangle	7,7	\triangle	2,5	\triangle	10,1	0	_	0	_
HCR35	0	-3,0	0	_	0	_	\triangle	7,6	\triangle	2,4	\triangle	10,0	0	_	0	_
HCR45	0	-7,0	0	_	0	_	\triangle	7,2	\triangle	5,2	\triangle	12,4	0	_	0	_
HCR65	0	-7,0	0	-	0	-		7,2	\triangle	5,2	\triangle	12,4	0	-	0	_

Anmerkung: O: Kombinationsmöglichkeit vorhanden

×: keine Kombinationsmöglichkeit

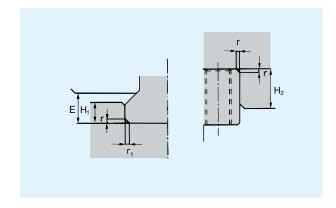
△: Kombinationsmöglichkeit abhängig vom Radius

Dichtungswiderstand

In Tabelle 5 ist der maximale Dichtungswiderstand eines abgeschmierten Führungswagens mit montierten Enddichtungen angegeben.

Tab. 5 Dichtungswiderstand

Baugröße	Dichtungswiderstand
HCR12	1,2
HCR15	2,0
HCR25	3,9
HCR35	11,8
HCR45	19,6
HCR65	34,3


Einheit: N

Montagehinweis

Schulterhöhe und Ausrundung

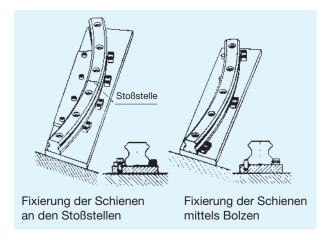
Zur Erleichterung der Montage und zur Erreichung einer hohen Genauigkeit sollten die Anschlussflächen von Führungswagen und -schiene Schultern aufweisen, gegen die Wagen und Schiene angedrückt werden können. Die empfohlenen Schulterhöhen sind in Tabelle 6 angegeben.

Die Ausrundungen an den Anschlagflächen sollten so ausgeführt werden, daß Berührung mit den angefasten Flächen des Führungswagens vermieden werden, oder es sollten Ausrundungen gemäß der in Tabelle 6 angegebenen Maximalradien erfolgen.

Tab. 6 Schulterhöhe und Ausrundungsradius

Einheit: mm

Baugröße	Ausrundungs- radius r ₁	Ausrundungs- radius r ₂	Schulterhöhe Schiene H ₁	Schulterhöhe Wagen H ₂	Е
HCR12	0,8	0,5	2,6	6	3,1
HCR15	0,5	0,5	3	4	3,5
HCR25	1,0	1,0	5	5	5,5
HCR35	1,0	1,0	6	6	7,5
HCR45	1,0	1,0	8	8	10
HCR65	1,5	1,5	10	10	14


Beachten Sie bitte bei der Handhabung, daß der Führungswagen nicht von der Führungsschiene gezogen wird, da sonst die Kugeln aus dem Wagen herausfallen.

Montage der Führungsschiene

Bei der Montage der Bogenführungsschienen wird empfohlen, die Schienen an den Stoßstellen innen an eine Metallplatte anzuschlagen. Ansonsten genügt es die Schienen mittels Bolzen auszurichten und festzuklemmen (siehe Abb. unten). Nach dem Ausrichten werden die Schienen mit dem entsprechenden Drehmoment angeschraubt.

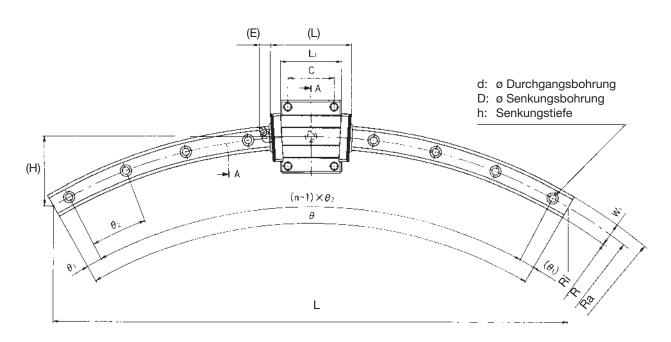
Vorsicht! Der Führungswagen darf nicht von der Schiene abgezogen werden, da sonst die Kugeln herausfallen.

Ausführliche Informationen zur Montage und Ausrichtung der Bogenführung Typ HCR sind in einer speziellen Montageanleitung enthalten.

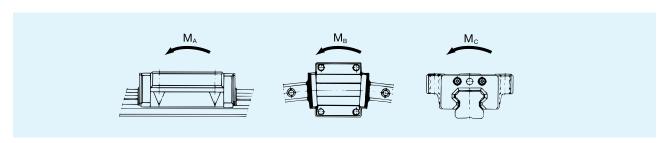
Diese können Sie direkt von THK anfordern.

HCR

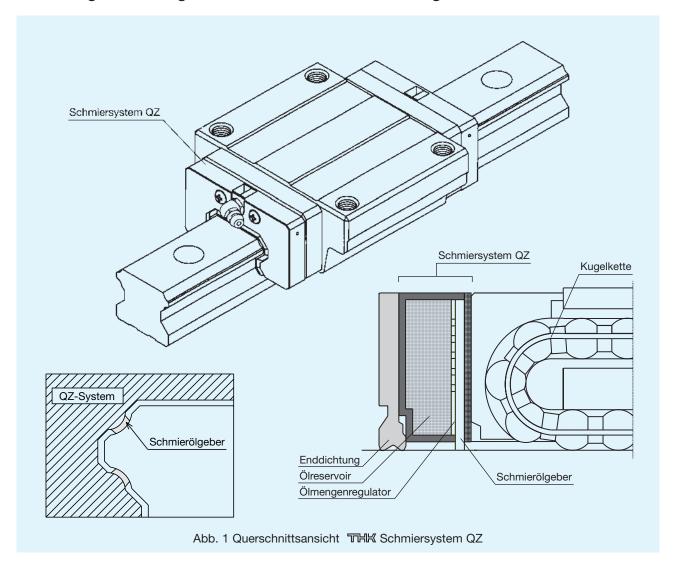
					Α	bmess	ungen Wa	gen						
Baureihe ¹⁾	Breite W	В	B ₁	Länge L	С	Höhe M	$S \times \ell$	Т	L ₁	N	E	Schmier- nippel	R	Ra
HCR12A + 60/100R	39	32	3,5	44,6	18	18	M4 × 5	5	30,5	3,4	3,5		100	106
HCR15A + 60/150R				56,5	24		M5 × 10					Eintreib- nippel	150	157,5
HCR15A + 60/300R	47	38	4,5	53,5	28	24	M5 × 11	11	38,8	4,5	5,5	PB1021B	300	307,5
HCR15A + 60/400R				30,3	20		IVIS ATT						400	407,5
HCR25A + 60/500R													500	511,5
HCR25A + 60/750R	70	57	6,5	79,0	45	36	M8 × 16	16	59,5	6,0	12,0	B-M6F	750	761,5
HCR25A + 60/1000R													1000	1011,5
HCR35A + 60/600R													600	617
HCR35A + 60/800R	100	82	9,0	105,4	58	48	M10 × 21	21	80,4	8,0	12,0	B-M6F	800	817
HCR35A + 60/1000R		02	0,0	100,4	00	70	IVITO A ZT	'	00,4	0,0	12,0	D WO	1000	1017
HCR35A + 60/1300R													1300	1317
HCR45A + 60/800R													800	822,5
HCR45A + 60/1000R	120	100	10.0	139,0	70	60	M12 × 25	25	98.0	10,0	16,0	B-PT1/8	1000	1022,5
HCR45A + 60/1200R		100	10,0	100,0	. 0		IVITE X 20		00,0	.0,0	. 0,0	B, o	1200	1222,5
HCR45A + 60/1600R													1600	1622,5
HCR65A + 60/1000R													1000	1031,5
HCR65A + 60/1500R													1500	1531,5
HCR65A + 45/2000R	170	142	14,0	198,0	106	90	M16 × 37	37	147,0	19,0	16,0	B-PT1/8	2000	2031,5
HCR65A + 45/2500R													2500	2531,5
HCR65A + 30/3000R													3000	3031,5


¹⁾ Die Zusammensetzung der Bestellbezeichnung finden Sie auf S. 349.

Wenn Sie Bogenführungen mit einem nicht in der Tabelle angegebenen Radius verwenden wollen, setzen Sie sich mit TIHK in Verbindung.


³⁾ Der in der Tabelle angegebene Bogensegmentwinkel ist der maximal herstellbare Winkel. Bei größeren Winkeln werden die Schienen auf Stoß gefertigt.

 $^{^{4)}}$ M_A , M_B und M_C sind die zulässigen Momente für einen Wagen.


				Ab	omess	unge	n Schiene					Trag	gzahl zul. statisches Moment ⁴⁾				Ge	wicht		
			Breite			Höhe	$d \times D \times h$					С	C_0		1 _A 2 Wagen	1 Wagen		M _C	Wagen	Schiene
Ri	L	Н	W_1	W_2	B ₂	M_1	u x b x ii	n	θ	θ_1	θ_2	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kg]	[kg]
94,0	100	13,4	12	13,5	6,0	11	3,5×6×5	3	60°	7°	23°	4,7	8,53	0,0409	0,228	0,0409	0,228	0,0445	0,08	0,087
142,5	150	20,1						3	60°	7°	23°	6,66	10,8							0,235
292,5	300	40	15	16,0	7,5	15	4,5×7,5×5,3	5	60°	6°	12°	8,33	13,5	0,0805	0,457	0,0805	0,457	0,0844	0,2	0,471
392,5	400	54						7	60°	3°	9°	0,00	10,0							0,628
488,5	500	67						9	60°	2°	7°									1,728
738,5	750	100	23	23,5	11,5	22	7×11×9	12	60°	2,5°	5°	19,9	34,4	0,307	1,71	0,307	1,71	0,344	0,59	2,592
988,5	1000	134						15	60°	2°	4°									3,456
583,0	600	80						7	60°	3°	9°									4,147
783,0	800	107	34	33 0	17,0	29	9×14×12	11	60°	2,5°	5,5°	37,3	61,1	0,782	3,93	0,782	3 03	0,905	1.6	5,529
983,0	1000	134	34	33,0	17,0	29	9×14×12	12	60°	2,5°	5°	37,3	01,1	0,702	3,93	0,702	3,33	0,903	1,0	6,911
1283,0	1300	174						17	60°	2°	3,5°									8,985
777,5	800	107						8	60°	2°	8°									9,215
977,5	1000	134	45	37,5	22,5	38	14×20×17	10	60°	3°	6°	60,0	95,6	1 40	7,92	1 40	7,92	1 00	2.8	11,519
1177,5	1200	161	45	37,3	22,3	30	14×20×17	12	60°	2,5°	5°	00,0	95,0	1,42	1,92	1,42	7,92	1,00	2,0	13,823
1577,5	1600	214						15	60°	2°	4°									18,431
968,5	1000	134						8	60°	2°	8°									23,562
1468,5	1500	201						10	60°	3°	6°									35,343
1968,5	1531	152	63	53,5	31,5	53	18×26×22	12	45°	0,5°	4°		215	2,45	13,2	2,45	13,2	3,2	8,5	35,343
2468,5	1913	190	1				ION LON LE	13	45°	1,5°	3,5°									44,179
2968,5	1553	102						10	30°	1,5°	3°									35,343

冗出 Schmiersystem QZ

Mit dem Schmiersystem QZ entwickelte THK ein neues integriertes Schmiersystem für Linearführungen. Ein Fasernetz mit hoher Ölaufnahmefähigkeit garantiert dabei einen langzeitwartungsfreien Einsatz der Linearführungen.

Aufbau und Merkmale

Mit dem Schmiersystem QZ wird eine kontinuierliche Versorgung der Wälzkörper mit Schmieröl gewährleistet. Dabei wird das Schmieröl durch den Kapillareffekt unabhängig von der Einbaulage des Führungssystems in der erforderlichen Menge direkt auf die Laufrillen aufgetragen.

Realisierung extrem langer Nachschmierintervalle

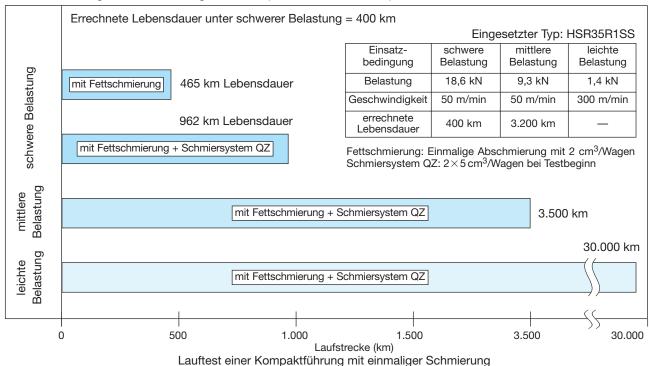
Während des Betriebs fettgeschmierter Linearführungen ist ein Verlust des Schmiermittels unvermeidlich. Mit dem Schmiersystem QZ wird der Linearführung kontinuierlich Schmiermittel zugeführt, und die Nachschmierintervalle können extrem verlängert werden.

Umweltfreundliches Schmiersystem

Das feinmaschige Fasernetz im Schmiersystem QZ reguliert die Schmierung der notwendigen Stellen mit einer

exakt benötigten Ölmenge. Auf diese Weise wird der Ölverbrauch gesenkt und die Umwelt geschont.

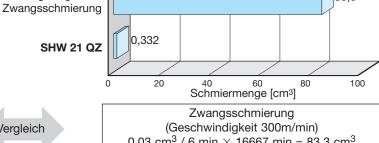
Unterschiedliche Schmieröle einsetzbar


Das Schmiersystem QZ kann je nach Anwendungszweck und Umgebungsbedingung der eingesetzten Linearführung mit geeigneten Schmierölen gefüllt werden.

Leistungsfähigkeit

1. Deutliche Verlängerung der Nachschmierintervalle

Mit dem Einsatz des Schmiersystems QZ können bei leichten wie auch schweren Belastungen die Nachschmierintervalle von Linearführungen deutlich verlängert werden (Siehe Testdaten unten).


2. Effizienter Einsatz der Ölschmierung

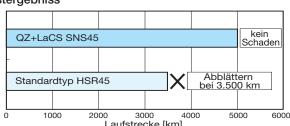
Mit dem Schmiersystem QZ wird nur eine erforderliche Menge Öl an die zu schmierenden Stellen abgegeben. Auf diese Weise wird eine sehr effiziente, verlustarme Ölschmierung realisiert. Führungswagen mit 83,3

Vergleich des Ölverbrauchs nach einer Laufstrecke von 5.000 km

> Schmiersystem QZ $0,166 \text{ cm}^3 \times 2 = 0,332 \text{ cm}^3$

 $0.03 \text{ cm}^3 / 6 \text{ min} \times 16667 \text{ min} = 83.3 \text{ cm}^3$

Der Schmierstoffverbrauch beim Einsatz des Schmiersystems QZ beträgt nur den 250sten Teil der Verbrauchsmenge eines Führungswagens mit Zwangsschmierung.

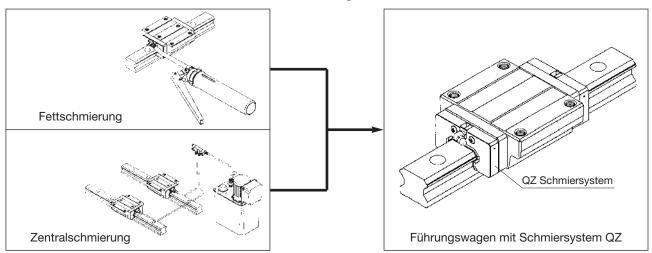

3. Unterstützende Wirkung bei extremen Anwendungsbedingungen

Bei dem durchgeführten Dauerlauftest unter extremen Anwendungsbedingungen (Späne, Kühlflüssigkeit) hat die Führung mit integriertem QZ Schmiersystem eine Laufstrecke von 5.000 km problemlos zurückgelegt.

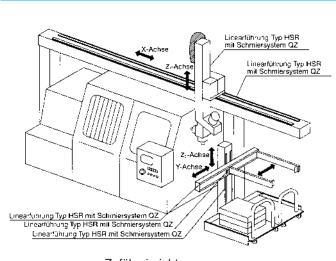
Testbedingung

rootboamgang							
Führungstyp	SNS45	HSR45					
Belastung	P = 0,1 C						
Geschwindigkeit	60 m/min						
Kühlflüssigkeit	Beaufschlagung = 48 h, Trockenphase = 96 h						
Verunreinigungen	Gusspartikel Größ	e < 125 µm					
		Öl: Super Multi 68					
Schmierung	AFA-Fett und QZ	Menge=0,1cm ³ /Impuls					
		Impuls alle 16 min					

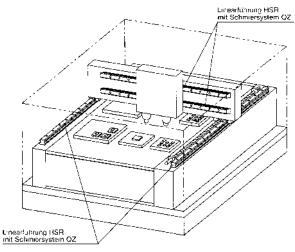
Testergebniss


Bei ungünstigen Umgebungsbedingungen sollte das Schmiersystem QZ zusammen mit dem Kontaktabstreifer LaCS verwendet werden.

Anwendung


Das Schmiersystem QZ ist für folgende Anforderungen optimal einsetzbar:

- bei möglichst geringem Wartungsaufwand der Maschinen und Anlagen.
- bei Verlängerung der Nachschmierintervalle oder vollständiger Verzicht auf Nachschmierung.
- bei Anwendungen die nur Ölschmierung zulassen.
- bei möglichst minimalem Schmierstoffverbrauch.
- wenn Nachschmierung nur unter großem Aufwand durchzuführen ist.
- bei umweltfreundlicher Konstruktion von Maschinen und Anlagen.



Aufwändige manuelle Nachschmierung oder kostenintensive Zentralschmierungsanlage können beim Einsatz des Schmiersystems QZ bei geeigneten Anwendungsbedingungen entfallen.

Anwendungsbeispiele

Zuführeinrichtung

Halbleiter-Bestückungsautomat

Aufbau der Bestellbezeichnung

HSR25 R 2 QZ SS C1 + 1200L P II

(1) Baureihe / -größe

(2) Führungswagentyp

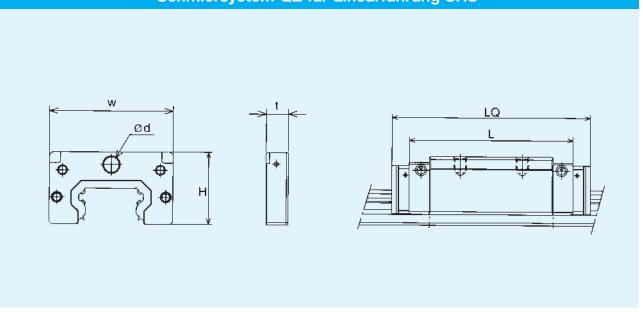
(3) Anzahl der Führungswagen pro Schiene

(4) QZ Schmiersystem

(5) Symbol für Abdichtung

(6) Vorspannungsklasse

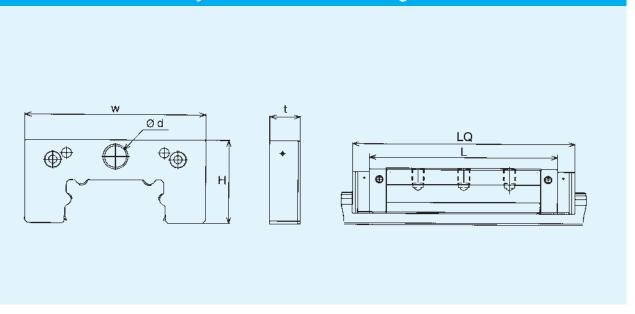
(7) Schienenlänge [mm]


(8) Genauigkeitsklasse

(9) Anzahl der Schienen für Paralleleinsatz in einer Ebene

¹⁾ Je nach Anwendung können auch Metallabstreifer und Doppeldichtungen eingesetzt werden. Fragen Sie hierzu 证出代.

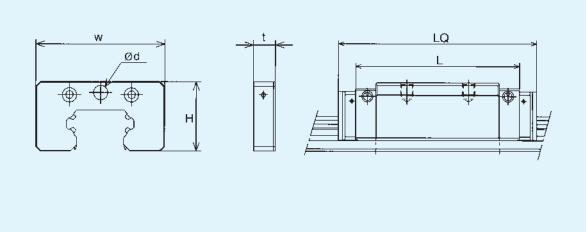
Schmiersystem QZ für Linearführung SHS



Einheit: mm

			Abmessi	ungen QZ		Abmessungen Führungswagen			
Baug	größe	Höhe	Breite	Dicke	Bohrung	Wagenlänge	Gesamtlänge		
		Н	W	t	Ød	L (Standardausführung)	LQ (QZ+Enddichtung)		
SHS15QZ	C/V/R	19.5		10	4,9	64,4	84,4		
31313Q2	LC/LV	19,5	31,8	10	4,9	79,4	99,4		
SHS20QZ	C/V	23,6	41	10	6,5	79	99		
SH320QZ	LC/LV	23,0	41	10	0,5	98	118		
SHS25QZ	C/V/R	28	45	10	6,5	92	114,4		
3H323QZ	LC/LV/R	20	45	10	6,5	109	131,4		
01102007	C/V/R	20.0	EE C	10	6.5	106	127,4		
SHS30QZ	LC/LV/R	32,8	55,6	10	6,5	131	152,4		
CLICATOT	C/V/R	20.0	GE G	10	6.5	122	145		
SHS35QZ	LC/LV/R	38,3	65,6	10	6,5	152	175		
CLICAEOZ	C/V/R	40 OF	82	15	10.5	140	173		
SHS45QZ	LC/LV/R	48,25	02	15	10,5	174	207		
01105507	C/V/R	5.4.5	5.4.5	05	4.5	10.5	171	205,4	
SHS55QZ	LC/LV/R	54,5	95	15	10,5	213	247,4		
SHS65QZ C/V LC/LV	C/V	00	100	4.5	10.5	221	256,2		
	LC/LV	68	120	15	10,5	272	307,2		

Schmiersystem QZ für Linearführung SNR/SNS

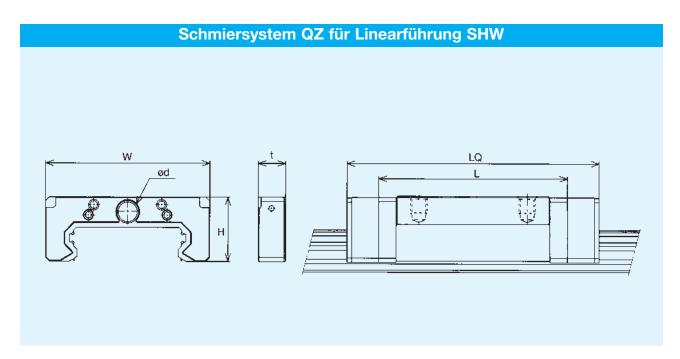


Einheit: mm

			Abmessi	ungen QZ		Abmessungen Führungswagen			
Baug	größe	Höhe	Breite	Dicke	Bohrung	Wagenlänge	Gesamtlänge		
		Н	W	t	Ød	L (Standardausführung)	LQ (QZ+Enddichtung)		
SNR25QZ	R/C	00.0	45.0	10	6.5	84	105,2		
SNS25QZ	LR/LC	23,3	45,8	10	6,5	103	124,4		
SNR30QZ	R/C	00 5	55	10	G E	98	121,2		
SNS30QZ	LR/LC	28,5	55	10	6,5	120,5	143,7		
SNR35QZ	R/C	20.0	66	15	6.5	109,5	142,7		
SNS35QZ	LR/LC	32,9	00	15	6,5	135	168,2		
SNR45QZ	R/C	27.0	81	15	10.5	138,2	171,4		
SNS45QZ	LR/LC	37,9	01	15	10,5	171	204,2		
SNR55QZ	R/C	40	0.4	00	40.5	163,3	204,6		
SNS55QZ	LR/LC	46	94	20	10,5	200,5	241,8		
SNR65QZ	R/C	FC 7	110.4	00	10.5	186	227,7		
SNS65QZ	LR/LC	56,7	119,4	20	10,5	246	287,7		

Schmiersystem QZ für Linearführung HSR

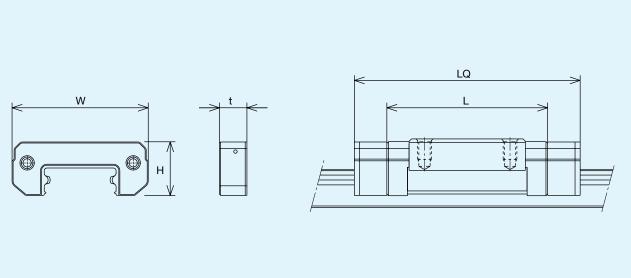
			Abmessi	ıngen QZ		Abmessungen Führungswagen			
Bau	größe	Höhe	Breite	Dicke	Bohrung	Wagenlänge	Gesamtlänge		
		Н	W	t	Ød	L (Standardausführung)	LQ (QZ+Enddichtung)		
HSR15QZ	A/B/R	17,8	32	10	4	56,5	78,3		
HCD2007	A/B/R/CA/CB	23,5	40	10	6.5	74	96		
HSR20QZ	LA/LB/LR/HA/HB	23,3	42	10	6,5	90	112		
HSR25QZ	A/B/R/CA/CB	27,5	46	10	6,5	83,5	103,9		
HSh25QZ	LA/LB/LR/HA/HB	27,5	40	10	6,5	102,5	123		
LICE2007	A/B/R/CA/CB	21 5	50	10	6.5	98	118,8		
HSR30QZ	LA/LB/LR/HA/HB	31,5	58	10	6,5	121	141,4		
HSR35QZ	A/B/R/CA/CB	36,5	68	10	6,5	109,5	132		
HONOOQZ	LA/LB/LR/HA/HB	30,3	00	10	0,5	135	157,4		
HSR45QZ	A/B/R/CA/CB	45	83	15	11,5	139	175,8		
HSN45QZ	LA/LB/LR/HA/HB	40	00	15	11,5	171	207,6		
LICDEEOZ	A/B/R/CA/CB	51	00	1.5	10.5	163	197,2		
HSR55QZ	LA/LB/LR/HA/HB	51	98	15	10,5	201	235,3		
LICDGEOZ	A/B/R/CA/CB	A/B/R/CA/CB 61	61 116		1.4	186	221,4		
HSR65QZ L	LA/LB/LR/HA/HB	бТ	116	15	14	246	280,9		



Schmiersystem QZ für Linearführung NR/NRS

Einheit: mm

			Abmessu	ıngen QZ		Abmessungen Führungswagen			
Baug	größe	Höhe	Breite	Dicke	Bohrung	Wagenlänge	Gesamtlänge		
		Н	W	t	Ød	L (Standardausführung)	LQ (QZ+Enddichtung)		
NR25XQZ	XR/XA/XB	23,3	45,8	10	6,5	83	105,6		
NRS25XQZ	XLR/XLA/XLC	23,3	45,6	10	0,5	102	124,8		
NR30QZ	R/A/B	00 E	55	10	G E	98	120,4		
NRS30QZ	LR/LA/LC	28,5	55	10	6,5	120,5	142,9		
NR35QZ	R/A/B	22.0	66	1.5	6.5	109,5	142,7		
NRS35QZ	LR/LA/LC	32,9	00	15	6,5	135	168,2		
NR45QZ	R/A/B	27.0	81	1.5	10.5	139	172,2		
NRS45QZ	LR/LA/LC	37,9	01	15	10,5	171	204,2		
NR55QZ	R/A/B	40	0.4	00	10.5	163	204,8		
NRS55QZ	LR/LA/LC	46	94	20	10,5	200,5	242		
NR65QZ	R/A/B	FC 7	110.4	00	10.5	186	227,6		
NRS65QZ	LR/LA/LC	56,7	119,4	20	10,5	246	287,6		

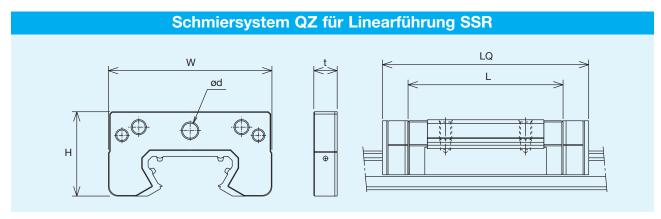


		Abmessungen QZ				Abmessungen Führungswagen		
Baug	größe	Höhe	Breite	Dicke	Bohrung	Wagenlänge	Gesamtlänge	
		Н	W	t	Ød	L (Standardausführung)	LQ (QZ+Enddichtung)	
SHW12QZ	CA/CR HR	9,7	29,4	5,0	_	37 50,4	47 60,4	
SHW14QZ	CA/CR	11,6	39	5,0	_	45,5	55,5	
SHW17QZ	CA/CR	14,2	49	6,0	_	51	63	
SHW21QZ	CA/CR	17,2	52,8	8,0	5,9	59	75	
SHW27QZ	CA/CR	22,8	60,6	10,0	7,0	73	92,8	
SHW35QZ	CA/CR	30,0	97,6	10,0	7,0	107	127	
SHW50QZ	CA/CR	44,0	129,4	10,0	12,0	141	161	

Schmiersystem QZ für Linearführung SRS

Einheit: mm

	Abmessungen QZ			Abmessungen Führungswagen		
Baugröße	Höhe	Breite	Dicke	Wagenlänge	Gesamtlänge	
	Н	W	t	L (Standardausführung)	LQ (QZ+Enddichtung)	
SRS9MQZ	8,1	19,8	5,0	30,8	40,8	
SRS9WMQZ	8	29,8	5,0	39	49	
SRS12MQZ	9,8	26,8	5,0	34,4	44,4	
SRS12WMQZ	9,8	39,6	5,0	44,5	54,5	
SRS15MQZ	11,9	31,8	6,0	43	55	
SRS15WMQZ	11,9	59,8	6,0	55,5	67,5	
SRS20MQZ	15,6	39,8	8,0	50	66	
SRS25MQZ	18,4	47,8	10,0	77	97	

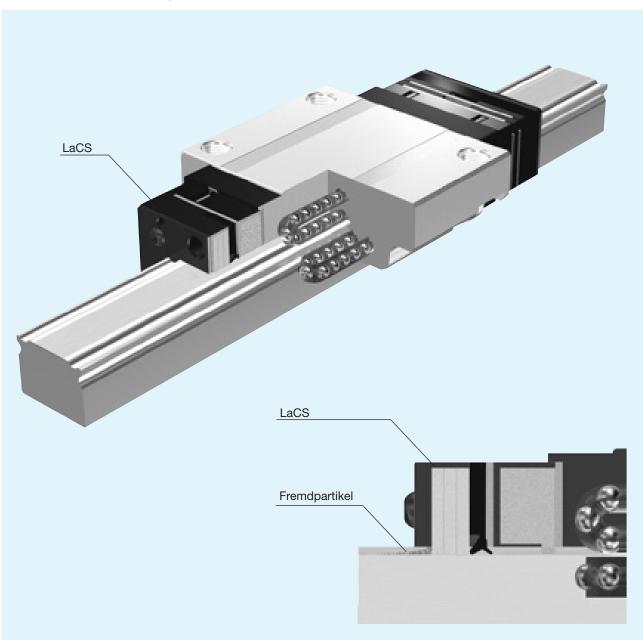


 \oplus

Φ.

Einheit: mm

Abmessungen QZ			Abmessungen Führungswagen				
Baug	größe	Höhe	Breite	Dicke	Bohrung	Wagenlänge	Gesamtlänge
		Н	W	t	Ød	L (Standardausführung)	LQ (QZ+Enddichtung)
SRG35QZ	LC/LR	41,2	68	15	6,5	155	185
SRG45QZ	LC/LR	51	84	15	10,5	190	220
SRG55QZ	LC/LR	55,8	98	20	10,5	235	275
SRG65QZ	LC/LR	77	122	20	10,5	303	343


Einheit: mm

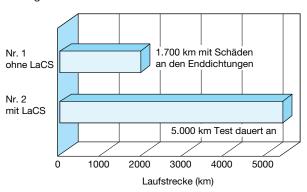
Abmessungen QZ				Abmessungen Führungswagen			
Bauç	größe	Höhe	Breite	Dicke	Bohrung	Wagenlänge	Gesamtlänge
		Н	W	t	Ød	L (Standardausführung)	LQ (QZ+Enddichtung)
SSR15QZ	XVY XWY/XTBY	18,6	34	8	4,5	41 57	59,3 75,9
SSR20QZ	XV XW/XTB	21,6	42	8	6,5	47,7 66,5	66,2 85
SSR25QZ	XVY XWY/XTBY	25,7	48	10	6,5	60 83	82,6 105,6
SSR30QZ	XW	32,1	60	10	6,5	97	119,7
SSR35QZ	XW	36,1	70	10	6,5	111	134,3

THK Lamellen-Kontaktabstreifer LaCS

Umfassenden Schutz vor feinsten Fremdpartikel bietet der eigens für THK Linearführungen entwickelte Lamellen-Kontaktabstreifer LaCS.

Aufbau und Merkmale

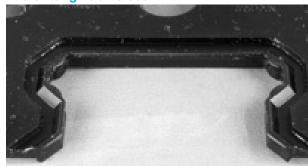
Der mehrstufige Aufbau des Kontaktabstreifers LaCS mit insgesamt drei Lamellen, die eng an der Führungsschiene anliegen, gewährleistet ein sicheres Abstreifen von feinsten Staubpartikeln. Linearführungen mit dieser Abdichtung können insbesondere bei kritischen Umgebungsbedingungen eingesetzt werden, ohne dass verschleißfördernde Fremdstoffe in die Führungswagen gelangen. Wichtigste Leistungsmerkmale des Lamellen-Kontaktabstreifers LaCS sind:


- 3-fach bessere Abdichtungswirkung gegen Fremdpartikel als bei herkömmlichen Abdichtungen.
- Das Eindringen von Flüssigkeiten in den Laufwagen wird minimiert.
- Niedriger Verschiebewiderstand durch ölgetränkte Lamellen aus synthetischem Kautschuk.

Leistungstest mit Kühlwasser

Prüfpunkte		Spezifikation	
Testmuster	Nr.1	SHS45R1SS+3000L (ohne LaCS)	
restmuster	Nr.2	SHS45R1SSHH+3000L (mit LaCS)	
Geschwindigkeit		200 m/min	
Einsatzbe	edingung	Kühlwasser-Strahl fünfmal proTag	

Testergebnis



Vergrößerte Darstellungen

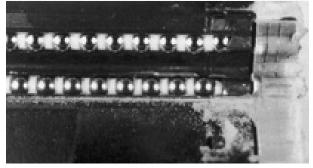
1. Ohne LaCS: Beschädigung der Enddichtung nach 1.700 km

2. Mit LaCS: Einwandfreier Zustand der Enddichtung nach 5.000 km

Leistungstest mit Schmutzpartikeln

Prüfpur	nkte	Spezifikation	
Testmuster	Nr.1	SNR45R1DD+600L (mit Doppeldichtung)	
restinustei	Nr.2	SNR45RHH+600L (nur LaCS)	
Geschv	vindigkeit	60 m/min	
Beschle	unigung	10 m/s ²	
Belas	stung	0,1 C (9,6 kN)	
Einsatzbedingung		Beaufschlagung 1 g/h (Gesamtmenge 120 g)	
Fremdpartikel		Gußstaub (Größe < 125 μm)	

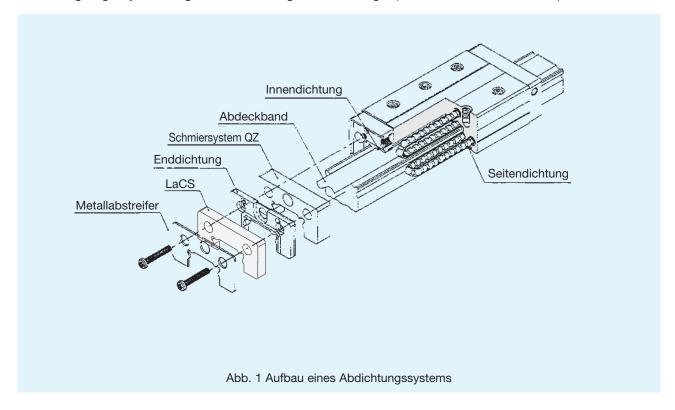
Ergebnis: Eindringen von Gußpartikeln


Dichtungsart	Wagen	Eingedrungene Fremdpartikel
konventionelle	n=1	0,3 g
Doppeldichtung	n=2	0,3 g
Dopperaicituing	n=3	0,3 g
	n=1	keine
LaCS	n=2	keine
	n=3	keine

1. Mit Doppeldichtung: Führungswagen nach 100 km Laufleistung

Im Laufbereich sind Gußpartikel zu erkennen

2. Nur mit LaCS: Führungswagen nach 100 km Laufleistung



Im Laufbereich sind keine Gußpartikel zu erkennen

Aufbau des Abdichtungssystems

Der Aufbau des Abdichtungssystems in Abb. 1 dargestellt. Bei der Bestellung einer Linearführung mit Abdichtungen sind die in Tab. 1 aufgeführten Kennzeichnungen für die einzelnen Abdichtungsarten zu verwenden. Des weiteren ist die Längenvariation des Führungswagens je nach eingesetzter Abdichtung zu berücksichtigen (siehe Maßtabellen weiter hinten).

Enddichtungen

Standardmäßig vorgesehene Abdichtung.

Seitendichtung

Für eine verbesserte Abdichtung der Wagenunterseite.

Metallabstreifer

Der Metallabstreifer schützt gegen Späne und andere Fremdpartikel.

Doppeldichtung

Die Doppeldichtung ist optional als verstärkter Schutz gegen Fremdpartikel lieferbar.

Innendichtung

Zur effektiven Innenabdichtung der Kugellaufrillen.

Tab. 1 Kennzeichnung des Abdichtungszubehör

Abdichtung	Kennzeichnung
End-, Seiten- und Innendichtungen + LaCS	SSHH
Doppel-, Seiten- und Innendichtungen + LaCS	DDHH
End-, Seiten- und Innendichtungen + Metallabstreifer + LaCS	ZZHH
Doppel-, Seiten- und Innendichtungen + Metallabstreifer + LaCS	KKHH

Anmerkung: Mit "H" als Kennzeichnung für einseitige Montage.

Aufbau der Bestellbezeichnung

Anmerkungen:

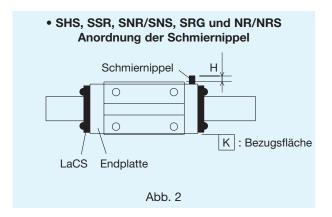
- 1) Der Lamellen-Kontaktabstreifer LaCS ist nicht einzeln erhältlich.
- 2) Bei Bestellung mit dem Schmiersystem QZ sind keine Schmiernippel montiert. Werden Schmiernippel gewünscht, ist das bei der Bestellung anzugeben.
- 3) Bei den Baureihen SHW und SRS sind auch ohne QZ keine Schmiernippel vorgesehen. Werden Schmiernippel gewünscht, ist das bei der Bestellung anzugeben ("mit Schmiernippel").
- 4) Die Baureihe HSR15 ist in der Abdichtungsart ZZ oder KK standardmäßig ohne Schmiernippel.
- 5) Andere Abdichtungsarten können nach Absprache mit THK geliefert werden.
- 6) Zu beachten ist die Kennzeichnung Y für die Typen SSR15XWY, SSR15XVY, SSR15XTBY, SSR25XWY, SSR25XVY und SSR25XTBY.

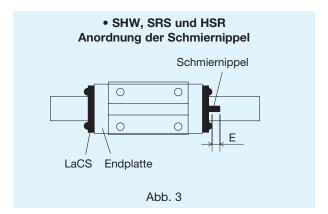
Technische Angaben zu LaCS

- 1. Der Betriebstemperaturbereich für LaCS beträgt -20°C ~ +80°C
- 2. Max. Geschwindigkeit: 200 m/min
- 3. Zum Verschiebewiderstand siehe Tab. 2.

Tab. 2 Verschiebewiderstand von LaCS¹⁾

Einheit: N


Baureihe	Verschiebe- widerstand LaCS	Baureihe	Verschiebe- widerstand LaCS	Baureihe	Verschiebe- widerstand LaCS
SSR15	5,9	SHS15	5,2	SRS20	5,2
SSR20	6,9	SHS20	6,5	SRS25	7,8
SSR25	8,1	SHS25	11,7	SRG35	9,1
SSR30	12,8	SHS30	18,2	SRG45	14,3
SSR35	15,1	SHS35	20,8	SRG55	18,2
SNR/SNS25 NR/NRS25	8,1	SHS45	26,0	SRG65	26,0
SNR/SNS30 NR/NRS30	13,4	SHS55	32,5		
SNR/SNS35	15,5	SHS65	39,0	HSR15	3,8
NR/NRS35	13,3	SHW21	3,9	HSR20	5,6
SNR/SNS45 NR/NRS45	23,3	SHW27	6,5	HSR25	7,5
SNR/SNS55 NR/NRS55	28,6	SHW35	13,0	HSR30	14,9
SNR/SNS65 NR/NRS65	39,6	SHW50	19,5	HSR35	22,4


¹⁾ Die oben angegebenen Werte geben nur den Verschiebewiderstand der beidseitig am Führungswagen montierten LaCS an. Andere, wie der Verschiebewiderstand vom Führungswagen oder von den Dichtungen, sind nicht enthalten.

Schmiernippel

Bei Führungswagen ohne das Schmiersystem QZ sind Schmiernippel montiert. Da die Lage der Schmiernippel je nach Baureihe variiert, sind die Angaben in Abb. 2 und Abb. 3 auch hinsichtlich der Gesamtbreite und Gesamtlänge zu beachten. Siehe dazu auch die Maßangaben in den unteren Tabellen für lieferbare Führungswagen mit Schmiernippeln.

- 1. Ist eine andere Lage des Schmiernippel als oben angezeigt erforderlich, fragen Sie bitte THK
- 2. Führungswagen mit montiertem Schmierystem QZ werden nur bei spezieller Bestellung mit Schmiernippel ausgeliefert.
- 3. Bei Führungswagen der Baureihen SRS und SHW müssen generell die Schmiernippel extra mitbestellt werden (Angabe in der Bestellbezeichnung: mit Schmiernippel).
- 4. Die Baugröße HSR15 kann bei der Abdichtungsart ZZ oder KK nicht mit Schmiernippeln ausgerüstet werden.

l	n	h	ıe	ıt:	m	۱r	n

Baugröße		Verlängerung der Gesamtbreite H	Schmiernippel
00045	XVY/XWY	4,4	PB107
SSR15	XTBY	-	PB107
00000	XV/XW	4,6	PB107
SSR20	XTB	-	PB107
00005	XVY/XWY	4,5	PB107
SSR25	XTBY	-	PB107
SSR30	XW	5,0	PB1021B
SSR35	XW	5,0	PB1021B

Einheit: mm

Baugröße		Verlängerung der Gesamtbreite H	Schmiernippel
SNR25	C/LC	-	PB1021B
SNS25	R/LR	4,9	PB1021B
SNR30	C/LC	-	PB1021B
SNS30	R/LR	4,5	PB1021B
SNR35	C/LC	_	A-M6F
SNS35	R/LR	7,8	A-M6F
SNR45	C/LC	-	A-M6F
SNS45	R/LR	7,9	A-M6F
SNR55	C/LC	-	A-M6F
SNS55	R/LR	7,7	A-M6F
SNR65	C/LC	_	A-PT1/8
SNS65	R/LR	15,8	A-PT1/8

Einheit: mm

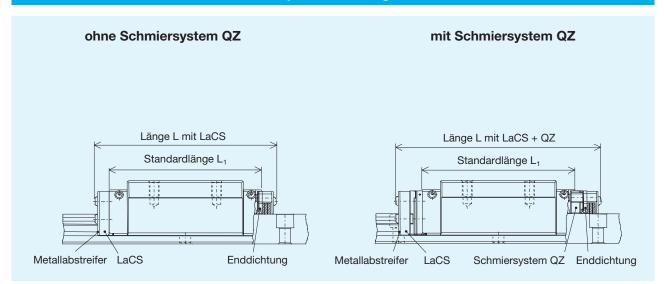
Bau	größe	Verlängerung der Gesamtbreite H	Schmiernippel
SHS15	C/LC	_	PB107
30313	R/V/LV	4,7	PB107
SHS20	C/LC	_	PB107
SH320	V/LV	4,5	PB107
SHS25	C/LC	_	PB107
SH323	R/LR/V/LV	4,7	PB107
SHS30	C/LC	_	A-M6F
311330	R/LR/V/LV	7,4	A-M6F
SHS35	C/LC	_	A-M6F
ЗПООО	R/LR/V/LV	7,4	A-M6F
SHS45	C/LC	_	A-M6F
3H343	R/LR/V/LV	7,7	A-M6F
SHS55	C/LC	_	A-M6F
30000	R/LR/V/LV	7,4	A-M6F
CHCCE	C/LC	_	A-M6F
SHS65	V/LV	6,9	A-M6F

Baug	röße	Verlängerung der Gesamtlänge E	Schmiernippel		
SHW21	CA/CR	4,2	PB1021B		
SHW27	CA/CR	10,7	B-M6F		
SHW35	CA/CR	10,0	B-M6F		
SHW50	CA/CR	25,9	B-PT1/8		

Baugro	ъ̀ве	Verlängerung der Gesamtbreite H	Schmiernippel	
00005	LC	_	A-M6F	
SRG35	LR	7,2	A-M6F	
00045	LC	_	A-M6F	
SRG45	LR	7,2	A-M6F	
00055	LC	_	A-M6F	
SRG55	LR	7,2	A-M6F	
00005	LC	_	A-M6F	
SRG65	LR	6,2	A-M6F	

Einheit: mm

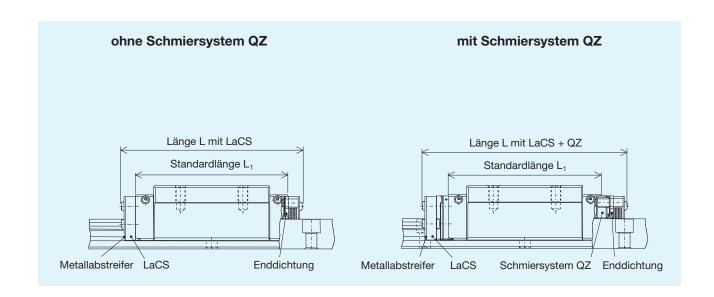
Baugröße		Verlängerung der Gesamtbreite H	Schmiernippel	
NR25	A/B/LA/LB	_	PB1021B	
NRS25	R/LR	4,8	PB1021B	
NR30	A/B/LA/LB	_	PB1021B	
NRS30	R/LR	4,5	PB1021B	
NR35	A/B/LA/LB	_	A-M6F	
NRS35	R/LR	7,4	A-M6F	
NR45	A/B/LA/LB	_	A-M6F	
NRS45	R/LR	7,4	A-M6F	
NR55	A/B/LA/LB	_	A-M6F	
NRS55	R/LR	6,9	A-M6F	
NR65	A/B/LA/LB	_	A-PT1/8	
NRS65	R/LR	15,3	A-PT1/8	


Einheit: mm

Zii ii dia						
Е	Baugröße	Verlängerung der Gesamtlänge E	Schmiernippel			
HSR15	A/B/R/YR	2,9	PB1021B			
HSR20	A/B/R/CA/CB/YR LA/LB/LR/HA/HB	9,4	B-M6F			
HSR25	A/B/R/CA/CB/YR LA/LB/LR/HA/HB	9,0	B-M6F			
HSR30	A/B/R/CA/CB/YR LA/LB/LR/HA/HB	9,0	B-M6F			
HSR35	A/B/R/CA/CB/YR LA/LB/LR/HA/HB	8,0	B-M6F			

Baugröße	Verlängerung der Gesamtlänge E	Schmiernippel
SRS20	3,7	PB107
SRS25	3,8	PB1021B

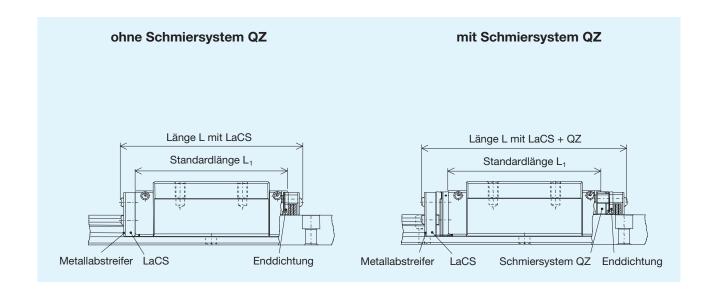
Hauptabmessungen



Einheit: mm

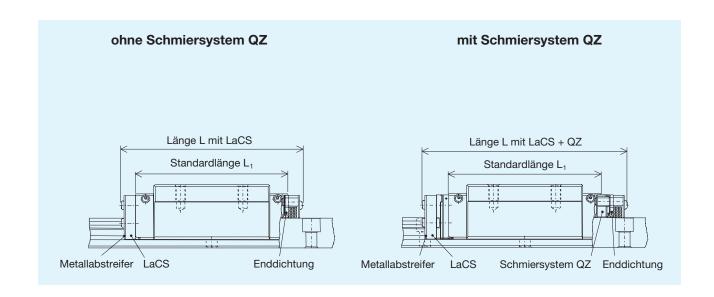
Baugr	58e	Wagenlänge	Gesamtlänge mit LaCS (ohne QZ)				Gesamtlänge mit LaCS und QZ			
Daugit	Jije	L ₁	SSHH	DDHH	ZZHH	KKHH	QZSSHH	QZDDHH	QZZZHH	QZKKHH
COD1E	XVY	41	59,5	65,3	60,7	66,5	75,5	81,3	76,7	82,5
SSR15	XWY/XTBY	57	76,1	81,9	77,3	83,1	92,1	97,9	93,3	99,1
00000	XV	47,7	67,7	74,6	70,1	77	83,7	90,6	86,1	93
SSR20	XW/XTB	66,5	86,5	93,4	88,9	95,8	102,5	109,4	104,9	111,8
CCDOE	XVY	60	80	87,4	82,4	89,8	100	107,4	102,4	109,8
SSR25	XWY/XTBY	83	103	110,4	105,4	112,8	123	130,4	125,4	132,8
SSR30	XW	97	121	129,1	123,4	131,5	141	149,1	143,4	151,5
SSR35	XW	111	136,9	145,9	139,3	148,3	156,9	165,9	159,3	168,3

Baugrö	ßo	Wagenlänge	Gesar	ntlänge mit	LaCS (ohne	QZ)	Gesa	mtlänge mi	t LaCS und	QZ
Daugro	De	L ₁	SSHH	DDHH	ZZHH	KKHH	QZSSHH	QZDDHH	QZZZHH	QZKKHH
SNR25	R/C	84	99,5	107,1	101,9	109,5	121,9	129,5	124,3	131,9
SNS25	LR/LC	103	118,7	126,3	121,1	128,7	141,1	148,7	143,5	151,1
SNR30	R/C	98	118,5	128,3	120,9	130,7	141,7	151,5	144,1	153,9
SNS30	LR/LC	120,5	141	150,8	143,4	153,2	164,2	174	166,6	176,4
SNR35	R/C	109,5	131,1	141,3	133,5	143,7	164,3	174,5	166,7	176,9
SNS35	LR/LC	135	156,6	166,8	159	169,2	189,8	200	192,2	202,4
SNR45	R/C	138,2	163,2	173,4	166,4	176,6	196,4	206,6	199,6	209,8
SNS45	LR/LC	171	196	206,2	199,2	209,4	229,2	239,4	232,4	242,6
SNR55	R/C	163,3	187,8	198	191	201,2	231	241,2	234,2	244,4
SNS55	LR/LC	200,5	225	235,2	228,2	238,4	268,2	278,4	271,4	281,6
SNR65	R/C	186	214,3	224,9	217,5	228,1	257,5	268,1	260,7	271,3
SNS65	LR/LC	246	274,3	284,9	277,5	288,1	317,5	328,1	320,7	331,3



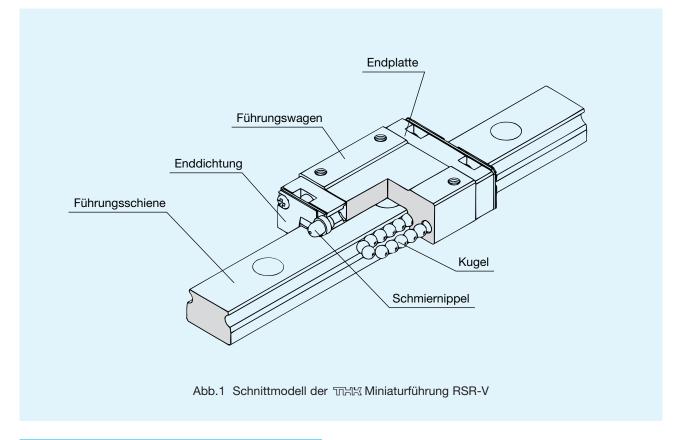
Baugi	röße	Wagenlänge	Gesa	mtlänge mit	t LaCS (ohn	e QZ)	Ges	amtlänge m	nit LaCS un	d QZ
Daug	1006	L ₁	SSHH	DDHH	ZZHH	KKHH	QZSSHH	QZDDHH	QZZZHH	QZKKHH
CLIC1E	C/V/R	64,4	78,9	84,4	79,9	85,2	100,4	105,4	101,4	106,9
SHS15	LC/LV	79,4	93,9	99,4	94,9	100,2	115,4	120,4	116,4	121,9
CLICOO	C/V	79	94	100	96	102,5	115,5	122	118	124,5
SHS20	LC/LV	98	113	119	115	121,5	134,5	141	137	143,5
CLICOE	C/V/R	92	112	119,2	114,4	121,6	132	139,2	134,4	141,6
SHS25	LC/LV/LR	109	129	136,2	131,4	138,6	149	156,2	151,4	158,6
CLICOO	C/V/R	106	129,4	138	131,8	140,4	149,4	158	151,8	160,4
SHS30	LC/LV/LR	131	154,4	163	156,8	165,4	174,4	183	176,8	185,4
CLICOE	C/V/R	122	148	157,8	150,4	160,2	168	177,8	170,4	180,2
SHS35	LC/LV/LR	152	178	187,8	180,4	190,2	198	207,8	200,4	210,2
SHS45	C/V/R	140	169	178,8	172,2	182	199	208,8	202,2	212
3H343	LC/LV/LR	174	203	212,8	206,2	216	233	242,8	236,2	246
SHS55	C/V/R	171	202	213,2	205,2	216,4	232	243,2	235,2	246,4
30000	LC/LV/LR	213	244	255,2	247,2	258,4	274	285,2	277,2	288,4
SHS65	C/V	221	258	270,4	261,2	273,6	288	300,4	291,2	303,6
30303	LC/LV	272	309	321,4	312,2	324,6	339	351,4	342,2	354,6

Baugröße		Wagenlänge	Gesamtlänge mit LaCS (ohne QZ)				Gesamtlänge mit LaCS und QZ			
		L ₁	SSHH	DDHH	ZZHH	KKHH	QZSSHH	QZDDHH	QZZZHH	QZKKHH
SHW21	CA/CR	59	75,6	80,6	77,2	82,2	91,6	96,6	93,2	98,2
SHW27	CA/CR	73	89,4	95,2	91,8	97,6	109,4	115,2	111,8	117,6
SHW35	CA/CR	107	129	136,4	131,4	138,8	149	156,4	151,4	158,8
SHW50	CA/CR	141	166	174,2	168,4	176,6	186	194,2	188,4	196,6



Baugröße	Wagenlänge L ₁	Gesamtlänge mit LaCS (ohne QZ) SSHH	Gesamtlänge mit LaCS (mit QZ) QZSSHH		
SRS20	50	67,2	83,2		
SRS25	77	95,2	115,2		

Baugröße		Wagenlänge	Gesamtlänge mit LaCS (ohne QZ)				Gesamtlänge mit LaCS und QZ			
		L ₁	SSHH	DDHH	ZZHH	KKHH	QZSSHH	QZDDHH	QZZZHH	QZKKHH
SRG35	LC/LR	155	178,6	186,4	181	188,8	208,6	216,4	211	218,8
SRG45	LC/LR	190	217	226,2	220,2	229,4	247	256,2	250,2	259,4
SRG55	LC/LR	235	262	271,2	265,2	274,4	302	311,2	305,2	314,4
SRG65	LC/LV	303	335,4	346,6	338,6	349,8	375,4	386,6	378,6	389,8



Baugröße		Wagenlänge	Gesam	tlänge mit	LaCS (oh	ne QZ)	Gesam	tlänge mit	LaCS und	d QZ
		L ₁	SSHH	DDHH	ZZHH	KKHH	QZSSHH	QZDDHH	QZZZHH	QZKKHH
NR25	XR/XA/XB	83	99,9	107,9	102,3	110,3	122,3	130,3	124,7	132,7
NRS25	XLR/XLA/XLB	102	119,1	127,1	121,5	129,5	141,5	149,5	143,9	151,9
NR30	R/A/B	98	118,5	127,5	120,9	129,9	140,9	149,9	143,3	152,3
NRS30	LR/LA/LB	120,5	141	150	143,4	152,4	163,4	172,4	165,8	174,8
NR35	R/A/B	109,5	131,1	141,3	133,5	143,7	164,3	174,5	166,7	176,9
NRS35	LR/LA/LB	135	156,6	166,8	159	169,2	189,8	200	192,2	202,4
NR45	R/A/B	139	164	174,2	167,2	177,4	197,2	207,4	200,4	210,6
NRS45	LR/LA/LB	171	196	206,2	199,2	209,4	229,2	239,4	232,4	242,6
NR55	R/A/B	163	188,1	198,3	191,3	201,5	231,3	241,5	234,5	244,7
NRS55	LR/LA/LB	200,5	225,3	235,5	228,5	238,7	268,5	278,7	271,7	281,9
NR65	R/A/B	186	214,3	224,9	217,5	228,1	257,5	268,1	260,7	271,3
NRS65	LR/LA/LB	246	274,3	284,9	277,5	288,1	317,5	328,1	320,7	331,3

Baugröße		Wagenlänge	Gesamtlänge mit LaCS (ohne QZ)				Gesamtlänge mit LaCS und QZ			
		L ₁	SSHH	DDHH	ZZHH	KKHH	QZSSHH	QZDDHH	QZZZHH	QZKKHH
HSR15	A/B/R/YR	56,6	76	81,2	77,2	82,4	96	101,2	97,2	102,4
HSR20	A/B/R/CA/CB/YR	74	93,8	100,4	96,2	102,8	113,8	120,4	116,2	122,8
HSR20	LA/LB/LR/HA/HB	90	109,8	116,4	112,2	118,8	129,8	136,4	132,2	138,8
HSR25	A/B/R/CA/CB/YR	83,5	103,5	111,1	105,9	113,5	123,5	131,1	125,9	133,5
H3N23	LA/LB/LR/HA/HB	102,5	122,8	130,2	125	132,6	142,8	150,2	145	152,6
ПСБЗО	A/B/R/CA/CB/YR	98	122,6	130,2	125	132,6	142,6	150,2	145	152,6
HSR30	LA/LB/LR/HA/HB	121	145,2	152,8	147,6	155,2	165,2	172,8	167,6	175,2
HSR35	A/B/R/CA/CB/YR	109,5	136	143,6	138,4	146	156	163,6	158,4	166
покоз	LA/LB/LR/HA/HB	135	161,4	169	163,8	171,4	181,4	189	183,8	191,4

THK Miniaturführungen RSR, RSR-W und RSH

Aufbau und Merkmale

Die THK Miniaturführungen der Baureihen RSR und RSH sind Miniatur-Linearführungen für unbegrenzte Verfahrwege. Mit dem besonders kompakten Aufbau des Führungswagens und den integrierten großen Kugeln wird eine hohe Steifigkeit des Führungssystems in allen Richtungen erzielt.

Neue Konstruktion

Im Vergleich zu den bisherigen Typen zeichnen sich die neuen Miniaturführungen der Baureihen RSR und RSH durch ruhigere Laufeigenschaften aus. Mit dem Langwagen-Typ RSR-N werden zudem leichtgängige Laufeigenschaften selbst im vertikalen Einsatz, wie z.B. bei der Wandmontage, ermöglicht.

Kompakte Konstruktion

T대본 Miniaturführungen bauen äußerst kompakt. Der Langwagen-Typ RSR-N kann mit einem Führungswagen zwei bisherige Wagen ersetzen.

Korrosionsbeständig

Die Miniaturführungen werden aus korrosionsbeständigem Stahl hergestellt. Sie eignen sich daher für Anwendungen in Reinräumen, an Orten mit hoher Feuchtigkeit sowie für Anwendungen ohne Schmiermöglichkeit.

Aus allen Richtungen belastbar

Die Miniaturführungen können auf kleinstem Raum hohe Kräfte und Momente aufnehmen. Für besonders hohe Momente bietet sich der Führungswagen des Typs RSR-W aufgrund der breiter ausgelegten Führungsschiene sowie der größeren Anzahl von Kugeln im Führungswagen an. Dazu baut dieser Typ im Vergleich zu parallel angeordneten Kugelbüchsenführungen wesentlich kompakter.

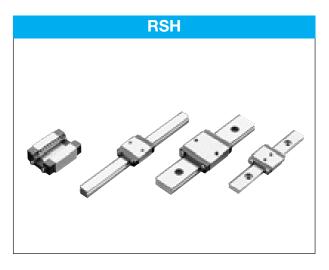
Große Auswahl

Je nach Einsatzart stehen neben dem Standardtyp RSR weitere Typen zur Verfügung:

- Typ RSR-N mit langem Führungswagen.
- Typ RSH mit Kugelkäfig. Das Abziehen des Führungswagens von der Schiene ist nur bei diesem Typ möglich.

Typenauswahl

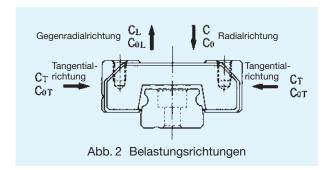
Hohe Leistungsfähigkeit bei äußerst kompakten Abmessungen.


Breites Führungssystem zur Aufnahme hoher Momente. Besonders geeignet für Einzelschienen-Anwendungen.

Ideal für Einzelwagen-Anwendung bei Wand- und Überkopfmontage.

Breite Miniaturführung mit höchster Tragzahl aufgrund der größeren Anzahl von tragenden Kugeln.

Führungswagen des Typs RSH können von der Schiene abgezogen werden, da der Wagen mit einem Kugel-Rückhaltekäfig ausgestattet ist.



Variation der Tragzahlen

Tragzahl

Alle Miniaturführungen RSR und RSH können radial, gegenradial und tangential belastet werden. Die Tragzahlen in der Maßtabelle beziehen sich auf die Radialbelastung. Die Tragzahlen für Gegenradial- und Tangentialrichtung werden nach Tabelle 1 berechnet.

Bei den Baugrößen RSR3, 5, 7, 9KM, 9WV(M), RSH7M, 9KM gelten die Tragzahlen in der Maßtabelle in allen Richtungen.

Tab. 1 Tragzahlen bei verschiedenen Belastungsrichtungen

	Dynamische Tragzahl	Statische Tragzahl
Radial	С	C ₀
Gegenradial	C _L =0,78 C	$C_{0L} = 0.7 C_0$
Tangential	C _T =0,78 C	C _{0T} =0,71 C ₀

Äquivalente Belastung

Die äquivalente Belastung eines Führungswagens bei gleichzeitiger radialer bzw. gegenradialer und tangentialer Belastung wird wie folgt berechnet:

$$P_E = X \times P_{R(L)} + Y \times P_T$$

Für die Miniaturtypen RSR3, 5, 7, 9KM, 9WV(M), RSH7M und 9KM errechnet sich die äquivalente Belastung wie folgt:

$$P_F = P_R (P_I) + P_T$$

P _E :	äquivalente Belastung in radialer bzw.	
_	gegenradialer und tangentialer Richtung	(N)
P _R :	Radialbelastung	(N)
P _L :	Gegenradialbelastung	(N)
P _T :	Tangentialbelastung	(N)
X. Y:	Äguivalenzfaktoren	(Tabelle 2)

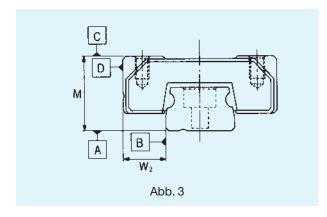
Tab. 2 Äquivalenzfaktoren

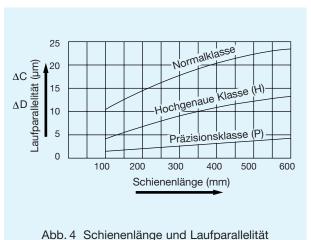
• bei gleichzeitiger radialer und tangentialer Belastung

Aufteilung	P _E	X	Υ
$P_R/P_T \ge 1$	Äquivalente Radialbelastung	1	0,83
$P_R/P_T < 1$	Äquivalente Tangentialbelastung	1,20	1

• bei gleichzeitiger gegenradialer und tangentialer Belastung

3	3. 3.3		
Aufteilung	P _E	Х	Υ
$P_L/P_T \ge 1$	Äquivalente Gegenradialbelastung	1	0,99
$P_L/P_T < 1$	Äquivalente Tangentialbelastung	1,01	1


Die äquivalente Belastung der unterschiedlichen Führungstypen errechnet sich mit den entsprechenden Formeln.


$P_E = X \times P_{R(L)} + Y \times P_T$	$P_E = P_R (P_L) + P_T$
RSR12VM	RSR3M
RSH12VM	RSR3WN
RSR12WVM/WV	RSR3WM
RSR12N	RSR5M
RSR12WN	RSR5WM
RSR15VM	RSR5N
RSR15WVM/WV	RSR5WN
RSR15N	RSR7M
RSR15WN	RSH7M
RSR20N	RSR7WM
RSR20VM	RSR7N
	RSR7WN
	RSR9KM
	RSH9KM
	RSR9WVM/WV
	RSR9N
	RSR9WN

Genauigkeitsklassen

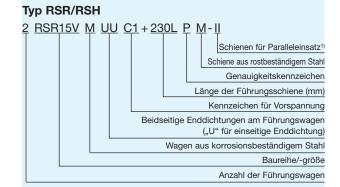
Die '미네너 Miniaturführungen sind in der Normal-, der hochgenauen und der Präzisionsklasse lieferbar.

Tab. 3 Genauigkeitsklassen Einheit: mm

Bau- größe	Meßgegenstand		auigkeitskla Hochgenau H		
	Laufparallelität der Fläche C des Wagens zur Fläche A	Δ C siehe Abb. 4)			
RSR	Laufparallelität der Fläche D des Wagens zur Fläche B	Δ D (siehe Abb. 4)			
3	Maßtoleranz für Höhe M	± 0,03	_	± 0,015	
5	Abweichung der Höhe M zwischen den Paaren	0,015	_	0,005	
	Maßtoleranz für Breite W ₂	± 0,03	_	± 0,015	
	Abweichung der Breite W ₂ zwischen den Paaren ¹⁾	0,015	_	0,005	
	Laufparallelität der Fläche C des Wagens zur Fläche A	Δ C siehe Abb. 4)			
RSR 7	Laufparallelität der Fläche D des Wagens zur Fläche B	Δ D (siehe Abb. 4)		4)	
9 12	Maßtoleranz für Höhe M	± 0,04	± 0,02	± 0,01	
15 20	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	
	Maßtoleranz für Breite W ₂	± 0,04	± 0,025	± 0,015	
	Abweichung der Breite W ₂ zwischen den Paaren ¹⁾	0,03	0,02	0,01	

Vorspannung

Tabelle 4 zeigt die beiden Vorspannungsklassen "normal" und "C1" mit dem entsprechenden Radialspiel für die einzelnen Baugrößen. Vorgespannte Führungssysteme sind mit negativem Vorzeichen gekennzeichnet.


Tab. 4 Vorspannungsklassen

Einheit: µm

Baugröße	Vorspannungsklassen			
	normal	C1		
RSR3	0~+1	-0,5 ~ 0		
RSR5	0~+1,5	-1 ~ 0		
RSR7 RSH7	± 2	-3 ~ 0		
RSR9 RSH9	± 2	-4 ~ 0		
RSR12 RSH12	± 3	-6 ~ 0		
RSR15	± 5	-10 ~ 0		
RSR20	± 7	-14 ~ 0		

Anm.: Die Vorspannungsklasse "normal" wird nicht in der Bestellbezeichnung angegeben.

Aufbau der Bestellbezeichnung

¹⁾ Das Zeichen "II" ist keine Stückzahlangabe, sondern gibt den geplanten Paralleleinsatz an. Bei Paralleleinsatz sind zwei Schienensätze mit der entsprechenden Wagenzahl erforderlich.

Abdichtung

Für die Miniarurführung können verschiedene Abdichtungen entsprechend den Umgebungsbedingungen ausgewählt werden. Siehe dazu die Beschreibung zum Typ HSR auf S. 233.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 5 mit der Angabe der entsprechenden Länge L des Führungswagens.

Tab. 5 Längenvariationen des Führungswagens

Einheit: mm

Baugröße	O	hne	Ul	J
RSR5	0	-1,4	0	_
RSR7	0	-1,4	0	_
RSR9K	0	-3,0	0	
RSR12V	0	-4,0	0	_
RSR15V	0	-4,0	0	_
RSR20V	0	-5,0	0	
RSR3W	0	-0,8	0	
RSR5W	0	-1,4	0	1
RSR7W	0	-1,0	0	1
RSR9WV	0	-3,0	0	_
RSR12WV	0	-3,2	0	_
RSR15WV	0	-4,0	0	_

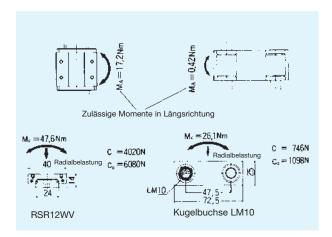
Anm.: o: Kombinationsmöglichkeit vorhanden.
Bei den Typen RSR5~7 und RSR3W~7W ist das
Maß für den Wagen ohne Abdichtung einschließlich der Schraube für die Endplatte.

Dichtungswiderstand

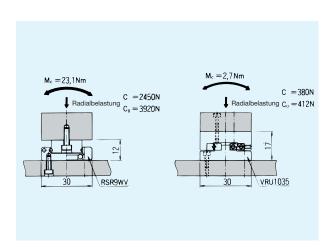
In Tabelle 6 ist der maximale Dichtungswiderstand eines abgeschmierten Führungswagens RSR...UU mit montierten Enddichtungen angegeben.

Tab. 6 Dichtungswiderstand

Einheit: N

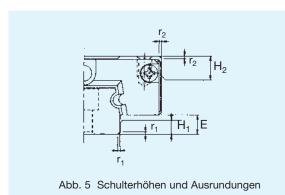

Baugröße	Dichtungswiderstand
RSR5	0,06
RSR7	0,08
RSR9K	0,1
RSR12V	0,4
RSR15V	0,8
RSR20V	1,0
RSR3W	0,2
RSR5W	0,3
RSR7W	0,4
RSR9W	0,8
RSR12W	1,1
RSR15W	1,3

Vergleich des Typs RSR-W mit anderen Führungseinheiten


1. Vergleich der Typen RSR12W und LM10 (Kugelbuchse)

- Im Vergleich zu zwei parallel angeordneten Kugelbuchsenführungen ermöglicht der mit einer einzigen Führungsschiene einsetzbare Typ RSR-W extrem kompakte Konstruktionen.
- Da bei dem Typ RSR-W mehr tragende Kugeln pro Reihe zur Verfügung stehen sowie breitere Führungswagen und -schienen verwendet werden, ist eine hohe Steifigkeit gegen Momentenbelastungen gegeben.
- Eine hohe Genauigkeit wird durch einfache und zeitsparende Montage erzielt.

2. Einsatz des Typs RSR-9WV anstelle des Kreuzrollentisches Typ VRU1035


- Mit dem Kreuzrollentisch ist nur eine sehr begrenzte Linearbewegung möglich. Außerdem kann sich der Käfig bei vertikaler Montage verschieben.
- Bei dem Typ RSR9WV entfällt eine schwierige Spieleinstellung. Gleichmäßige Laufeigenschaften bleiben über lange Zeit erhalten.
- Die breiten Führungswagen der Baureihe RSR-WV gestatten den Einsatz als Miniaturtische.

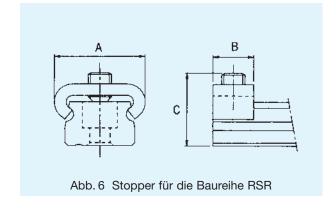
Montagehinweis

Für die Montageflächen von Führungswagen und Führungsschiene werden die in Tabelle 7 angegebenen Schulterhöhen empfohlen. Die Ausrundungen an den Montageflächen sollten so gefertigt sein, daß Berührungen mit den angefasten Flächen des Führungswagens bzw. der Führungsschiene vermieden werden. Die Ausrundungen sollten gemäß der in Tabelle 7 angegebenen Maximalradien erfolgen.

Tab. 7 Schulterhöhen und Ausrundungen Einheit: mm

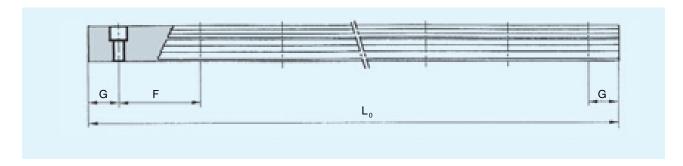
Baugröße	Ausrundungs- radius Schiene r ₁ (max)	Ausrundungs- radius Wagen r ₂ (max)	Schulterhöhe Schiene H ₁	Schulterhöhe Wagen	E
RSR5	0,1	0,3	1,2	2	1,5
RSR7	0,1	0,5	1,2	3	1,5
RSR9	0,3	0,5	1,9	3	2,2
RSR12	0,3	0,3	1,4	4	3
RSR15	0,3	0,3	2,3	5	4
RSR 20	0,5	0,5	5,5	5	7,5
RSR3W	0,1	0,3	0,7	2	1
RSR5W	0,1	0,3	1,2	2	1,5
RSR7W	0,1	0,1	1,7	3	2
RSR9W	0,1	0,1	3,9	3	4,2
RSR12W	0,3	0,3	3,7	4	4
RSR15W	0,3	0,3	3,7	5	4

Stopper


Wenn der Führungswagen von der Führungsschiene abgezogen wird, fallen die Kugeln aus dem Wagen (Ausnahme: Typ RSH). Um dies zu vermeiden, werden die Führungsschienen mit Stoppern an beiden Enden geliefert.

Diese Stopper sind als Transportsicherungen gedacht und dürfen nicht als Endanschläge benutzt werden.

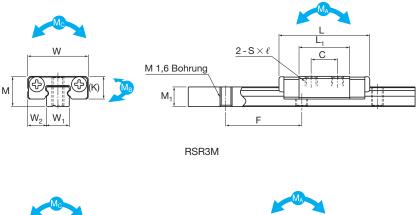
Tab. 8 Abmessungen der Stopper


Einheit: mm

Baugröße	А	В	С
RSR7	11	5	7,7
RSR9	13	6	9,5
RSR12	16	7	12,3
RSR15	19	7	14,5
RSR20	25	7	20
RSR7W	18	6	8,2
RSR9W	23	7	11,5
RSR12W	29	7	13,5
RSR15W	46	7	14,5

Standard- und Maximallängen der Führungsschienen

Tab. 9 Standard- und Maximallängen der Führungsschienen RSR + RSH


Einheit: mm

	Standardschiene								Breite Schiene (W-Typ)						
Baugröße	RSR 3	RSR 5	RSH 7 RSR 7	RSH 9 RSR 9	RSH 12 RSR 12		RSR 20	RSR 3W	RSR 5W	RSR 7W	RSR 9W	RSR 12W	RSR 15W		
	30	40	40	55	70	70	220	40	50	50	50	70	110		
	40	55	55	75	95	110	280	55	70	80	80	110	150		
	60	70	70	95	120	150	340	70	90	110	110	150	190		
	80	100	85	115	145	190	460		110	140	140	190	230		
Ctandardiänaa	100	130	100	135	170	230	640		130	170	170	230	270		
Standardlänge		160	130	155	195	270	880		150	200	200	270	310		
der Führungs- schiene (L ₀)				175	220	310	1000		170	260	260	310	430		
Scrilerie (L ₀)				195	245	350				290	290	390	550		
				275	270	390					320	470	670		
				375	320	430						550	790		
					370	470									
					470	550									
					570	670									
						870									
F	10	15	15	20	25	40	60	15	20	30	30	40	40		
G	5	5	5	7,5	10	15	20	5	5	10	10	15	15		
Maximallängen	200	200	300	1000	1340	1430	1800	100	200	400	1000	1430	1800		

Anm.: Die Führungsschienen bestehen grundsätzlich aus korrosionsbeständigem Stahl.

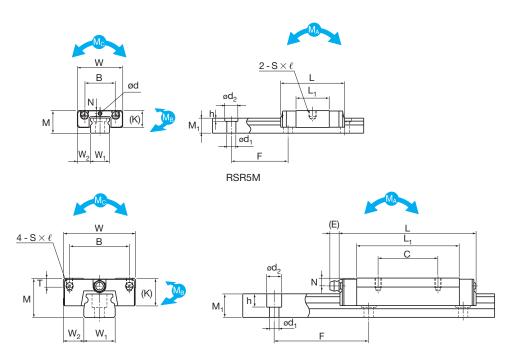
RSR-M, RSR-VM und RSH-M

RSR/RSH7M/9KM/12VM

	Au	Benabmes	sungen		Abmessungen Führungswagen									
Baugröße ¹⁾	Höhe M	Breite W	Länge L	В	С	$S imes \ell$	L ₁	Т	K	N	Е	Schmiereinrichtung (Bohrung)		
RSR3M ²⁾	4	8	12	_	3,5	M1,6×1,3	6,7	_	3	_	_	_		
RSR5M ²⁾	6	12	16,9	8	_	M2 × 1,5	8,8	_	4,5	0,8	_	ø 0,8		
RSR7M ²⁾ RSH7M ²⁾	8	17	23,5	12	8	M2 × 2,5	13,4	_	6,5	1,7	_	ø 1,2		
RSR9KM ²⁾ RSH9KM ²⁾	10	20	31	15	10	M3 × 3,0	19,8	_	7,8	2,4	_	_		
RSR12VM ²⁾ RSH12VM ²⁾	13	27	35	20	15	M3 × 3,5	20,6	_	10	3	_	ø 2		
RSR15VM ²⁾	16	32	43	25	20	M3 ×4	25,7	6	12	3	3,6	Eintreibnippel PB107		
RSR20VM ²⁾	25	46	66,5	38	38	M4 × 6	45,2	6	17,5	5	6,4	A-M6F		

¹⁾ Der Aufbau der Bestellbezeichnung ist auf S. 377 erklärt.

²⁾ Bei den Typen mit dem Symbol "M" sind Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl.

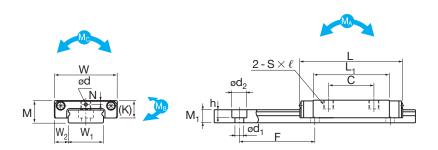

Auf Anfrage können auch Endplatten aus korrosionsbeständigem Stahl oder Aluminium geliefert werden.

³⁾ Die Standardlängen der Führungsschienen finden Sie in Tabelle 9.

⁴⁾ Die Tragzahlen für die verschiedenen Belastungsrichtungen ergeben sich aus den Faktoren in Tabelle 1.

 $^{^{\}rm 5)}$ $\rm M_{\rm A},~M_{\rm B}$ und $\rm M_{\rm C}$ sind die zulässigen statischen Momente für einen Führungswagen.

RSR15,20VM


Einheit: mm

Ab	Abmessungen Führungsschiene ³⁾							zulässiges √l _A	Gewicht				
W ₁	W_2	M ₁	F	$d_1 \times d_2 \times h$	C [kN]	C₀ [kN]	1 Wagen [Nm]	2 Wagen [Nm]	1 Wagen [Nm]	2 Wagen [Nm]	1 Wagen [Nm]	Wagen [kg]	Schiene [kg/m]
0 3 -0,02	2,5	2,6	10	_	0,18	0,27	0,293	2,11	0,293	2,11	0,45	0,0011	0,055
5 0 -0,02	3,5	4	15	2,4 × 3,5 × 1	0,32	0,59	0,884	6,51	0,884	6,51	1,53	0,003	0,140
7 0 -0,02	5	4,7	15	$2,4\times4,2\times2,3$	0,88	1,37	2,93	20,8	2,93	20,8	5	0,010	0,230
9 0 -0,02	5,5	5,5	20	$3,5 \times 6 \times 3,3$	1,47	2,25	7,34	43,3	7,34	43,3	10,4	0,018	0,320
12 0 -0,025	7,5	7,5	25	$3,5 \times 6 \times 4,5$	2,65	4,02	11,4	74,9	10,1	67,7	19,2	0,037	0,580
15 0	8,5	9,5	40	$3,5 \times 6 \times 4,5$	4,41	6,57	23,7	149	21,1	135	38,8	0,069	0,925
20 0 -0,03	13	15	60	6 × 9,5 × 8,5	8,82	12,70	75,4	435	66,7	389	96,6	0,245	1,950

RSR-WM und RSR-WV (M)

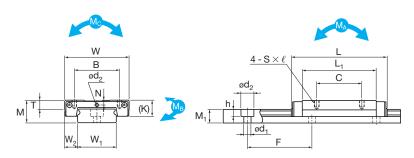
Korrosionsbeständige Ausführung

RSR3WM, RSR5WM, RSR7WM

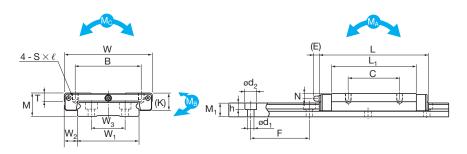
	Auß	Benabmes	sungen			Abmessu	ngen Füh	rungs	vagen			
Baugröße ¹⁾	Höhe M	Breite W	Länge L	В	С	S×ℓ	L ₁	Т	К	N	Е	Schmiereinrichtung (Bohrung)
RSR3WM ²⁾	4,5	12	14,9	_	4,5	M2 × 1,7	8,5	_	3,5	0,8	_	ø 0,8
RSR5WM ²⁾	6,5	17	22,1	_	6,5	M3 × 2,3	13,5	_	5	1,1	_	ø 0,8
RSR7WM ²⁾	9	25	31	_	12	M4 × 3,5	20,4	_	7	1,6	_	ø 1,2
RSR9WVM ²⁾ ·WV ³⁾	12	30	39	21	12	M2,6 × 3	27	_	7,8	2	_	ø 1,6
RSR12WW ²)·WV ³)	14	40	44,5	28	15	M3 × 3,5	30,9	6	10	3	_	ø 2
RSR15WW ²)·WV ³)	16	60	55,5	45	20	M4 × 4,5	38,9	6	12	3,5	3	Eintreibnippel PB107

¹⁾ Der Aufbau der Bestellbezeichnung ist auf S. 377 erklärt.

²⁾ Bei den Typen mit dem Symbol "M" sind Führungswagen, Führungsschienen und Kugeln aus korrosionsbeständigem Stahl. Auf Anfrage können auch Endplatten aus korrosionsbeständigem Stahl geliefert werden.


³⁾ Die Typen RSR9WV, RSR12WV und RSR15WV können auch in einer nicht korrosionsbeständigen Version geliefert werden.

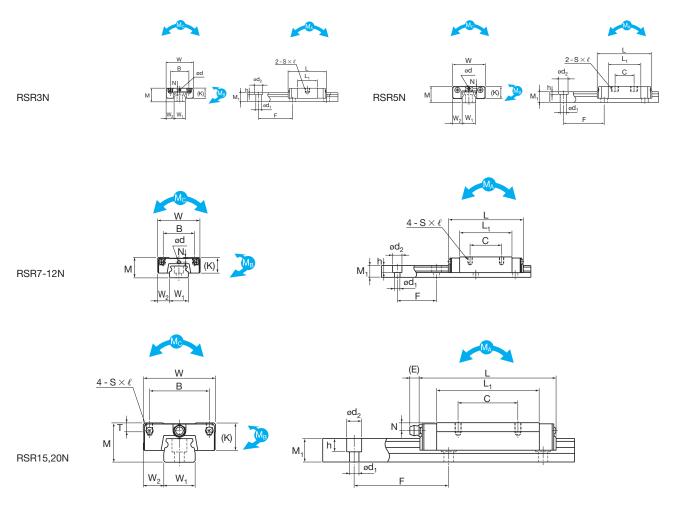
⁴⁾ Die Standardlängen der Führungsschienen finden Sie in Tabelle 9.


⁵⁾ Die Tragzahlen für die verschiedenen Belastungsrichtungen ergeben sich aus den Faktoren in Tabelle 1.

 $^{^{6)}}$ $\rm M_A$, $\rm M_B$ und $\rm M_C$ sind die zulässigen statischen Momente für einen Führungswagen.

RSR9WV, RSR9WVM, RSR12WV, RSR12WVM

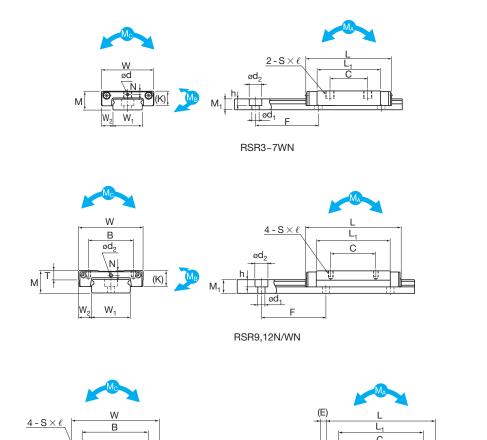
RSR15WV, RSR15WVM


Einheit: mm

	Abme	ssunger	n Führui	ngsschi	ene ³⁾	Tragz	ahl 4)		zulässiges statisches Moment ⁵⁾ M _A M _B M _C			Gev	wicht	
W ₁	W_2	W_3	M ₁	F	$d_1 \times d_2 \times h$	C [kN]	C₀ [kN]	1 Wagen [Nm]	2 Wagen [Nm]	1 Wagen [Nm]	2 Wagen [Nm]	1 Wagen [Nm]	Wagen [kg]	Schiene [kg/m]
6 0 -0,02	3	1	2,6	15	2,4 × 4× 1,5	0,25	0,47	0,668	4,44	0,668	4,44	1,48	0,002	0,12
10 -0,025	3,5	-	4	20	3×5,5×3	0,51	0,96	1,97	13,1	1,97	13,1	4,89	0,007	0,28
14 0 -0,025	5,5	_	5,2	30	3,5 × 6× 3,2	1,37	2,16	7,02	40,7	7,02	40,7	15,4	0,021	0,51
18 0 -0,025	6	_	7,5	30	$3,5 \times 6 \times 4,5$	2,45	3,92	16	92,9	16	92,9	36	0,035	1,08
24 0 -0,05	8	_	8,5	40	4,5 × 8 × 4,5	4,02	6,08	24,5	138	21,7	123	59,5	0,075	1,5
42 0 -0,05	9	23	9,5	40	4,5 × 8 × 4,5	6,66	9,80	50,3	278	44,4	248	168	0,17	3

RSR-N und RSR-WN

Korrosionsbeständige Ausführung


	Auß	Benabmes	sungen			Abmessur	ngen Füh	nrungsw	/agen			
Baugröße1)	Höhe	Breite	Länge									Schmiereinrichtung
	М	W	L	В	С	S×ℓ	L ₁	Т	K	N	Е	(Bohrung)
RSR3N	4	8	16	_	5,5	M2 × 1,3	10,7	_	3	_	_	_
RSR5N	6	12	20	_	7	M2,6 × 1,8	12	_	4,5	0,8	_	ø 0,8
RSR7N	8	17	33	12	13	M2 × 2,5	23	_	6,5	1,7	_	ø 1,2
RSR9N	10	20	41	15	16	M3 × 3	29,8	_	7,8	2,4	_	_
RSR12N	13	27	47,5	20	20	M3 × 3,5	33,3	_	10	3	_	ø 2
RSR15N	16	32	61	25	25	M3 × 4	43,5	6	12	3	3,6	Eintreibnippel PB107
RSR20N	25	46	86,5	38	38	M4×6	65	6	17,5	5	6,4	A-M6F
RSR3WN	4,5	12	20	_	8	M2 × 1,7	13,3	_	3,5	0,8	_	ø 0,8
RSR5WN	6,5	17	28	_	11	M3 × 2,3	19,5	_	5	1,1	_	ø 0,8
RSR7WN	9	25	41	_	18	M4 × 3,5	30	_	7	1,6	_	ø 1,2
RSR9WN	12	30	51	23	24	M3 × 3	38,7	_	7,8	2	_	ø 1,6
RSR12WN	14	40	59,5	28	28	M3 × 3,5	45,9	6	10	3	_	ø 2
RSR15WN	16	60	74,5	45	35	M4 × 4,5	57,9	6	12	3,5	3,6	Eintreibnippel PB107

¹⁾ Der Aufbau der Bestellbezeichnung ist auf S. 377 erklärt.

²⁾ Die Standardlängen der Führungsschienen finden Sie in Tabelle 9.

³⁾ Die Tragzahlen für die verschiedenen Belastungsrichtungen ergeben sich aus den Faktoren in Tabelle 1.

Einheit: mm

Ał	omessi	ıngen F	ührunas	schien	e ²⁾	Traga	zahl ³⁾		zulässiges	statisches	Moment 4)	1		
7 (1	1	ı	ı		1				∕I A		1 _B	Mc		ı
W ₁	W_2	W ₃	M ₁	F	$d_1 \times d_2 \times h$	C [kN]	C₀ [kN]	1 Wagen [Nm]	2 Wagen [Nm]	1 Wagen [Nm]	2 Wagen [Nm]	1 Wagen [Nm]	Wagen [kg]	Schiene [kg/m]
3 -0,02	2,5	_	2,8	10	_	0,3	0,44	0,726	4,33	0,726	4,33	0,73	0,0016	0,055
5 -0,02	3,5	_	4	15	$2,4 \times 4 \times 1$	0,55	0,96	1,84	11,9	1,84	11,9	2,49	0,004	0,14
7 -0,02	5	_	4,7	15	$2,4 \times 4,2 \times 2,3$	1,59	2,50	8,68	49,9	8,68	49,9	9,12	0,018	0,23
9 -0,02	5,5		5,5	20	$3,5 \times 6 \times 3,3$	2,60	3,96	18,4	97	18,4	97	18,4	0,027	0,32
12 _{-0,025}	7,5	_	7,5	25	$3,5 \times 6 \times 4,5$	4,30	6,65	28,9	163	25,5	145	31,8	0,055	0,58
15 _{-0,025}		_	9,5	40	$3,5 \times 6 \times 4,5$	7,16	10,70	63,1	330	55,6	293	63	0,093	0,925
20 -0,03	13	_	15	60	6 × 9,5 × 8,3	14,20	20,60	171	897	151	795	157	0,337	1,95
6 -0,02	3		2,6	15	2,4 × 4 × 1,5	0,39	0,75	1,57	9,06	1,57	9,06	2,36	0,003	0,12
10 -0,025	3,5		4	20	$3 \times 5, 5 \times 3$	0,75	1,40	4,06	23,5	4,06	23,5	7,13	0,01	0,28
14 _{-0,025}	5,5		5,2	30	$3,5 \times 6 \times 3,2$	2,04	3,21	14,7	77,6	14,7	77,6	22,9	0,026	0,51
18 -0,025			7,5	30	$3,5 \times 6 \times 4,5$	3,52	5,37	31	161	31	161	49,4	0,051	1,08
24 -0,05	8		8,5	40	$4,5 \times 8 \times 4,5$	5,96	9,21	53,9	274	47,3	242	90,1	0,101	1,5
0 42 _{-0,05}	9	23	9,5	40	$3,5 \times 8 \times 4,5$	9,91	14,90	110	555	97,3	490	255	0,21	3

RSR15WN

 $^{^{\}text{\tiny 4)}}$ $\rm M_{A},~M_{B}$ und $\rm M_{C}$ sind die zulässigen statischen Momente für einen Führungswagen.

^{*} Alle RSR-N/WN Typen sind standardmäßig aus korrosionsbeständigem Material.

THK Miniaturführung MX

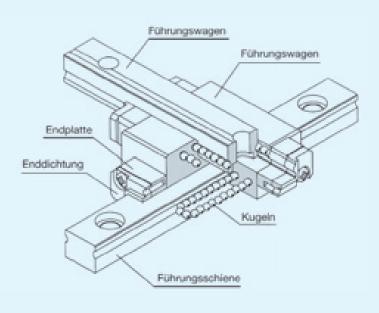


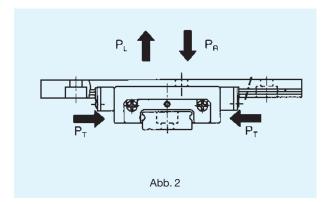
Abb. 1 Schnittmodell der THK Miniaturführung MX

Aufbau und Merkmale

Bei der Miniatur-Kreuzführung MX sind in einem Wagenblock zwei um 90° versetzte Schienenlaufbahnen eingeschliffen. Auf diese Weise lassen sich mit vier Wagen extrem flachbauende XY-Koordnatentische realisieren.

Innerhalb des Führungswagens zirkulieren zwei Kugellaufreihen. Im belasteten Bereich laufen die Kugeln zwischen den präzis geschliffenen Laufrillen von Führungswagen und -schiene. Durch die Umlenkstücke in den Endplatten werden die Kugeln umgelenkt und über die Rücklaufkanäle in den Lastbereich zurückgeführt.

Gleiche Tragzahlen in allen vier Hauptrichtungen


Die Laufrillen der Miniatur-Kreuzführung sind in einem Kontaktwinkel von 45° angeordnet. Daher besitzt der Führungswagen gleiche Tragzahlen in allen Hauptrichtungen (radial, gegenradial und tangential) und kann somit in vielfältigen Anwendungen eingesetzt werden.

Schienen mit Gewindebohrung lieferbar

Die Führungsschienen sind standardmäßig mit Befestigungsbohrungen versehen. Für eine rückseitige Befestigung können sie aber auch mit Gewindebohrungen geliefert werden.

Tragzahlen

Die Miniatur-Kreuzführung MX nimmt Belastungen aus allen vier Hauptrichtungen auf (radial, gegenradial und tangential).

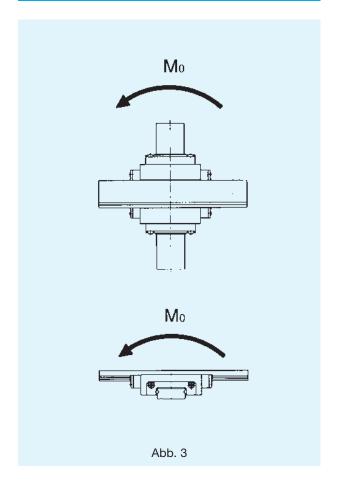
Die Tragzahlen sind für alle Hauptrichtungen gleich und für einen Wagen auf einer Schiene definiert. Sie sind weiter hinten in den Maßtabellen angegeben.

Äquivalente Belastung

Bei gleichzeitiger Belastung des Führungswagens aus unterschiedlichen Richtungen wird die äquivalente Belastung wie folgt berechnet:

$$P_{E} = P_{R} (P_{L}) + P_{T}$$

 P_E : = Äquivalente Belastung (N)

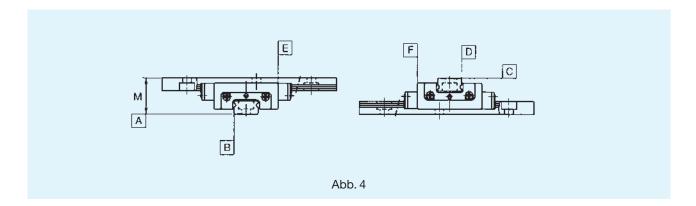

- radial
- _ gegenradial
- tangential

P _R :	= Radialbelastung	(N)

$$P_L$$
: = Gegenradialbelastung (N)

$$P_T$$
: = Tangentialbelastung (N)

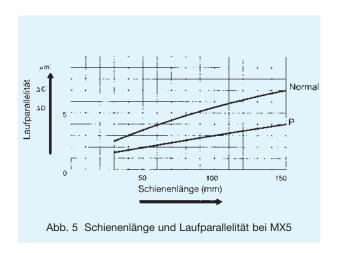
Zulässiges statisches Moment

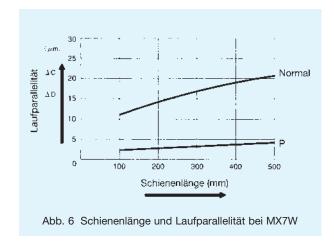


Tab. 1 Zulässiges statisches Moment Einheit: Nm

Baugröße	M ₀
MX5	2,57
MX7W	14,7

Genauigkeitsklassen



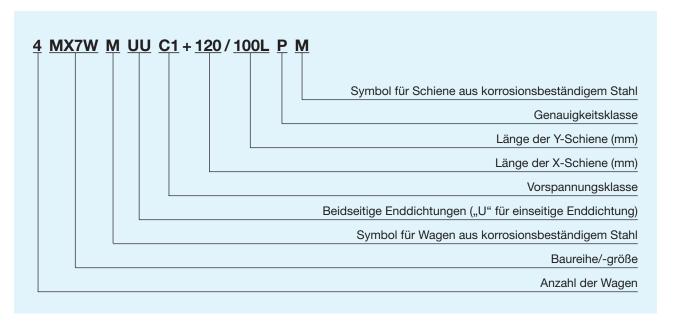

Die Kreuzführung MX ist in der Normalklasse (kein Symbol) und der Präzisionsklasse (P) lieferbar.

Tab. 2 Genauigkeitsklassen

Einheit: mm

Bau- größe	Genauigkeitsklassen	Normal —	Präzision P	
	Abweichung der Höhe M zwischen den Paaren	0,015	0,005	
MX5	Laufparallelität der Bezugs- fläche C zur Fläche A	0,003	0,002	
	Laufparallelität der Bezugs- fläche E zur Fläche B	Δ C (siel	ne Abb. 5)	
	Laufparallelität der Bezugs- fläche F zur Fläche D	Δ D (siehe Abb. 5)		
	Abweichung der Höhe M zwischen den Paaren	0,003	0,007	
MX7W	Laufparallelität der Bezugs- fläche C zur Fläche A	0,010	0,005	
IVIZI	Laufparallelität der Bezugs- fläche E zur Fläche B	Δ C (siehe Abb. 6)		
	Laufparallelität der Bezugs- fläche F zur Fläche D	Δ D (siehe Abb. 6)		

Vorspannung


Tabelle 3 gibt die Vorspannungsklassen für die einzelnen Baugrößen an. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

Tab. 3 Vorspannungsklassen

_			٠.		
⊢ı	n	he	1†•	11	n
_		110	ıı.	w	11

Symbol	Normal	Leichte Vorspannung
Baugröße	_	C1
MX5	0~+1,5	-1~0
MX7W	±2	-3~0

Aufbau der Bestellbezeichnung

Anm.: Bei Bestellung von Führungsschienen mit Gewinde-Sacklochbohrungen (Semi-Standardtyp) muß in der Bestellbezeichnung ein "K" angegeben werden.

Beispiel: 4MX7WMUUC1 + 120/100LPKM

Abdichtung

Für die Miniatur-Kreuzführung MX können verschiedene Abdichtungen entsprechend den Umgebungsbedingungen ausgewählt werden.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 4 mit der Angabe der entsprechenden Länge L des Führungswagens.

Dichtungswiderstand

In Tabelle 5 ist der maximale Dichtungswiderstand eines abgeschmierten Führungswagens mit montierten Enddichtungen angegeben.

Tab. 5 Dichtungswiderstand

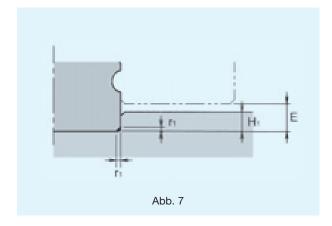
Einheit: N

Baugröße	Dichtungswiderstand
MX5	0,06
MX7W	0,4

Tab. 4 Längenvariationen des Führungswagens¹⁾

Einheit: mm

Baugröße	O	hne	Ul	J
MX5	0	-1,4	0	
MX7W	0	-1,0	0	

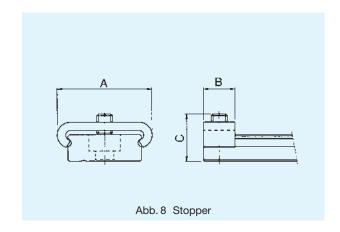

Anm.: O: Kombinationsmöglichkeit vorhanden.

Das Maß für den Wagen ohne Abdichtung ist inklusive der stirnseitigen Schraubenköpfe.

Montagehinweis

Für die Montageflächen von Führungswagen und Führungsschiene werden die in Tabelle 6 angegebenen Schulterhöhen empfohlen. Die Ausrundungen an den Montageflächen sollten so gefertigt sein, daß Berührungen mit den angefasten Flächen des Führungswagens bzw. der Führungsschiene vermieden werden. Die Ausrundungen sollten gemäß der in Tabelle 6 angegebenen Maximalradien erfolgen.

Tab. 6 Schulterhöhen und Ausrundungen Einheit: mm


	Ausrundungs-	Schulterhöhe	
Baugröße	radius	Schiene	
	r ₁	H ₁	Е
MX5	0,1	1,2	1,5
MX7W	0,1	1,7	2,0

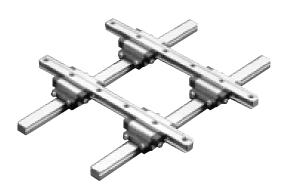
Standard- und Maximallängen der Führungsschienen

Siehe S. 381

Stopper

Wenn der Führungswagen von der Führungsschiene abgezogen wird, fallen die Kugeln aus dem Wagen. Um dies zu vermeiden, werden die Führungsschienen mit Stoppern an beiden Enden geliefert. Bei Entfernung der Stopper ist deswegen darauf zu achten, daß der Führungswagen nicht über die Schiene hinaus verfahren wird.

Tab. 7 Abmessungen der Stopper


	heit:	

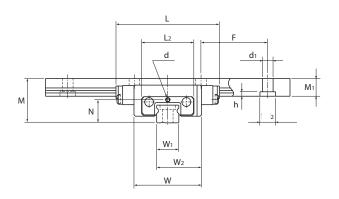
Baugröße	А	В	С
MX7W	18	6	9,2

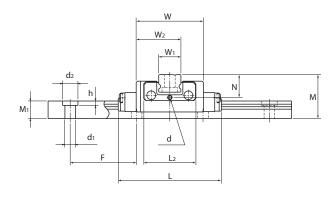
Anm.: Für die Baugröße MX5 sind O-Ringe zu benutzen.

MX

		Abmessung Führungswagen								
Baugröße ¹⁾	Höhe M	Breite W	Länge L	L ₂ G	N	Schmier- einrichtung (Bohrung)				
MX5M	10	15,2	23,3	11,8	5,2	Ø 0,8				
MX7WM	14,5	30,2	40,8	24,6	7,4	Ø 1,2				

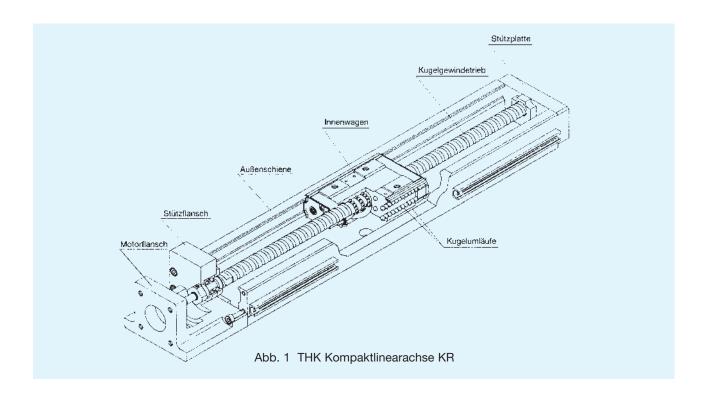
¹⁾ Den Aufbau der Bestellbezeichnung finden Sie auf Seite 391.


³⁾ Die Schienen sind auch mit Gewindebohrungen von unten als Semi-Standard erhältlich.



Achtung: Die Schienen der Baugröße MX7WM sind bei der Semi-Standardausführung mit einer durchgehenden Gewindebohrung versehen. Daher ist darauf zu achten, dass die Schraube nicht über die Schienenoberseite hinausragt.

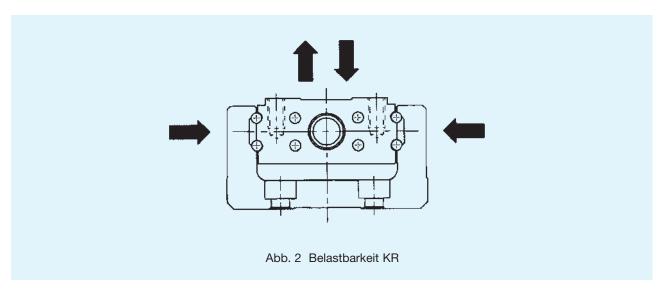
²⁾ Die Standardlängen der Führungsschienen finden sie auf Seite 381.



Einheit: mm

Abmessungen Führungsschiene 2) 3)					Tragz	ahlen	Gewicht			
					С	C ₀	M_0	Wagen	Schiene	
W ₁	W ₂	M ₁	F	$d_1 \times d_2 \times h$	[kN]	[kN]	[Nm]	[kg]	[kg/m]	
5 0	10,1	4	15	$2,4 \times 3,5 \times 1$	0,59	1,10	2,57	0,010	0,14	
14 0-0,025	22,1	5,2	30	$3,5 \times 6 \times 3,2$	2,04	3,21	14,7	0,051	0,51	

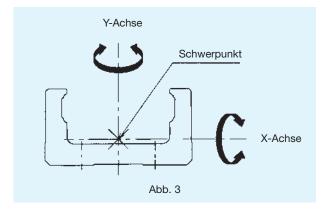
THK Kompaktlinearachse KR

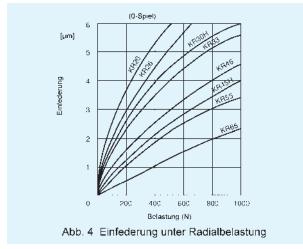


Aufbau und Merkmale

Durch die Verwendung einer Außenschiene sowie die Integration der Kugelumlaufsysteme der Linearführung und des Kugelgewindetriebs im kompakten Innenwagen ergibt sich eine hochsteife und hochpräzise Antriebseinheit mit kleinsten Abmessungen.

Ein Aufbau für gleiche Tragzahlen in allen vier Hauptrichtungen

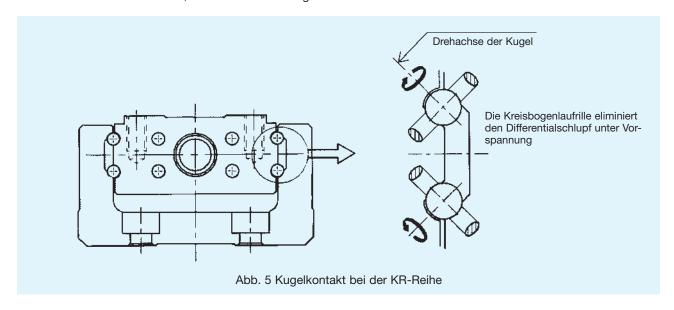

Die tragenden Kugelreihen sind jeweils links und rechts in doppelreihigem Winkelkontakt zu 45° angeordnet. Da die Kompaktlinearachse Typ KR Belastungen aus allen vier Hauptrichtungen aufnehmen kann (radial, gegenradial und tangential), ist sie uneingeschränkt für jede Einbaulage verwendbar. Die KR-Einheit ist besonders für Achsenroboter zu empfehlen, die nicht einheitlich aus einer Richtung belastet werden.



Hochsteifer Aufbau

Durch den zweckmäßigen Einsatz eines U-Profils in der Funktion als Außenschiene konnte die Steifigkeit gegen Überhangbelastung sowie die Momentsteifigkeit deutlich verbessert werden. Zudem konnte die Durchbiegung auf

ein Minimum reduziert werden, weshalb die Antriebseinheit sowohl mit einseitiger als auch mit beidseitiger Stützung eingesetzt werden kann.

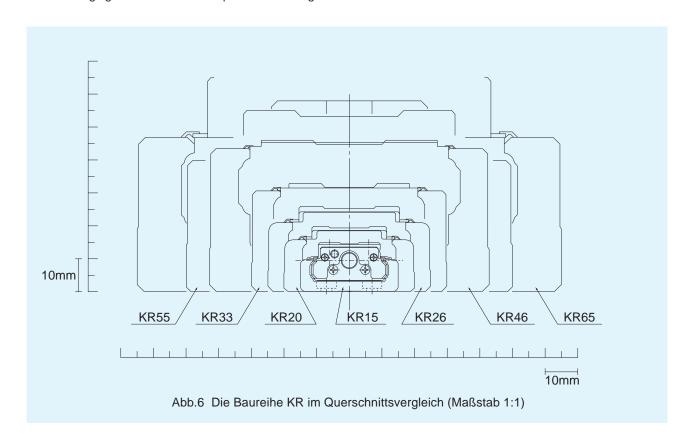

Tab. 1

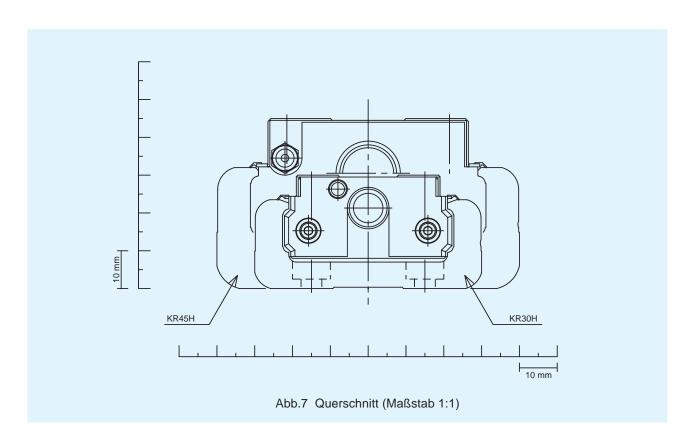
Schiene	$I_{X}[mm^4]^{1)}$	l _y [mm⁴]²)	Gewicht W [kg/100mm]
KR15	9,08 × 10 ²	1,42 × 10 ⁴	0,104
KR20	$6,1 \times 10^{3}$	6,2 × 10 ⁴	0,26
KR26	1,7 × 10 ⁴	1,5 × 10⁵	0,39
KR30H	2,7 × 10 ⁴	2,8 × 10 ⁵	0,50
KR33	6,2 × 10 ⁴	3,8 × 10 ⁵	0,66
KR45H	8,4 × 10 ⁴	8,9 × 10 ⁵	0,90
KR46	2,4 × 10 ⁵	1,5 × 10 ⁶	1,26
KR55	2,2 × 10 ⁵	2,3 × 10 ⁶	1,50
KR65	4,6 × 10 ⁵	5,9 × 10 ⁶	2,31

 $I_{\rm X}$ = axiales Flächenmoment 2. Grades der X-Achse (mm⁴)

Hochpräzise Einheit

Die vier Kugelreihen sind in der bewährten Zweipunkt-Kreisbogenkonfiguration angeordnet, somit kann die gewünschte Vorspannung eingestellt und eine spielfreie, hochsteife Führung erreicht werden. Weil die Schwankung des Verschiebewiderstandes durch Belastungsänderung auf ein Minimum reduziert wird, kann eine Positioniergenauigkeit bis zu 2/100 mm und eine Wiederholgenauigkeit bis zu ±3/1000 mm gewährleistet werden. Da die Achsenlagen des Kugelgewindetriebs und der Linearführung identisch sind, werden zyklische Taumelbewegungen sowohl horizontal als auch vertikal vermieden.


²⁾ I_v = axiales Flächenmoment 2. Grades der Y-Achse (mm⁴)



Kompakter Aufbau

Durch die Verwendung einer Außenschiene sowie die Integration der Kugelumlaufsysteme der Linearführung und des Kugelgewindetriebs im kompakten Innenwagen

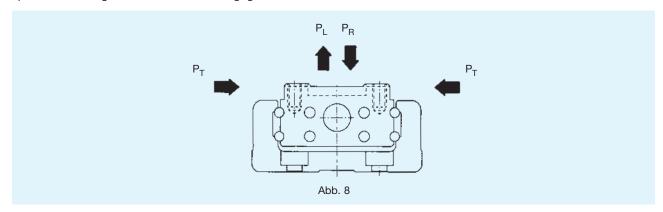
ergibt sich eine hochsteife und hochpräzise Antriebseinheit mit kleinsten Abmessungen.

Typenübersicht

Standardausführung der Kompaktlinearachse KR mit einem langen Wagen.

Kompaktlinearachse KR mit zwei langen Innenwagen für höhere Steifigkeit, Präzision und Tragzahlen.

Ausführung wie Typ A aber mit einem kürzeren Innenwagen. (Verfügbare Baugrößen: KR30H, 33, 45H, 46)



Ausführung wie Typ C aber mit zwei kurzen Innenwagen, um bei bestimmten Anwendungen eine hohe Steifigkeit zu erzielen. (Verfügbare Baugrößen: KR30H, 33, 45H, 46)

Technische Daten

Die Kompaktlinearachse KR besteht aus einer Linearführung, einem Kugelgewindetrieb sowie den Stützlagern. Die entsprechenden Tragzahlen sind in Tab. 2 angegeben.

Die Linearführung

Die Kompaktlinearachse KR kann im allgemeinen Belastungen aus radialer, gegenradialer und tangentialer Richtung aufnehmen, daher sind die Tragzahlen in diesen Richtungen gleich. Die entsprechenden Werte sind in Tab. 2 aufgeführt.

Der Kugelgewindetrieb

Die Aufnahme von axialen Belastungen erfolgt bei der Kompaktlinearachse KR über die Kugelgewindetriebmutter. Die entsprechenden Werte sind ebenfalls in Tab. 2 aufgeführt.

Die Stützlager

Im Stützflansch der Linearachse KR ist ein Schrägkugellager zur Aufnahme von axialen Belastungen integriert. Die Tragzahlen sind ebenfalls in Tab. 2 aufgeführt.

Äquivalente Belastung der Linearführung

Die äquivalente Belastung, die sich aus der gleichzeitigen Belastung aus verschiedenen Richtungen ergibt, wird wie folgt berechnet:

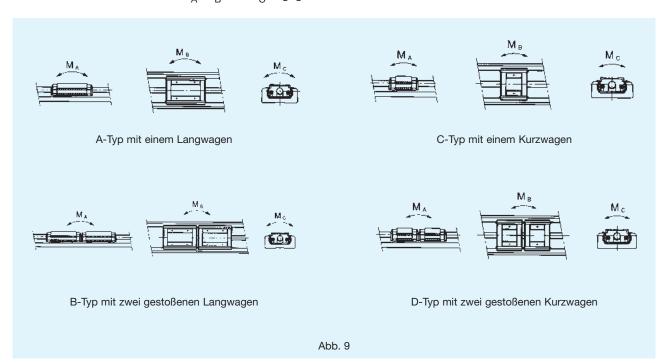
[N]

$P_{E} = P_{R}(P_{L}) + P_{T}$	
P _E : Äquivalente Belastung	[N]
radial	
gegenradial	
tangential	
P _R : Radialbelastung	[N]
P_L : Gegenradialbelastung	[N]

P_T: Tangentialbelastung

Tab. 2 Tragzahlen

Tu	Tab. 2 Tragzanien																
	KR-Typ		KR-Typ KR15		KR20	KR26	KR	30H	KR	33	KR4	15H	KR	46	KR55	KR65	
			KR15 01	KR15 02	KH2U	KH26	KR30H06	KR30H10	KR3306	KR3310	KR45H10	KR45H20	KR4610	KR4620	KHOO	KHOO	
	C	dynamische	Wagentyp A und B	19	30	3590	7240	116	600	116	500	233	300	274	400	38100	50900
		Tragzahl C [N]	Wagentyp C und D	-	-	I	_	49	000	49	00	119	900	140	000	_	-
ng		statische Tragzahl	Wagentyp A und B	34	50	6300	12150	202	200	202	200	392	200	455	500	61900	80900
Linearführung		C ₀ [N]	Wagentyp C und D	-	-	ı	-	100	000	100	000	196	600	227	700	_	-
Line		Radial-	Normal- und H-Klasse		002 ~ 001	+0,002 ~ -0,003	+0,002 ~ -0,004		002 ~ 004	+0,0	002 - 004	+0,0	-		003 ~ 006	+0,004	+0,004 ~ -0,008
	spiel – [mm]		P-Klasse	-	002	-0,003 ~ -0,007	-0,004 ~ -0,010		004 ~ 012	-0,0 -0,0	004 - 012	-0,0 -0,0	-		006 ~ 016	-0,007 ~ -0,019	-0,008 ~ -0,022
	C	dynamische	Normal- und H-Klasse	340	230	660	2350	2840	1760	2840	1760	3140	3040	3140	3040	3620	5680
		Tragzahl C _a [N]	P-Klasse	340	230	660	2350	2250	1370	2250	1370	2940	3430	2940	3430	3980	5950
ieb		statische Tragzahl	Normal- und H-Klasse	660	410	1170	4020	4900	2840	4900	2840	6760	7150	6760	7150	9290	14500
windetr		C _{0a} [N]	P-Klasse	660	410	1170	4020	2740	1570	2740	1570	3720	5290	3720	5290	6850	10700
Kugelgewindetrieb		Spindeldurc	chmesser [mm]	į	5	6	8	1	0	1	0	1	5	1	5	20	25
~		Steig	ung [mm]	1	2	1	2	6	10	6	10	10	20	10	20	20	25
	Kerndurchme		messer [mm]	4	,5	5,30	6,6	7,	,8	7,	,8	12	,50	12	,50	17,50	22,0
			nittenkreis mm]	5,	15	6,15	8,3	10),5	10),5	15	,75	15	,75	20,75	26,0
Stützlager		dynamiscl	he Tragzahl C _a [N]	59	90	1000	1380	17	90	17	90	66	60	66	60	7600	13700
Stütz		ਰੇ zulässige	Axialkraft P _{0a} [N]	29	90	1240	1760	25	90	25	90	32	40	32	40	3990	5830


- Die angegebene Tragzahl für die Linearführung entspricht der eines Wagens.
- Bei den Modellen KR30H, KR33, KR45H10 und KR4610 sind in den Kugelgewindetrieben der P-Klasse Abstandskugeln im Verhältnis 1:1 eingefügt.
- Bei den Modellen KR45H20, KR4620, KR55 und KR65 sind in den Kugelgewindetrieben der P-Klasse Abstandskugeln im Verhältnis 2:1 eingefügt.

Statisches Moment

Statisches Moment (Linearführung)

Der Wagen der Kompaktlinearachse KR nimmt im allgemeinen Momente aus allen Richtungen auf. Dazu sind in der Tab. 3 die statischen Momente M_A , M_B und M_C angegeben.

Tab. 3 Statisches Moment Einheit: Nm

KD T		Statisches Moment					
KR-Typ	M _A	$M_{\mathtt{B}}$	M _c				
KR15 - A	12,1	12,1	38				
KR15 - B	70,3	70,3	76				
KR20 - A	31	31	83				
KR20 - B	176	176	165				
KR26 - A	84	84	208				
KR26 - B	480	480	416				
KR30H - A	166	166	428				
KR30H - B	908	908	857				
KR30H - C	44	44	214				
KR30H - D	319	319	427				
KR33 - A	166	166	428				
KR33 - B	908	908	857				
KR33 - C	44	44	214				
KR33 - D	319	319	427				
KR45H - A	486	486	925				
KR45H - B	2732	2732	1850				
KR45H - C	130	130	463				
KR45H - D	994	994	925				
KR46 - A	547	547	1400				
KR46 - B	2940	2940	2800				
KR46 - C	149	149	700				
KR46 - D	1010	1010	1400				
KR55 - A	870	870	2280				
KR55 - B	4890	4890	4570				
KR65 - A	1300	1300	3920				
KR65 - B	7230	7230	7840				

Anm.: Die Werte bei den Typen KR-B und KR-D beziehen sich auf die Anordnung mit zwei gestoßenen Wagen.

Berechnung der Lebensdauer

Um die nominelle Lebensdauer der Linearachse KR bestimmen zu können, sind die einzelnen Komponenten (Linearführung, Kugelgewindetrieb und Festlager) zu berücksichtigen.

Berechnung der Lebensdauer

Nominelle Lebensdauer

Die nominelle Lebensdauer ist die Gesamtlaufstrecke, die ohne erste Anzeichen einer Werkstoffermüdung von 90% einer genügend großen Gruppe gleicher Linearführungssysteme erreicht oder überschritten wird, wenn diese einzeln unter gleichen Bedingungen betrieben werden.

Die nominelle Lebensdauer wird wie folgt berechnet:

$$L = (\frac{f_c \times C}{f_w \times P_c})^3 \times 50 \text{ [km]}$$

Bei den Typen KR-A und KR-C sowie bei den Typen KR-B und KR-D mit zwei gestoßenen Innenwagen sind die Momente mit den Äquivalenzfaktoren aus Tab. 6 zu multiplizieren, um die äquivalente Belastung zu ermitteln.

$$P_m = K \times M$$

 ${\sf P}_{\sf m}$: äquivalente Belastung bei einem Wagen [N] K : Äquivalenzfaktor [mm $^{-1}$] M : Moment [Nmm]

(Beim Einsatz von drei oder mehr Innenwagen oder beim Einsatz von zwei Wagen mit Abstand kontaktieren Sie bitte THK). Wirkendes Moment Mc bei den Typen KR-B und KR-D

$$P_m = \frac{K_c \times M_c}{2}$$

Bei gleichzeitig wirkendem Moment und anliegender Radialbelastung

$$P_E = P_m + P$$
 P_E : äquivalente Radialbelastung [N]

Lebensdauer in Stunden

Bei Umrechnung der nominellen Lebensdauer in die Lebensdauer in Stunden wird die Laufleistung pro Zeiteinheit bestimmt.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

Kugelgewindetrieb und Festlager

Die nominelle Lebebensdauer ist die Gesamtanzahl von Umdrehungen, die 90% einer Gruppe von identischen Kugelgewindetrieben bei unabhängiggem Betrieb unter gleichen Bedingungen erreicht, bevor erste Anzeichen einer Werkstoffermüdung auftreten.

Die nominelle Lebensdauer für Kugelgewindetrieb und Stützlager wird mit unten stehender Formel ermittelt.

$$L = (\frac{C_a}{f_{...} \times Fa})^3 \times 10^6$$

Lebensdauer in Stunden

Nach der Ermittlung der Lebensdauer L kann bei konstanter Hublänge und Zyklenzahl die Lebensdauer in Stunden wie folgt ermittelt werden:

$$L_{h} = \frac{L \times \ell}{2 \times \ell_{s} \times n_{1} \times 60}$$

f_c: Kontaktfaktor

Bei den Typen KR-B und KR-D mit zwei gestoßenen Innenwagen sind die Tragzahlen mit den in Tab. 4 aufgeführten Kontaktfaktoren zu multiplizieren.

Tab. 4 Kontaktfaktor (f_c)

Innenwagen	f _c
Typ A/C	1,0
Typ B/D	0,81

f_w: Belastungsfaktoren

Tab. 5 Belastungsfaktor f_w

Stöße oder	Geschwindigkeit V	f _w
Vibrationen		
fein	gering	1,0~1,2
10111	V ≦ 0,25 m/s	1,0 1,2
klein	niedrig	1,2~1,5
KIGITI	0,25 < V ≦ 1,0 m/s	1,2 1,0
mittel	mittel	1,5~2,0
mittei	1,0 < V ≦ 2,0 m/s	1,5**2,0
groß	schnell	2,0~3,5
grob	V > 2,0 m/s	2,0/~3,3

K: Äquivalenzfaktoren für die Linearführung

Linearführungen werden z.T. wegen beengter Einbauverhältnisse mit nur einem Führungswagen bzw. mit zwei zusammengesetzten Wagen eingesetzt. In diesen Fällen werden die äußeren Kugeln an den Wagenenden größeren Belastungen ausgesetzt als die anderen Kugeln. Hier kann der Verschleiß durch Abblättern während des Betriebs an den am größten belasteten Stellen zunehmen und die berechnete Lebensdauer dementsprechend abnehmen. Daher müssen bei diesen Betriebsbedingungen die Momente mit den entsprechenden Äquivalenzfaktoren multipliziert werden (siehe Tab. 6).

Tab. 6 Äquivalenzfaktoren (K)

Baugröße	K _A	K _B	K _c
KR15 - A	3,20×10 ⁻¹	3,20×10 ⁻¹	9,09×10 ⁻²
KR15 - B	5,96×10 ⁻²	5,96×10 ⁻²	9,09×10 ⁻²
KR20 - A	2,40×10 ⁻¹	2,40×10 ⁻¹	7,69×10 ⁻²
KR20 - B	4,26×10 ⁻²	4,26×10 ⁻²	7,69×10 ⁻²
KR26 - A	1,73×10 ⁻¹	1,73×10 ⁻¹	5,88×10 ⁻²
KR26 - B	3,06×10 ⁻²	3,06×10 ⁻²	5,88×10 ⁻²
KR30H - A	1,51×10 ⁻¹	1,51×10 ⁻¹	4,78×10 ⁻²
KR30H - B	2,76×10 ⁻²	2,76×10 ⁻²	4,78×10 ⁻²
KR30H - C	2,77×10 ⁻¹	2,77×10 ⁻¹	4,78×10 ⁻²
KR30H - D	3,99×10 ⁻²	3,99×10 ⁻²	4,78×10 ⁻²
KR33 - A	1,51×10 ⁻¹	1,51×10 ⁻¹	4,93×10 ⁻²
KR33 - B	2,57×10 ⁻²	2,57×10 ⁻²	4,93×10 ⁻²
KR33 - C	2,77×10 ⁻¹	2,77×10 ⁻¹	4,93×10 ⁻²
KR33 - D	3,55×10 ⁻²	3,55×10 ⁻²	4,93×10 ⁻²

Baugröße	K _A	K _B	K _c
KR45H - A	9,83×10 ⁻²	9,83×10 ⁻²	3,45×10 ⁻²
KR45H - B	1,87×10 ⁻²	1,87×10 ⁻²	3,45×10 ⁻²
KR45H - C	1,83×10 ⁻¹	1,83×10 ⁻¹	3,45×10 ⁻²
KR45H - D	2,81×10 ⁻²	2,81×10 ⁻²	3,45×10 ⁻²
KR46 - A	1,01×10 ⁻¹	1,01×10 ⁻¹	3,38×10 ⁻²
KR46 - B	1,78×10 ⁻²	1,78×10 ⁻²	3,38×10 ⁻²
KR46 - C	1,85×10 ⁻¹	1,85×10 ⁻¹	3,38×10 ⁻²
KR46 - D	2,50×10 ⁻²	2,50×10 ⁻²	3,38×10 ⁻²
KR55 - A	8,63×10 ⁻²	8,63×10 ⁻²	2,83×10 ⁻²
KR55 - B	1,53×10 ⁻²	1,53×10 ⁻²	2,83×10 ⁻²
KR65 - A	7,55×10 ⁻²	7,55×10 ⁻²	2,14×10 ⁻²
KR65 - B	1,35×10 ⁻²	1,35×10 ⁻²	2,14×10 ⁻²

 K_A : Äquivalenzfaktor für M_A -Richtung K_B : Äquivalenzfaktor für M_B -Richtung

K_C: Äquivalenzfaktor für M_C-Richtung

Anm.: Bei den Typen KR-B und KR-D gelten die Werte für zwei gestoßene Innenwagen.

Montagehinweise

Maximale Geschwindigkeit und maximaler Hubweg

Bitte beachten Sie, dass die maximale Geschwindigkeit der Kompaktlinearachse KR von der kritischen Geschwindigkeit des Kugelgewindetriebs und seinem DN-Wert bestimmt wird.

Der maximale Hubweg wird von der Schienenlänge der Linearführung bestimmt.

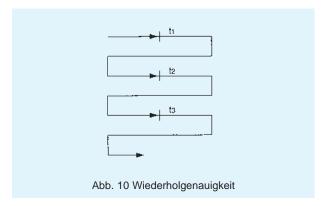
Schmierung

Eine ausreichende Schmierung ist für die Kompaktlinearachse KR unerläßlich, um einen vorzeitigen Verschleiß der Wälzkörper oder der Laufbahnen zu vermeiden. Unter normalen Betriebsbedingungen müssen die Linearführung und der Kugelgewindetrieb alle 100 km nachgeschmiert werden. Dieses ist aber nur ein allgemeiner Richtwert, der unter den jeweiligen vorherrschenden Betriebsbedingungen überprüft werden muss.

Empfohlene Schmierfette: KR15 THK AFF

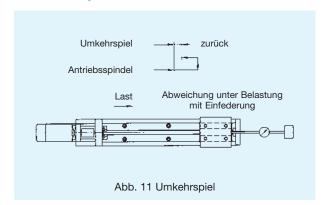
Bei Anwendungen unter Reinraum-Bedingungen ist das Schmierfett THK AFE für extra niedrige Partikelemission zu empfehlen. Alle diese Schmierfette können direkt bei 可出 bestellt werden.

Tab. 7 Baugrößen Einheit: mm


D "0	0	0.1:	Geschwindig	keit [mm/sec]	Max. herstel	lbare Länge
Baugröße	Steigung	Schienenlänge	Präzisionsklasse	Hochgenaue und Normalklasse	Präzisionsklasse	Hochgenaue und Normalklasse
KR15	01	_	160	160	250	250
KK15	02	_	330	330	250	230
KR20	01	_	190	190	200	200
KR26	02	_	280	280	300	300
KR30H	06	150 200 300 400 500 600	660 660 660 660 660 400	470 470 470 470 470 470 400	600	600
14.657.1	10	150 200 300 400 500 600	1100 1100 1100 1100 1100 670	790 790 790 790 790 670	333	000
KR33	06	150 200 300 400 500 600	660 660 660 660 660 400	470 470 470 470 470 470 400	600	600
MAGG	10	150 200 300 400 500 600	1100 1100 1100 1100 1100 670	790 790 790 790 790 790 670	000	
KR45H	10	340 440 540 640 740 840 940	740 740 740 740 740 740	520 520 520 520 520 520 520 430	800	1200
INVEST	20	340 440 540 640 740 840 940	1480 1480 1480 1480 1480	1050 1050 1050 1050 1050 1050 1050 870	800	
KD 46	10	340 440 540 640 740 940	740 740 740 740 740 740	520 520 520 520 520 520 430	900	1200
KR46	20	340 440 540 640 740 940	1480 1480 1480 1480 1480	1050 1050 1050 1050 1050 1050 870	800	1200
KR55	20	980 1080 1180 1280 1380	1120 980 750 -	800 800 750 630 530	1180	2000
KR65	25	980 1180 1380 1680	1120 1120 830	800 800 800 550	1380	2000

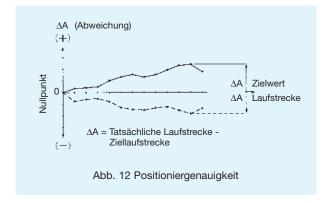
Genauigkeitsklassen

Den Genauigkeitsklassen der Kompakt-Linearachse KR werden folgende Messmethoden zugrundegelegt: Wiederhol- und Positioniergenauigkeit sowie Umkehrspiel und Laufparallelität.

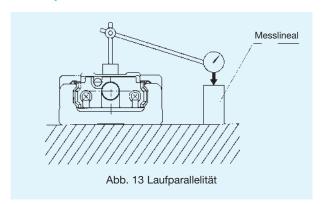

1. Wiederholgenauigkeit

Die Wiederholgenauigkeit wird an 3 Positionen (in der Nähe der Anfangs-, Mittel- und Endposition) gemessen. Jeder dieser Messpunkte wird siebenmal einseitig angefahren, wobei jeweils die Stopposition gemessen wird. Für jeden Messpunkt kann somit die Differenz zwischen Soll- und Istposition bestimmt werden.

Der Absolutwert des Minimal- und des Maximalwertes wird addiert und durch zwei dividiert. Der deklarierte Wert (Wiederholgenauigkeit) ist der Maximalwert der drei Hauptmessungen und wird als ± Toleranz angegeben.


3. Umkehrspiel

Das Umkehrspiel wird an 3 Positionen (in der Nähe der Anfangs-, Mittel- und Endposition) gemessen. Hierzu wird die jeweilige Halteposition als Referenzpunkt definiert, und die Messuhr auf "Null" tariert. In dieser Halteposition wird der Schlitten mit einer definierten Axiallast beaufschlagt und anschließend entlastet.


Das Umkehrspiel ergibt sich aus der Differenz der Referenzmarke zur Istposition (Position nach der Entlastung). Der deklarierte Wert ist der Maximalwert der drei Hauptmessungen.

2. Positioniergenauigkeit

Mit der Positioniergenauigkeit wird die maximale Fehlerabweichung angegeben, die sich aus der Differenz der tatsächlichen und vorgegebenen Verfahrstrecke ergibt.

4. Laufparallelität

Zur Messung der Laufparallelität wird parallel zu der auf einem Tisch montierten Linearachse ein Messlineal ausgerichtet. Anschließend wird mittels einer Messuhr die Parallelität über den gesamten Verfahrweg des Innenwagens gemessen. Die Laufparallelität ergibt sich durch die Subtraktion des Minimalwertes vom Maximalwert.

Genauigkeitsklassen

Die Genauigkeitsklassen der KR-Typen werden in Normalklasse (kein Symbol), H-Klasse (H) und Präzisionsklasse (P)

Tab. 8.1 Normalklasse (kein Symbol)

Einheit: mm

100.011	Nominan						
Bau- größe	Schienen- länge	Wieder- holge- nauigkeit	Positio- nierge- nauigkeit	Laufparal- lelität	Umkehr- spiel	Losbrech- moment [Ncm]	
	100		nicht	nicht			
KR20	150	±0,010	bestimmt	bestimmt	0,020	0,5	
	200 150		DOGUITHITIC	DOGUITHITE			
	200		nicht	nicht			
KR26	250	±0,010	bestimmt	bestimmt	0,020	1,5	
	300		Destillini	Destillini			
	150						
	200						
I/Dool I	300	0.040	nicht bestimmt	nicht	0,020	_	
KR30H	400	±0,010		bestimmt		7	
	500			200			
	600						
	150						
	200						
KR33	300	±0,010	nicht	nicht	0,020	7	
KKSS	400	±0,010	bestimmt	bestimmt	0,020	'	
	500						
	600						
	340						
	440		nicht bestimmt	nicht bestimmt			
	540				0,020		
KR45H	640	±0,010				10	
	740						
	840						
	940						
	340						
	440						
KR46	540	±0,010	nicht	nicht	0,020	10	
111140	640	20,010	bestimmt	bestimmt	0,020	10	
	740						
	940						
	980						
KDEE	1080	.0.010	nicht	nicht	0.050	10	
KR55	1180	±0,010	bestimmt	bestimmt	0,050	12	
	1280						
	1380						
	980	0.040	nicht	nicht			
KR65	1180	±0,010		bestimmt	0,050	12	
111100	1380		bestimmt	Destillille		45	
	1680	±0,012				15	

Tab. 8.3 Präzisionsklasse (P)

Einheit: mm

Bau- größe	Schienen- länge	Wieder- holge- nauigkeit	Positio- nierge- nauigkeit	Laufparal- lelität	Umkehr- spiel	Losbrech- moment [Ncm]
KR15	75 100 125 150 175 200	±0,003	0,020	0,010	0,002	0,8
KR20	100 150 200	±0,003	0,020	0,010	0,003	1,2
KR26	150 200 250 300	±0,003	0,020	0,010	0,003	4
KR30H	150 200 300 400	±0,003	0,020	0,010	0,003	15
	500 600		0,025	0,015		
KR33	150 200 300 400	±0,003	0,020	0,010	0,003	15
	500 600		0,025	0,015		
KR45H	340 440 540	±0,003	0,025	0,015	0,003	15
	640 740		0,030	0,020		17
KR46	340 440 540	±0,003	0,025	0,015	0,003	15
	640 740		0,030	0,020		17
KR55	980 1080	±0,005	0,035	0,025	0,003	17
	1180	,	0,040	0,030	-,	20
KR65	980 1180	±0,005	0,035	0,025	0,005	20
	1380		0,040	0,030		22

unterteilt. Die einzelnen Klassen sind unten in den Tabellen angegeben.

Tab. 8.2 H-Klasse (H)

Tab. 8.2	H-Klass	Einheit: mm				
Bau- größe	Schienen- länge	Wieder- holge- nauigkeit	Positio- nierge- nauigkeit	Laufparal- lelität	Umkehr- spiel	Losbrech- moment [Ncm]
KR15	75 100 125 150 175 200	±0,004	0,040	0,020	0,010	0,4
KR20	100 150 200	±0,005	0,060	0,025	0,010	0,5
KR26	150 200 250 300	±0,005	0,060	0,025	0,010	1,5
KR30H	150 200 300 400	±0,005	0,060	0,025	0,020	7
	500 600		0,100	0,035		
KR33	150 200 300 400	±0,005	0,060	0,025	0,020	7
	500 600		0,100	0,035		
KR45H	340 440 540 640	±0,005	0,100	0,035	0,020	10
	740 840 940		0,120 0,150 0,150	0,040 0,050 0,050		
KR46	340 440 540 640	±0,005	0,100	0,035	0,020	10
	740 940		0,120 0,150	0,040 0,050		
KR55	980 1080	±0,005	0,180	0,050	0,050	12
CCMA	1180 1280 1380	20,000	0,250	0,030	0,050	12
KR65	980 1180	±0,008	0,180 0,200	0,050	0,050	12
	1380 1680	,	0,280	0,055	-,3	15

Die Messmethoden für die einzelnen Genauigkeitsklassen basieren auf der Werksnorm von THK. Das Losbrechmoment wird bei einer Schmierung der Linearachse mit Lithium-Seifenfett No. 2 ermittelt. Bei den Linearachsen KR20 und 26 wird das Schmierfett THK AFA verwendet. Bei der Linearachse KR15 wird das Schmierfett 5元代 AFF verwendet. Bei Schmierfetten mit hoher Viskosität, wie Vakuumoder Reinraum-Fett, können die gemessenen Werte höher als die hier angegeben Standardwerte sein. In diesem Fall muss der Antrieb sorgfältig ausgewählt werden.

Aufbau der Bestellbezeichnung

Kennziffer

KR33 10 A + 300L P 0 - 0 0 0 0

1 Baugröße

2 Steigung [mm]

3 Wagenform / Anzahl

4 Schienenlänge [mm]

5 Genauigkeitsklasse (siehe Tab. 8)

6 Motorbezeichnung (siehe Tab. 9)

7 Abdeckung (siehe Tab. 9)

8 Sensor (siehe Tab. 9)

9 Housing A (siehe Tab. 10 und Abb. 6-11)

10 Flanschform

Tab. 9

Genauigk	eitsklasse	Motor		Abde	ckung	Sensor		
Kennziffer	Bemerkung	Kennziffer	Bemerkung	Kennziffer	Bemerkung	Kennziffer	Bemerkung	
						0	ohne	
						1	mit Sensorschiene	
							mit Photosensor	
kein	Normal-	0	ohne	0	ohne	2	EE-SX671	
Symbol	klasse	Ü		U			(Omron)	
							mit Näherungssensor	
						4	GL-12F	
							(SUNX)	
							mit Näherungssensor	
	H- Klasse			1		5	GXL-N12F	
Н					Blech- abdeckung		(SUNX)	
							mit Photosensor	
						6	EE-SX674	
		1	mit				(Omron)	
		'	TITIL				mit Näherungssensor	
						7	APM-D3	
Р	Präzisions-			X	Faltenbalg		(SUNX)	
	klasse				(Europa)	X ⁽¹⁾	mit Näherungssensor	
							TL-W3M	
							(Omron)	

Тур	Ausführung
TL-W3MC1	NPN-Schließer
TL-W3MC2	NPN-Öffner
TL-W3MB1	PNP-Schließer
TL-W3MB2	PNP-Öffner
	TL-W3MC1 TL-W3MC2 TL-W3MB1

X = Standard Sensor Europa

Bitte geben Sie die Anzahl und Type (n) bei der Bestellung mit an.

Beispiel: 2 x TL-W3MB2 und 1 x TL-W3MB1

Tab. 10 Kennziffern zur Ausführung des Motorflansches

Option	Kennziffer
KR 33 Housing A ohne Motorflansch	□ □ 30 / □ □ 40
KR 46 Housing A ohne Motorflansch	□ □ 50 / □ □ 60
KR 55 Housing A ohne Motorflansch	□□10
KR 65 Housing A ohne Motorflansch	□□10

Ausführung Housing A ohne Motorflansch

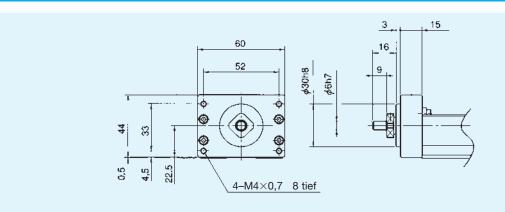
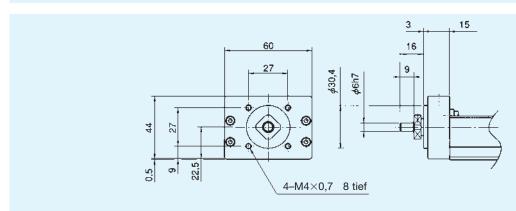
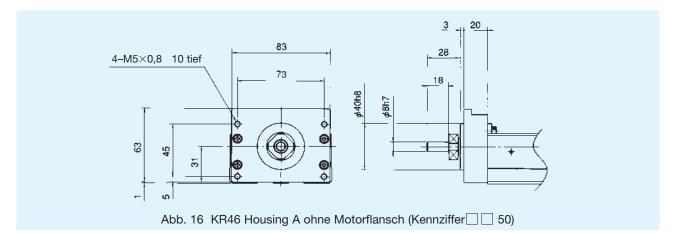
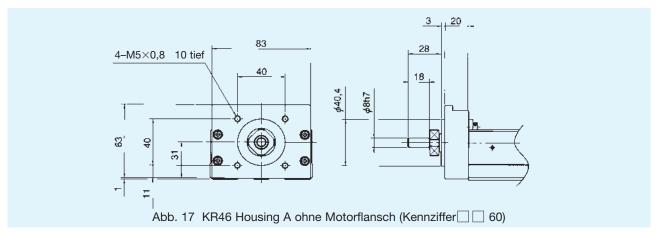
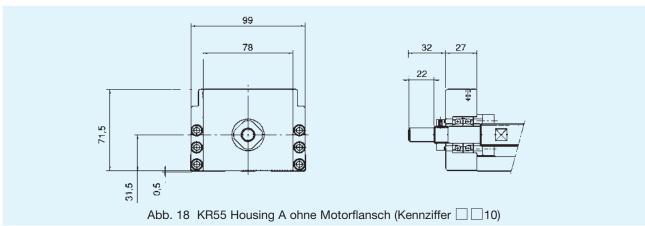
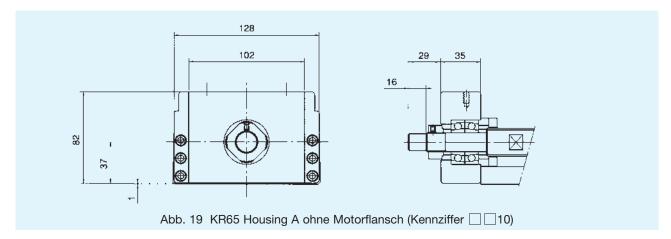
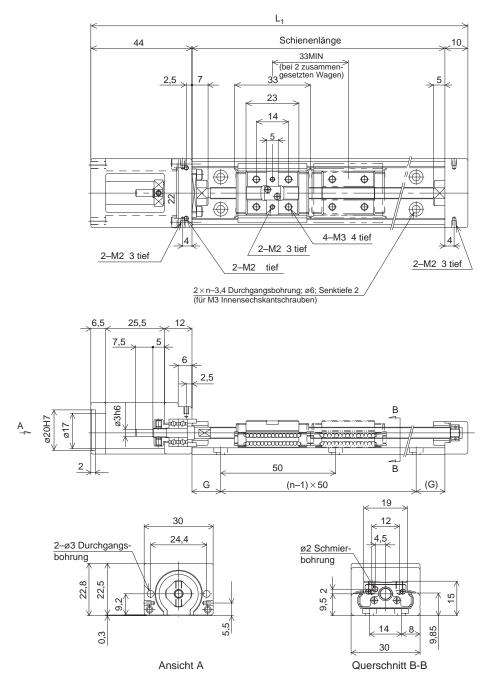


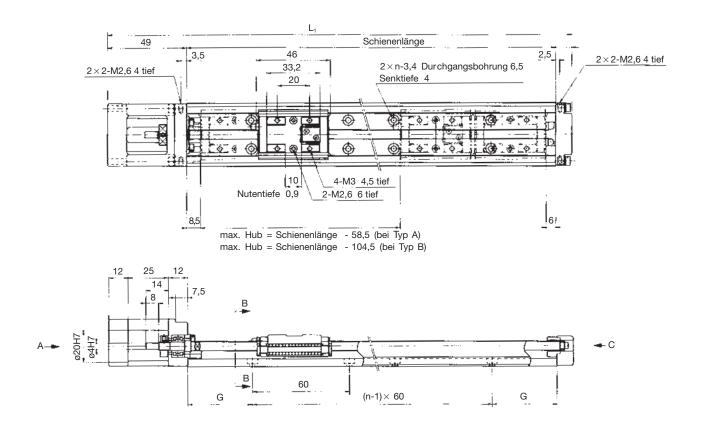
Abb. 14 KR33 Housing A ohne Motorflansch (Kennziffer 30)

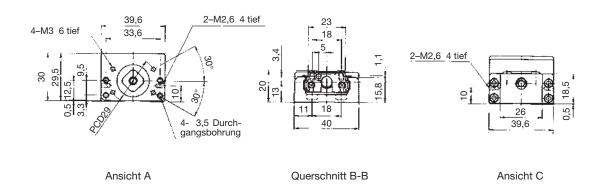






Abb. 15 KR33 Housing A ohne Motorflansch (Kennziffer 40)



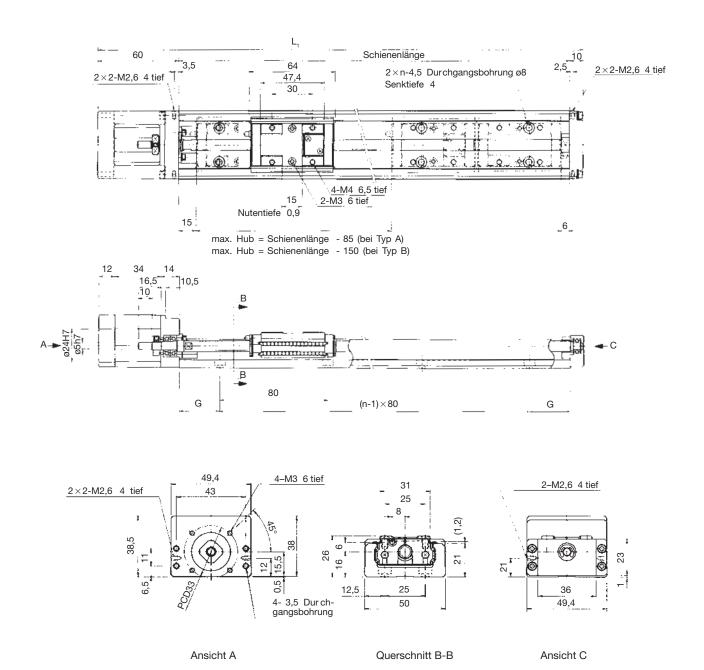
KR1501 A, KR1502 A mit einem Wagen KR1501 B, KR1502 B mit zwei Wagen


Tab. 11


Schienenlänge Gesamt	Gesamtlänge	max. Hubweg [mm]		C [mm]	n	Gesamtgewicht [kg]	
[mm]	L ₁ [mm]	А-Тур	В-Тур*	G [mm]	n	А-Тур	В-Тур
75	129	31,4		12,5	2	0,19	
100	154	56,4		25,0	2	0,22	
125	179	81,4	48,4	12,5	3	0,25	0,292
150	204	106,4	73,4	25,0	3	0,28	0,322
175	229	131,4	98,4	12,5	4	0,31	0,352
200	254	156,4	123,4	25,0	4	0,34	0,382

^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

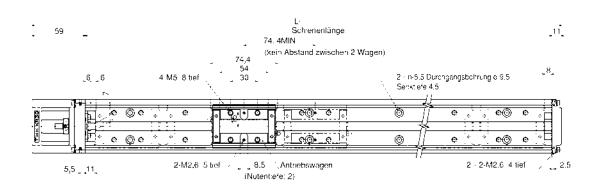
KR2001 A mit einem Wagen KR2001 B mit zwei Wagen

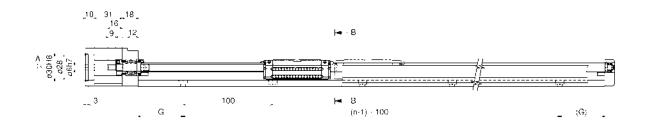

Tab. 12

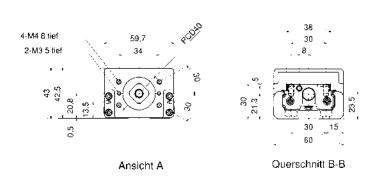
Schienenlänge	Gesamtlänge	Max. Hubweg [mm]		G [mm]	n	Gesamtgewicht [kg]	
[mm]	L ₁ [mm]	Тур А	Typ B*	O [IIIIII]	"	Тур А	Тур В
100	159	41,5		20	2	0,450	
150	209	91,5	45,5	15	3	0,580	0,655
200	259	141,5	95,5	40	3	0,720	0,795

^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

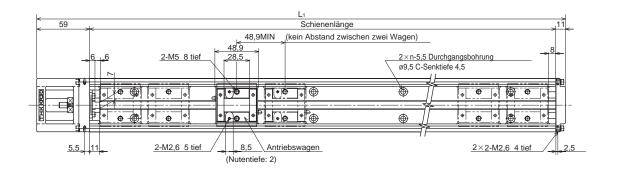
KR2602 A mit einem Wagen KR2602 B mit zwei Wagen

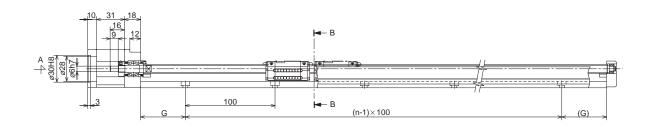

Tab. 13

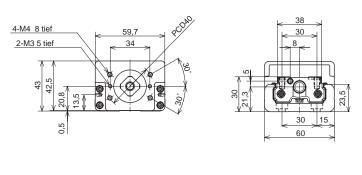

Schienenlänge Gesan	Gesamtlänge	Gesamtlänge Max. Hubw		G [mm]	n	Gesamtgewicht [kg]	
[mm]	L ₁ [mm]	Тур А	Typ B*	Gillilli	n	Тур А	Тур В
150	220	69		35	2	0,99	
200	270	119	55	20	3	1,20	1,38
250	320	169	105	45	3	1,41	1,59
300	370	219	155	30	4	1,62	1,80


^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

KR30H A mit einem langen Wagen KR30H B mit zwei langen Wagen

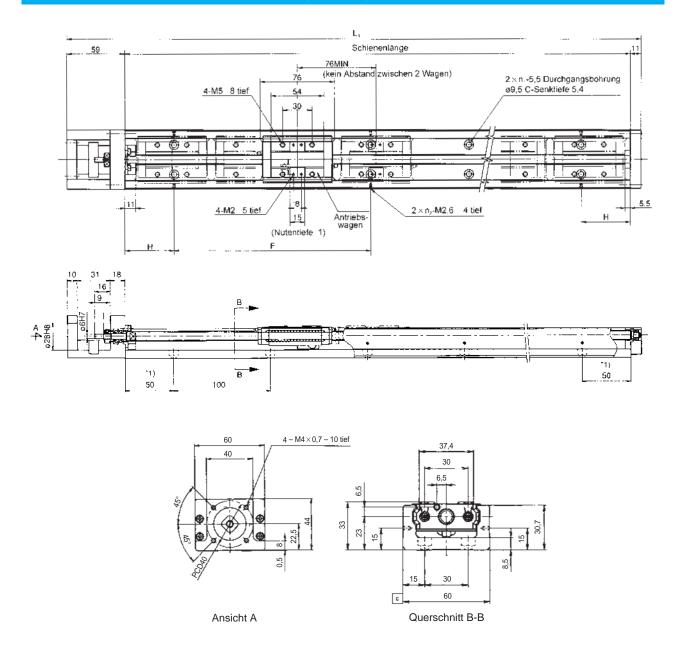

Tab. 14


Schienenlänge	Gesamtlänge	max. Hubweg [mm]		G [mm]	n	Gesamtgewicht [kg]	
[mm]	L₁[mm]	А-Тур	В-Тур*	G [IIIII]	n	А-Тур	В-Тур
150	220	58,8		25	2	1,40	
200	270	108,8		50	2	1,60	
300	370	208,8	134,4	50	3	2,20	2,50
400	470	308,8	234,4	50	4	2,70	3,00
500	570	408,8	334,4	50	5	3,20	3,50
600	670	508,8	434,4	50	6	3,80	4,10


^{*}Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

KR30H C mit einem kurzen Wagen KR30H D mit zwei kurzen Wagen

Ansicht A Querschnitt B-B

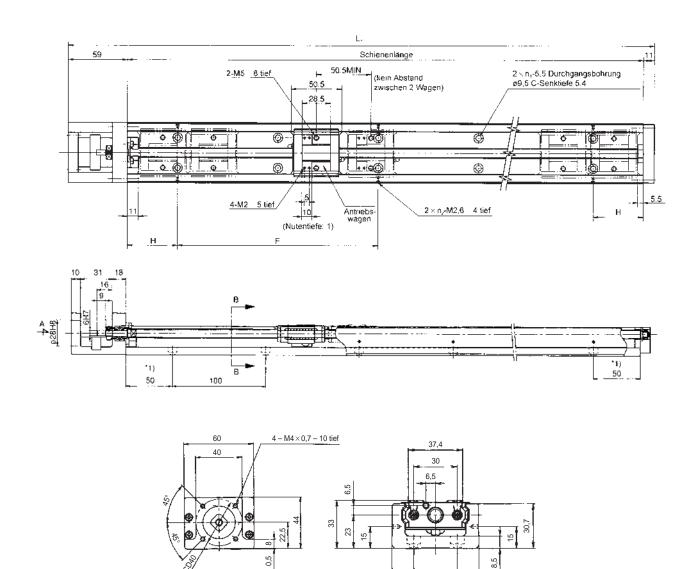

Tab. 15

Schienenlänge	Gesamtlänge	Max. Hubweg [mm]		G [mm]		Gesamtgewicht [kg]	
[mm]	L ₁ [mm]	С-Тур	D-Typ*	Gillili	n	С-Тур	D-Typ
150	220	84,3	35,4	25	2	1,30	1,47
200	270	134,3	85,4	50	2	1,50	1,67
300	370	234,3	185,4	50	3	2,10	2,27
400	470	334,3	285,4	50	4	2,60	2,77
500	570	434,3	385,4	50	5	3,10	3,27
600	670	534,3	485,4	50	6	3,70	3,87

^{*}Der angegebene Hubweg ist beim D-Typ der Maximalwert bei zwei gestoßenen Wagen.

KR3306A, KR3310A mit einem langen Wagen KR3306B, KR3310B mit zwei langen Wagen

¹⁾ Bei einer Schienenlänge von 150 mm beträgt das Maß 25 mm.


Tab. 16

Schienenlänge Gesamtlänge	Max. Hubweg [mm]		Н	F	n ₁	n ₂	Gesamtgewicht [kg]		
[mm]	L ₁ [mm]	Тур А	Typ B*	[mm]	[mm]		112	Тур А	Тур В
150	220	61,5		25	100	2	2	1,70	
200	270	111,5		50	100	2	2	2,00	
300	370	211,5	135,5	50	200	3	2	2,60	2,95
400	470	311,5	235,5	100	200	4	2	3,20	3,55
500	570	411,5	335,5	50	200	5	3	3,90	4,25
600	670	511,5	435,5	100	200	6	3	4,50	4,85

^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei gestoßenen Wagen.

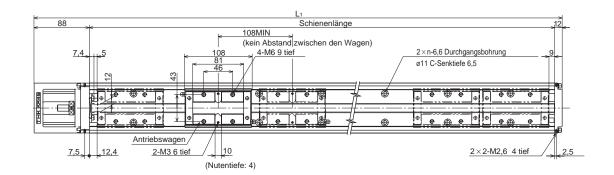
KR3306C, KR3310C mit einem kurzen Wagen KR3306D, KR3310D mit zwei kurzen Wagen

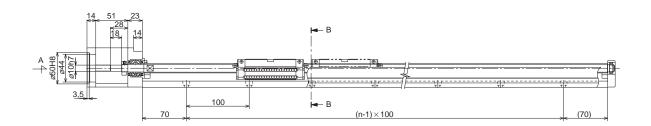
Ansicht A

Tab. 17

Schienenlänge [mm]	Gesamtlänge L ₁ [mm]	Max. Hubweg [mm]		Н	F _		Gesamtgewicht [kg]		
		Тур С	Typ D*	[mm]	[mm]	n ₁	n ₂	Тур С	Typ D
150	220	87	36,5	25	100	2	2	1,60	1,83
200	270	137	86,5	50	100	2	2	1,90	2,13
300	370	237	186,5	50	200	3	2	2,50	2,73
400	470	337	286,5	100	200	4	2	3,10	3,33
500	570	437	386,5	50	200	5	3	3,80	4,03
600	670	537	486,5	100	200	6	3	4,40	4,63

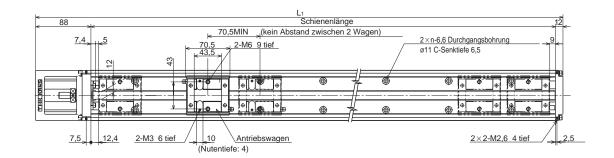
60

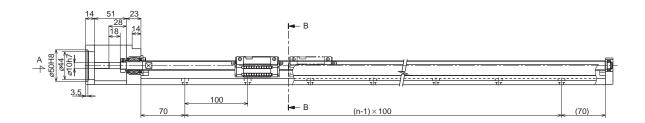

Querschnitt B-B

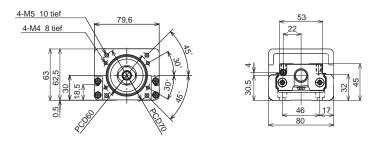

 $^{^{\}scriptscriptstyle 1)}\,$ Bei einer Schienenlänge von 150 mm $\,$ das Maß 25 mm.

^{*} Der angegebene Hubweg ist beim D-Typ der Maximalwert bei gestoßenen Wagen.

KR45H A mit einem langen Wagen KR45H B mit zwei langen Wagen


Tab. 18

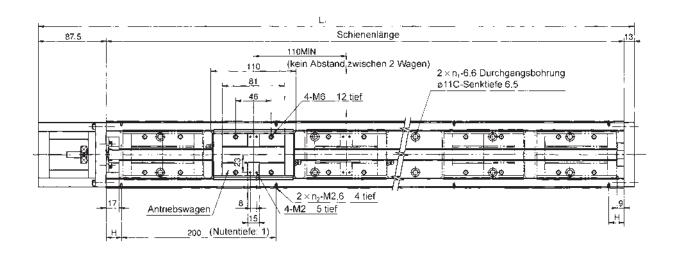

Schienenlänge [mm]	Gesamtlänge	max. Hub	weg [mm]	n	Gesamtgewicht [kg]	
	L ₁ [mm]	А-Тур	B-Typ*	11	А-Тур	В-Тур
340	440	213	105	3	5,10	6,05
440	540	313	205	4	6,10	7,05
540	640	413	305	5	7,10	8,05
640	740	513	405	6	8,10	9,05
740	840	613	505	7	9,10	10,05
840	940	713	605	8	10,10	11,05
940	1040	813	705	9	11,20	12,15

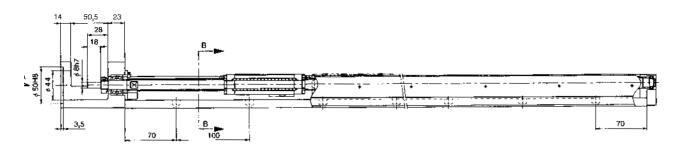

^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

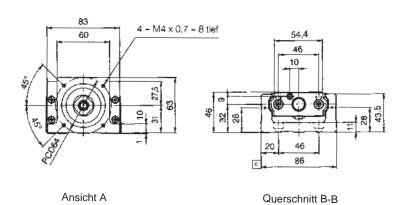
KR45H C mit einem kurzen Wagen KR45H D mit zwei kurzen Wagen

Ansicht A

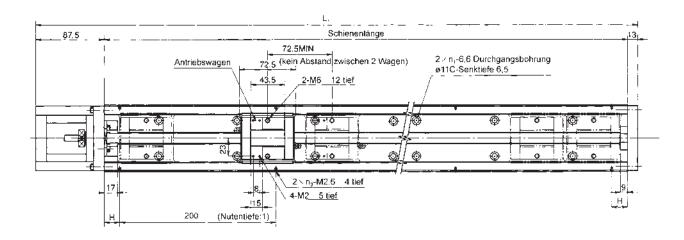
Querschnitt B-B

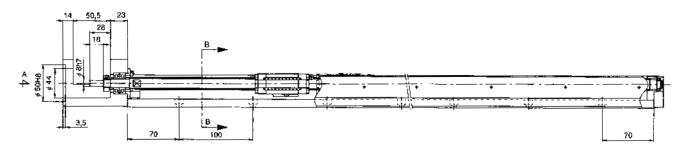

Tab. 19

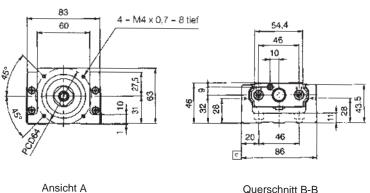

Schienenlänge [mm]	Gesamtlänge	max. Hub	weg [mm]	n	Gesamtgewicht [kg]		
	L ₁ [mm]	С-Тур	D-Typ*	"	С-Тур	D-Typ	
340	440	250,5	180	3	4,70	5,23	
440	540	350,5	280	4	5,70	6,23	
540	640	450,5	380	5	6,70	7,23	
640	740	550,5	480	6	7,70	8,23	
740	840	650,5	580	7	8,70	9,23	
840	940	750,5	680	8	9,70	10,23	
940	1040	850,5	780	9	10,80	11,33	


^{*} Der angegebene Hubweg ist beim D-Typ der Maximalwert bei zwei gestoßenen Wagen.

KR4610A, KR4620A mit einem langen Wagen KR4610B, KR4620B mit zwei langen Wagen

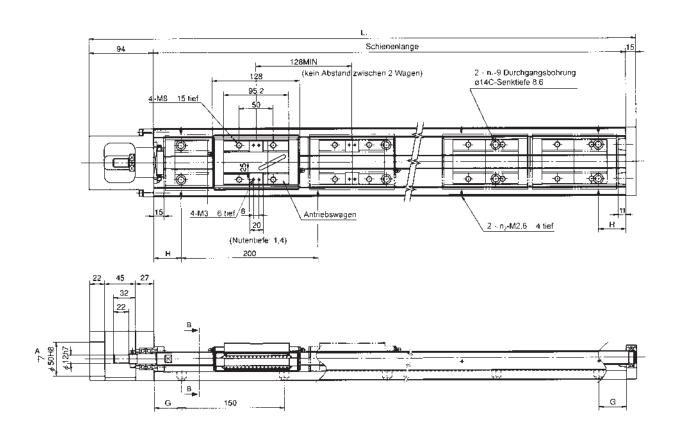

Tab. 20

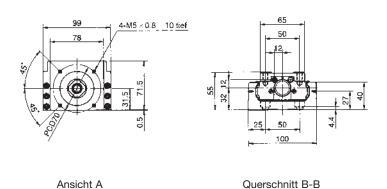

Schienenlänge [mm]	Gesamtlänge L₁ [mm]	Max. Hubweg [mm]		Н	_	n	Gesamtgewicht [kg]	
		Тур А	Typ B*	[mm]	n ₁	n ₂	Тур А	Тур В
340	440,5	208	98	70	3	2	7,70	8,90
440	540,5	308	198	20	4	3	9,00	10,20
540	640,5	408	298	70	5	3	10,30	11,50
640	740,5	508	398	20	6	4	11,60	12,80
740	840,5	608	498	70	7	4	12,80	14,00
940	1040,5	808	698	70	9	5	15,30	16,50


^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei gestoßenen Wagen.

KR4610C, KR4620C mit einem kurzen Wagen KR4610D, KR4620D mit zwei kurzen Wagen

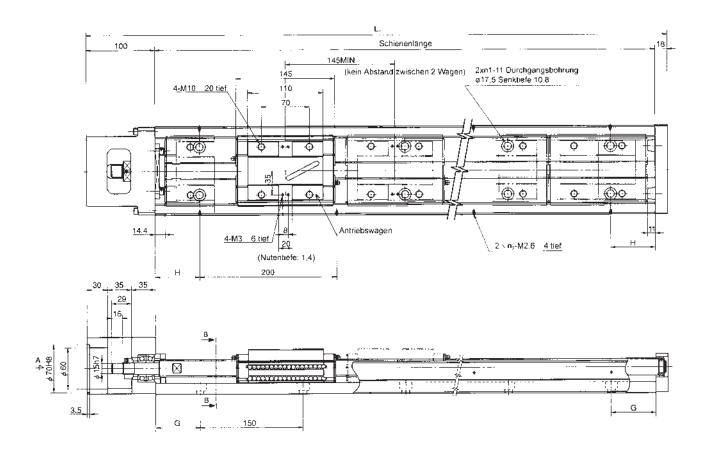
Querschnitt B-B

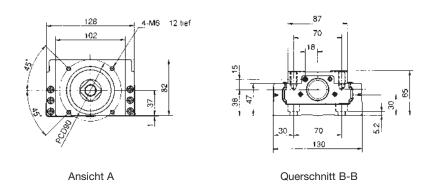

Tab. 21


Schienenlänge	Gesamtlänge	Max. Hub	weg [mm]	Н		n	Gesamtgewicht [kg]	
[mm]	L ₁ [mm]	Тур С	Typ D*	[mm]	n ₁	n ₂	Тур С	Typ D
340	440,5	245,5	173	70	3	2	7,30	8,10
440	540,5	345,5	273	20	4	3	8,60	9,40
540	640,5	445,5	373	70	5	3	9,90	10,70
640	740,5	545,5	473	20	6	4	11,20	12,00
740	840,5	645,5	573	70	7	4	12,40	13,20
940	1040,5	845,5	773	70	9	5	14,90	15,70

^{*} Der angegebene Hubweg ist beim D-Typ der Maximalwert bei gestoßenen Wagen.

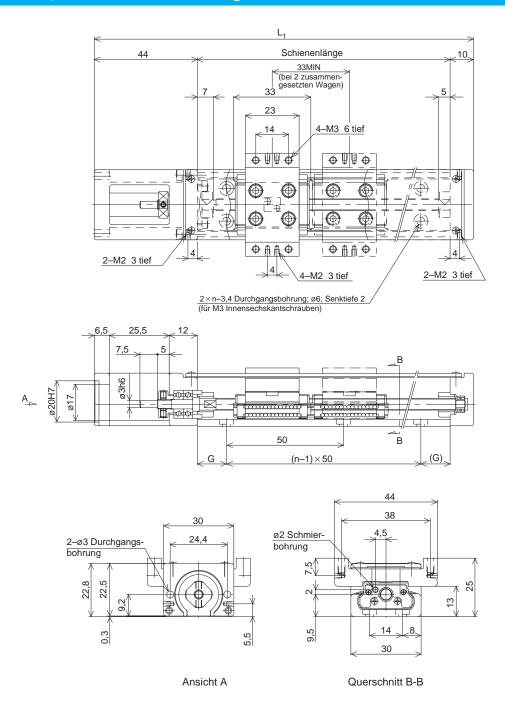
KR5520A mit einem Wagen KR5520B mit zwei Wagen


Tab. 22


Schienenlänge	nge Gesamtlänge Max. Hubweg [mm] H G		n.	n ₂	Gesamtge	wicht [kg]			
[mm]	L ₁ [mm]	Тур А	Typ B*	[mm]	[mm]	111	112	Тур А	Тур В
980	1089	826	698	90	40	7	5	19,90	21,60
1080	1189	926	798	40	15	8	6	21,70	23,40
1180	1289	1026	898	90	65	8	6	23,40	25,10
1280	1389	1126	998	40	40	9	7	25,10	26,80
1380	1489	1226	1098	90	15	10	7	26,90	28,60

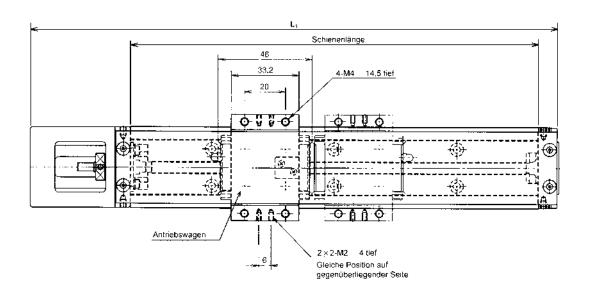
^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei gestoßenen Wagen.

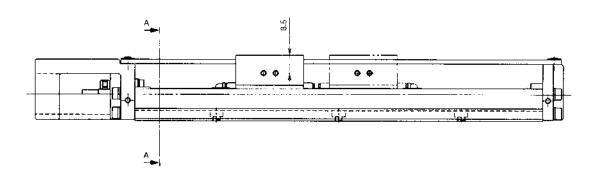
KR6525A mit einem Wagen KR6525B mit zwei Wagen

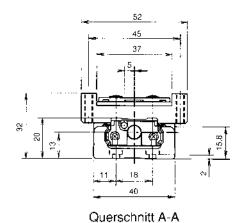

Tab. 23

Schienenlänge	Gesamtlänge	Max. Hubweg [mm]		Н	G	n.	no	Gesamtgewicht [kg]	
[mm]	L ₁ [mm]	Тур А	Typ B*	[mm]	[mm]	n ₁	n ₂	Тур А	Тур В
980	1098	810	665	90	40	7	5	31,60	34,60
1180	1298	1010	865	90	65	8	6	37,00	40,00
1380	1498	1210	1065	90	90	9	7	42,40	45,40
1680	1798	1510	1365	40	90	11	9	50,50	53,50

^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei gestoßenen Wagen.

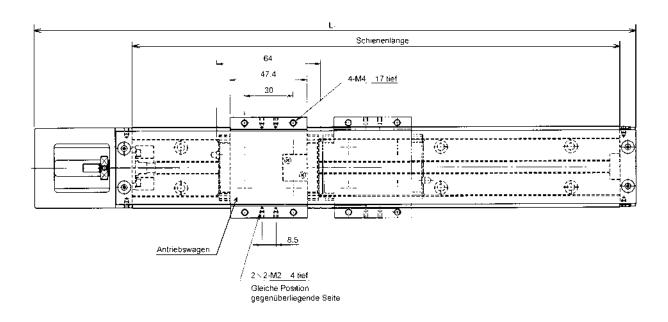

KR1501 A, KR1502 A mit einem Wagen KR1501 B, KR1502 B mit zwei Wagen

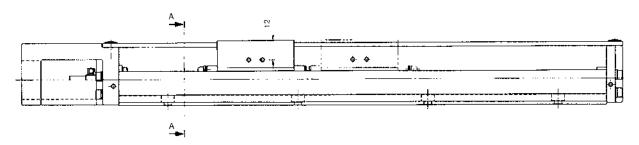


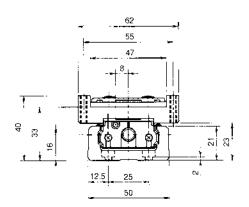

Tab. 24

Schienenlänge	Gesamtlänge	max. Hub	weg [mm]	G [mm]	n	Gesamtge	ewicht [kg]
[mm]	L ₁ [mm]	А-Тур	В-Тур*	G [IIIII]	- 11	А-Тур	В-Тур
75	129	31,4		12,5	2	0,23	
100	154	56,4	_	25,0	2	0,26	
125	179	81,4	48,4	12,5	3	0,30	0,364
150	204	106,4	73,4	25,0	3	0,33	0,394
175	229	131,4	98,4	12,5	4	0,36	0,424
200	254	156,4	123,4	25,0	4	0,40	0,464

^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.


Tab. 25

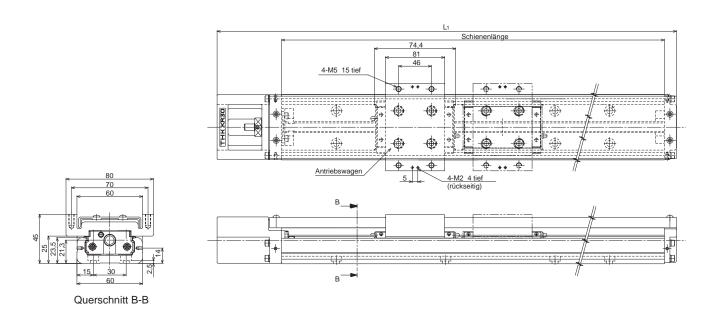

,	Schienenlänge	Gesamtlänge	max. Hub	weg [mm]	Gesamtgewicht [kg]		
	[mm]	L ₁ [mm]	А-Тур	B-Typ*	А-Тур	В-Тур	
	100	159	41,5	_	0,510	_	
	150	209	91,5	45,5	0,660	0,780	
	200	259	141,5	95,5	0,800	0,920	


^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

KR2602 A mit einem Wagen KR2602 B mit zwei Wagen

Querschnitt A-A

Tab. 26


Schienenlänge	Gesamtlänge	max. Hub	weg [mm]	Gesamtgewicht [kg]		
[mm]	L ₁ [mm]	А-Тур	А-Тур В-Тур*		В-Тур	
150	220	69	_	1,120		
200	270	119	55	1,340	1,605	
250	320	169	105	1,560	1,825	
300	370	219	155	1,780	2,045	

^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

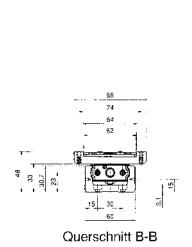


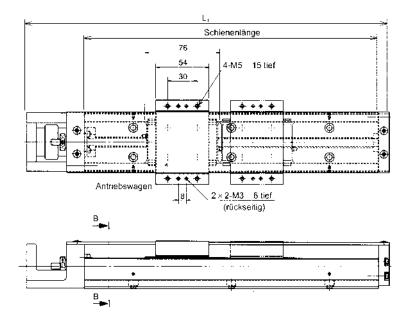
KR30H A (mit einem langen Wagen) KR30H B (mit zwei langen Wagen)

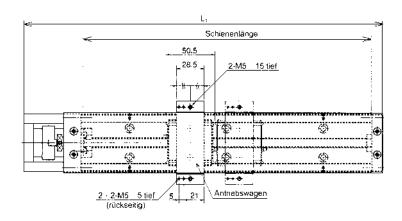
(mit Blechabdeckung)

KR30H C mit einem kurzen Wagen KR30H D mit zwei kurzen Wagen

Tab. 27


Schienenlänge	Gesamtlänge		max. Hub	weg [mm]		Gesamtgewicht [kg]			
[mm]	L ₁ [mm]	А-Тур	В-Тур*	С-Тур	D-Typ*	А-Тур	В-Тур	С-Тур	D-Typ
150	220	58,8		84,3	35,4	1,60		1,40	1,64
200	270	108,8		134,3	85,4	1,80		1,60	1,84
300	370	208,8	134,4	234,3	185,4	2,40	2,83	2,20	2,44
400	470	308,8	234,4	334,3	285,4	3,00	3,43	2,80	3,04
500	570	408,8	334,4	434,3	385,4	3,50	3,93	3,30	3,54
600	670	508,8	434,4	534,3	485,4	4,10	4,53	3,90	4,14

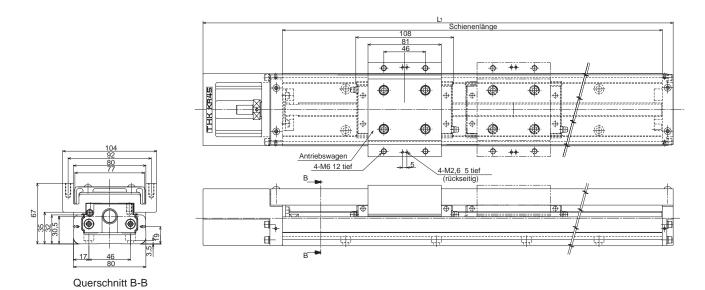

^{*} Der angegebene Hubweg ist beim B- und D-Typ der Maximalwert bei zwei gestoßenen Wagen.


KR33 A mit einem langen Wagen KR33 B mit zwei langen Wagen

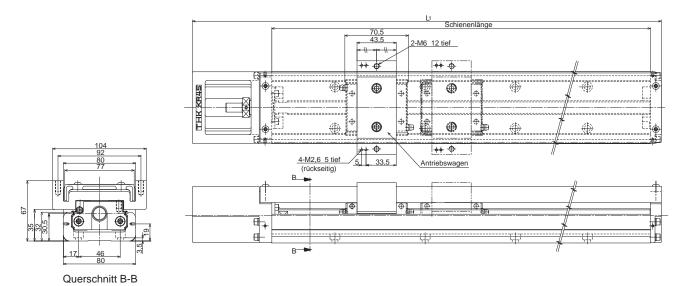
(mit Blechabdeckung)

KR33 C mit einem kurzen Wagen KR33 D mit zwei kurzen Wagen

Tab. 28


Schienenlänge	Gesamtlänge		max. Hub	weg [mm]		Gesamtgewicht [kg]			
[mm]	L ₁ [mm]	А-Тур	В-Тур*	С-Тур	D-Typ*	А-Тур	В-Тур	С-Тур	D-Typ
150	220	61,5		87	36,5	1,90	_	1,70	2,00
200	270	111,5		137	86,5	2,20	_	2,10	2,40
300	370	211,5	135,5	237	186,5	2,80	3,28	2,70	3,00
400	470	311,5	235,5	337	286,5	3,50	3,98	3,30	3,60
500	570	411,5	335,5	437	386,5	4,20	4,68	4,00	4,30
600	670	511,5	435,5	537	486,5	4,80	5,28	4,70	5,00

^{*} Der angegebene Hubweg ist beim B- und D-Typ der Maximalwert bei zwei gestoßenen Wagen. Bitte beachten Sie, dass die Schrauben zur Befestigung der Blechabdeckung 0,2 mm höher liegen als die Tischoberfläche.

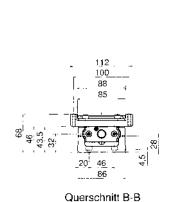


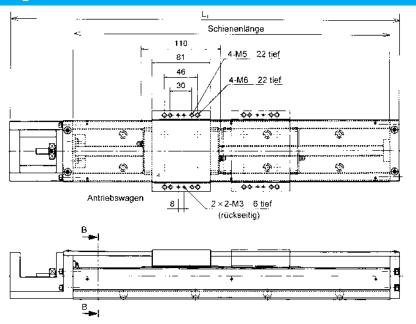
KR45H A mit einem langen Wagen KR45H B mit zwei langen Wagen

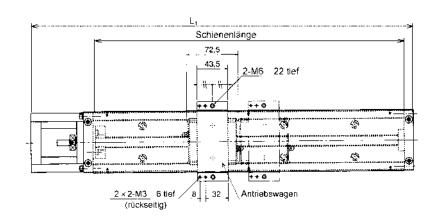
(mit Blechabdeckung)

KR45H C mit einem kurzen Wagen KR45H D mit zwei kurzen Wagen

Tab. 29

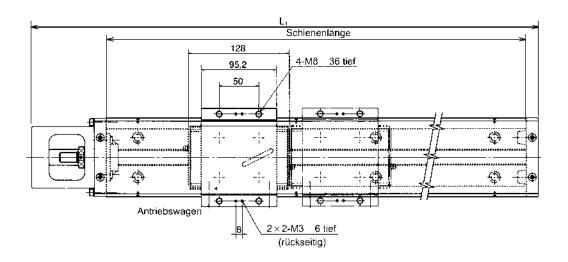

Schienenlänge	Gesamtlänge		max. Hub	weg [mm]		Gesamtgewicht [kg]			
[mm]	L ₁ [mm]	А-Тур	B-Typ*	С-Тур	D-Typ*	А-Тур	В-Тур	С-Тур	D-Typ
340	440	213	105	250,5	180	5,70	7,01	5,10	5,82
440	540	313	205	350,5	280	6,80	8,11	6,20	6,92
540	640	413	305	450,5	380	7,90	9,21	7,30	8,02
640	740	513	405	550,5	480	9,00	10,31	8,40	9,12
740	840	613	505	650,5	580	10,10	11,41	9,50	10,22
840	940	713	605	750,5	680	11,20	12,51	10,60	11,32
940	1040	813	705	850,5	780	12,30	13,61	11,70	12,42

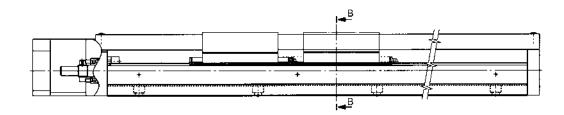

^{*} Der angegebene Hubweg ist beim B- und D-Typ der Maximalwert bei zwei gestoßenen Wagen.

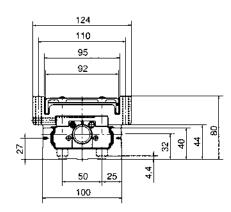

KR46 A mit einem langen Wagen KR46 B mit zwei langen Wagen

(mit Blechabdeckung)

KR46 C mit einem kurzen Wagen KR46 D mit zwei kurzen Wagen

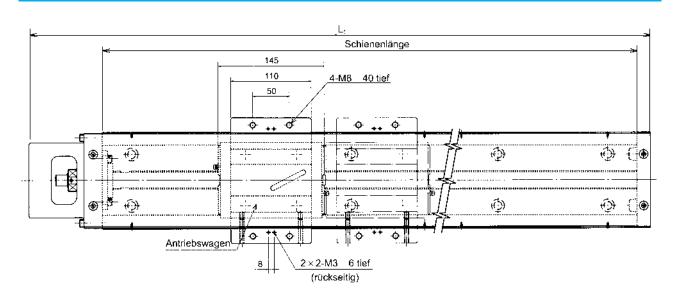



Tab. 30

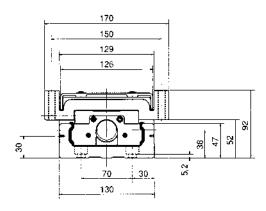

Schienenlänge	Gesamtlänge		max. Hubweg [mm]				Gesamtgewicht [kg]			
[mm]	L ₁ [mm]	А-Тур	В-Тур*	С-Тур	D-Typ*	А-Тур	В-Тур	С-Тур	D-Typ	
340	440,5	208	98	245,5	173	8,30	9,79	7,80	8,79	
440	540,5	308	198	345,5	273	9,70	11,19	9,10	10,09	
540	640,5	408	298	445,5	373	11,00	12,49	10,50	11,49	
640	740,5	508	398	545,5	473	12,40	13,89	11,90	12,89	
740	840,5	608	498	645,5	573	13,70	15,19	13,20	14,19	
940	1040,5	808	698	845,5	773	16,30	17,79	15,80	16,79	

^{*} Der angegebene Hubweg ist beim B- und D-Typ der Maximalwert bei zwei gestoßenen Wagen.

Querschnitt B-B


Tab. 31

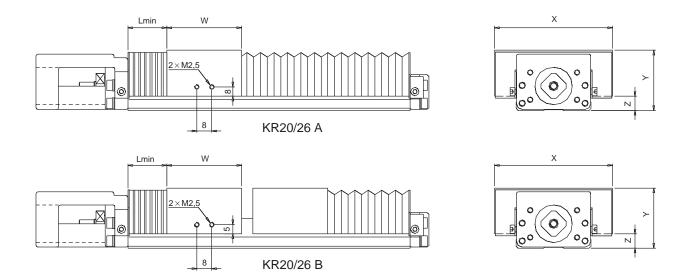
Schienenlänge	Gesamtlänge	max. Hub	weg [mm]	Gesamtge	ewicht [kg]
[mm]	L ₁ [mm]	А-Тур	B-Typ*	А-Тур	В-Тур
980	1089	826	698	22,70	26,20
1080	1189	926	798	24,60	28,10
1180	1289	1026	898	26,40	29,90
1280	1389	1126	998	28,10	31,60
1380	1489	1226	1098	30,00	33,50


^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

KR6525 A mit einem Wagen KR6525 B mit zwei Wagen

Querschnitt B-B

Tab. 32


Schienenlänge	Gesamtlänge	max. Hub	weg [mm]	Gesamtgewicht [kg]		
[mm]	L ₁ [mm]	А-Тур	В-Тур*	А-Тур	В-Тур	
980	1098	810	665	36,30	43,00	
1180	1298	1010	865	42,00	48,70	
1380	1498	1210	1065	47,60	54,30	
1680	1798	1510	1365	56,10	62,80	

^{*} Der angegebene Hubweg ist beim B-Typ der Maximalwert bei zwei gestoßenen Wagen.

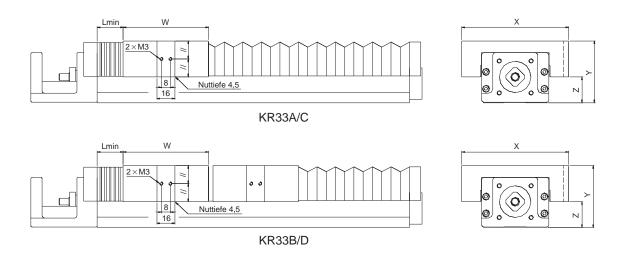
KR20 / 26 A mit einem Wagen KR20 / 26 A mit zwei Wagen

(mit Faltenbalg)

Tab. 33

	Länge	Hub mit Faltenbalg ¹⁾	Lmin ¹⁾	W	Х	Υ	Z
	100	35	13				
KR20A	150	70	20				
	200	110	25				0)
				40	63	32	$16^{2)}$ $7,5^{3)}$
KR20B	150	35	13				
KKZOD	200	70	20				
	150	60	20				
KR26A	200	100	25				
KKZUA	250	130	30				
	300	180	35				
				58	74	40	18
	200	45	20				
KR26B	250	85	25				
	300	120	30				

¹⁾ Die Werte können in Abhängigkeit, wie stark der Faltenbalg zusammengedrückt wird, bis zu 5mm abweichen.

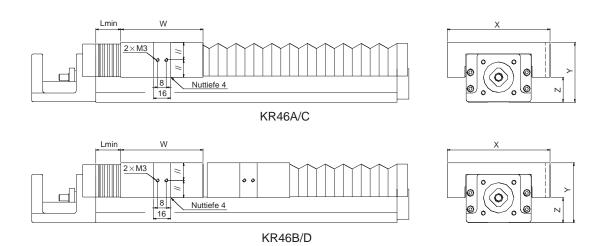

²⁾ Maß 16 gilt für KR20 mit Sensorschiene

³⁾ Maß 7,5 gilt für KR20 ohne Sensorschiene

KR33 A mit einem langen Wagen KR33 B mit zwei langen Wagen KR33 C mit einem kurzen Wagen KR33 D mit zwei kurzen Wagen

(mit Faltenbalg)

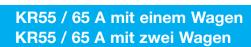
Tab. 34

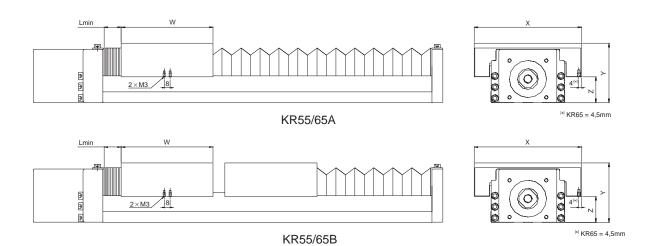

	Länge	Hub mit Faltenbalg ¹⁾	Lmin ¹⁾	W	Х	Υ	Z
	150	40	17				
	200	80	20				
KR33A	300	160	35				
	400	240	40				
	500	320	50				
	600	400	60				
				76	95	55	23
	200	30	15				
	300	100	25				
KR33B	400	180	37				
	500	260	50				
	600	330	60				
	150	60	20				
	200	100	25				
KR33C	300	180	35				
Tutooo	400	260	45				
	500	330	60				
	600	410	70				
				48	95	55	23
	150	30	15				
	200	60	20				
KR33D	300	140	25				
KIKOOD	400	220	40				
	500	300	50				
	600	370	60				

¹⁾ Die Werte können in Abhängigkeit, wie stark der Faltenbalg zusammengedrückt wird, bis zu 5mm abweichen.

KR46 A mit einem langen Wagen KR46 B mit zwei langen Wagen KR46 C mit einem kurzen Wagen KR46 D mit zwei kurzen Wagen

(mit Faltenbalg)

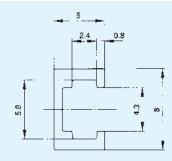



Tab. 35

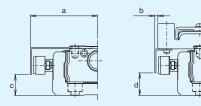
	Länge	Hub mit Faltenbalg ¹⁾	Lmin ¹⁾	W	Х	Υ	Z
	340	160	35				
	440	230	50				
KR46A	540	320	55				
	640	400	65				
	740	470	80				
	940	630	100				
				106	120	68	34
	340	75	20				
	440	155	30				
KR46B	540	235	40				
	640	315	50				
	740	395	60				
	940	550	85				
	340	190	40				
	440	270	50				
KR46C	540	350	60				
141100	640	430	70				
	740	510	80				
	940	670	100				
				68,5	120	68	34
	340	135	30				
	440	215	40				
KR46D	540	295	50				
TCC-40D	640	375	60				
	740	450	70				
	940	610	90				

¹⁾ Die Werte können in Abhängigkeit, wie stark der Faltenbalg zusammengedrückt wird, bis zu 5mm abweichen.

Tab. 36

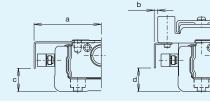

	Länge	Hub mit Faltenbalg ¹⁾	Lmin ¹⁾	W	Х	Υ	Z
	980	690	85				
	1080	770	95				
KR55A	1180	850	105				
	1280	930	110				
	1380	1010	120				
				124	145	80	35
	980	580	75				
	1080	660	85				
KR55B	1180	740	95				
	1280	825	105				
	1380	905	110				
	980	670	85				
KR65A	1180	830	105				
1110071	1380	990	120				
	1680	1240	150				
				140	175	92	37
	980	550	70				
KR65B	1180	710	85				
KKOOD	1380	875	105				
	1680	1120	135				

¹⁾ Die Werte können in Abhängigkeit, wie stark der Faltenbalg zusammengedrückt wird, bis zu 5mm abweichen.

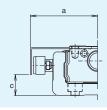


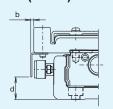
Sensoren

Sensorschiene

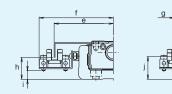


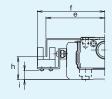
Näherungssensor TL-W3M _ _ (Omron)


			E	inheit: mm
Baugröße	а	b	С	d
KR20	33,5	7,5	5	5
KR26	38,5	7,5	6	6
KR33	43,5	0,5	10	10
KR46	56,5	0,5	23	23
KR55	63,5	1,5	22	22
KR65	78,5	-6,5	25	25


Näherungssensor APM-D3 (Yamatake)

			E	inheit: mm
Baugröße	а	b	С	d
KR15	27,8	-5,8	1,4	1,4
KR20	32,5	6,6	6	6
KR26	37,5	6,4	8	8
KR30H	43,3	3,3	8,8	9
KR33	42,5	-0,6	8,8	9
KR45H	53,2	1,2	14	14
KR46	55,4	-0,6	21,8	22
KR55	62,4	0,4	22	22
KR65	77,4	-7,5	25,1	25


Näherungssensor GL-12F (SUNX) und GXL-N12F (SUNX)


			E	inheit: mm
Baugröße	а	b	С	d
KR30H	45,0	5	8,8	9
KR33	44,5	1,5	8,8	9
KR45H	54,8	2,8	13,8	14
KR46	57,4	1,5	21,8	22
KR55	63,5	1,5	22	22
KR65	79	-6	25,1	25

Photosensor EE-SX671 (Omron)

					Е	inheit: mm
Baugröße	е	f	g	h	i	j
KR30H	51,3	64,3	11,3	13,8	1,4	13,5
KR33	50,8	63,7	7,8	12,8	1,6	13
KR45H	61,2	74,2	9,3	18,3	6,4	18,5
KR46	63,6	76,6	7,6	25,8	14,6	26
KR55	70,7	83,5	8,6	24,5	13,6	25
KR65	85,5	98,5	0,6	28,1	16,6	28

Photosensor EE-SX674 (Omron)

					Е	inheit: mm
Baugröße	е	f	g	h	i	j
KR30H	46,2	52,8	6,3	13,8	1,1	14
KR33	43,9	50,3	0,9	12,8	1,6	13
KR45H	56,2	62,7	4,2	19	6,1	19
KR46	56,7	63,2	0,7	25,8	14,6	26
KR55	63,8	70,1	1,8	24,5	13,6	25
KR65	78,8	85,1	-6,2	28,1	16,6	28

Näherungssensoren Typ TL-W3M□□ (OMRON)

Induktiver Näherungsinitiator in platzsparender flacher Bauform

- LED Schaltzustandsanzeige und Verpolungsschutz
- Beidseitige Montagemöglichkeit
- Schutzart IP 67

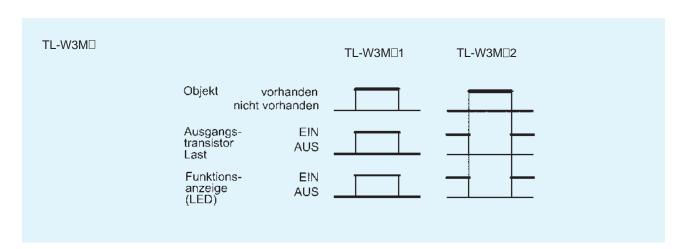
Bestellhinweise

Schaltabstand Sn		Ausgang			
	PI	NP	NPN		
	Schließer	Öffner	Schließer	Öffner	
3 mm	TL-W3MB1	TL-W3MB2	TL-W3MC1	TL-W3MC2	

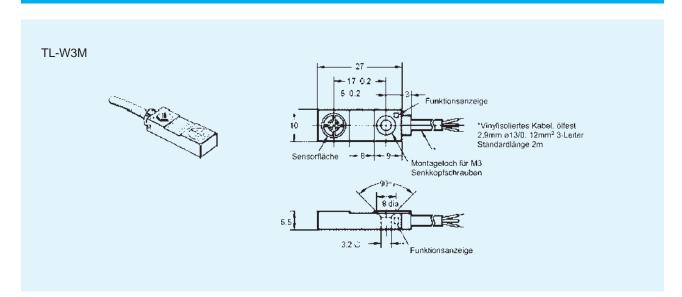
Technische Daten

Тур	TL-W3M
Schaltabstand Sn	3 mm ± 10 %
Versorgungsspannung	10 bis 30 VDC, Restwelligkeit: 10 % max.
Stromaufnahme	15 mA max. bei 24 VDC
Schaltobjekt	Eisenhaltige Metalle
Schalthysterese	10 % max. des Schaltabstandes Sn
Schaltfrequenz	600 Hz
Schaltausgang	100 mA max. offener Kollektor
Schutzfunktion	Verpolungsschutz
Anzeige	Schaltzustandsanzeige (rote LED)
Umgebungstemperatur	In Betrieb: -25°C bis 70°C (ohne Vereisung)
Relative Feuchtigkeit	In Betrieb: 35% bis 95%
Temperaturabhängigkeit	± 10% max. vom Schaltabstand bei
	-25°C bis 70°C (ohne Vereisung)
Spannungsabhängigkeit	± 2,5% vom Schaltabstand innerhalb ± 10%
	der Nennspannung
Restspannung	1,0 V max. bei Nennlast

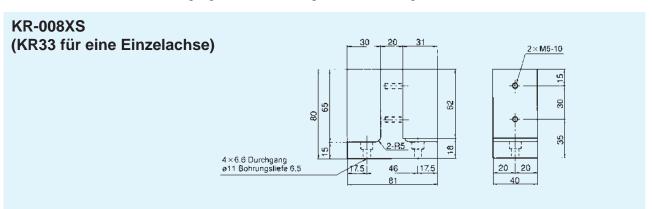
Anschlüsse

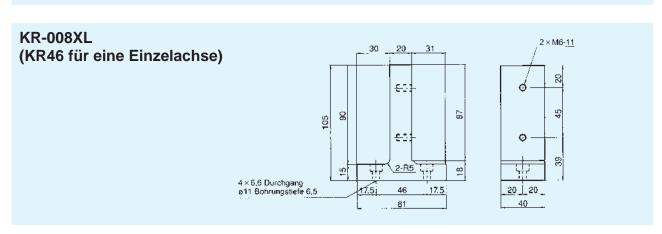

TL-W3MB Braun Schalt-kreis Schwarz Last OV

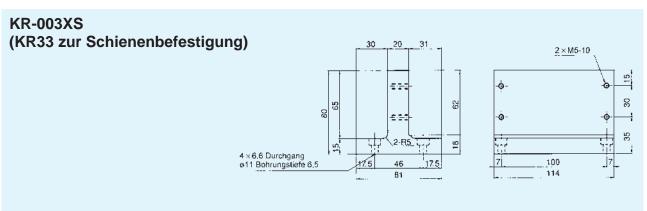
Ausgangsschaltungen

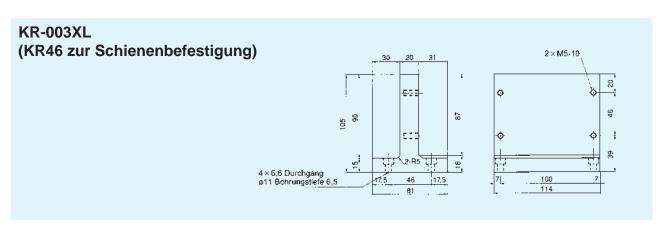


Funktionsdiagramme

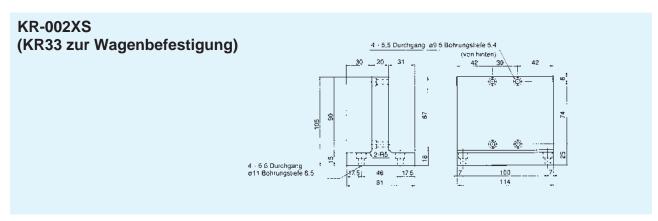

Abmessungen [mm]

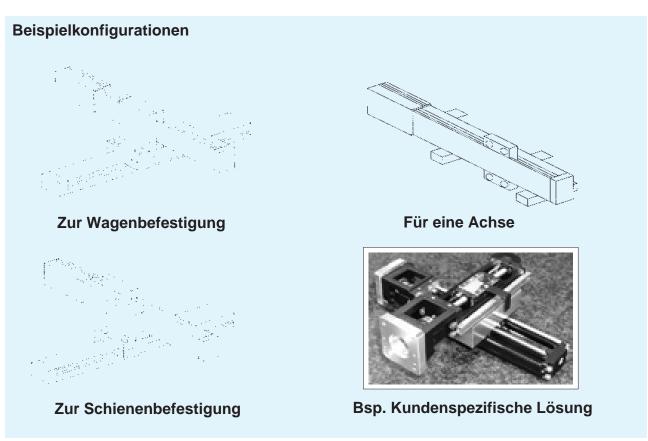





Befestigungs- und Verbindungselemente

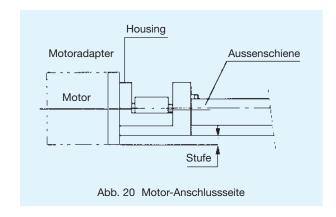
Zur Montage der Linearachsen KR sind standardisierte Befestigungs- und Verbindungselemente erhältlich. Diese bestehen aus Aluminium mit einem geringen Eigengewicht. Neben diesen standardisierten Elementen können aber auch kundenspezifische Befestigungs- und Verbindungselemente angefertigt werden. Bitte nehmen Sie zu THK Kontakt auf, falls Sie abweichende Befestigungs- oder Verbindungselemente benötigen.

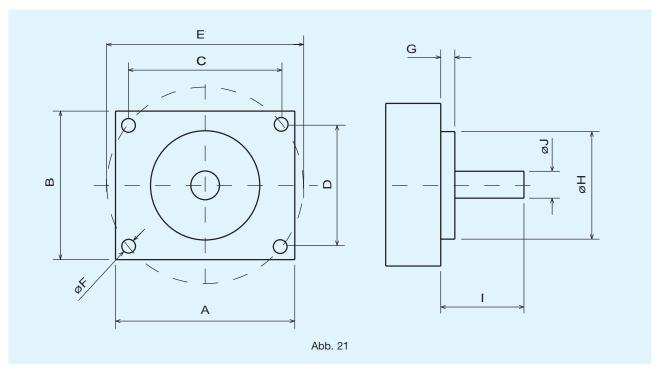




Sondertypen

Bitte nehmen Sie mit 证据 Kontakt auf, falls Sie eine Kompaktlinearachse KR mit abweichenden Spezifikationen einsetzen möchten.

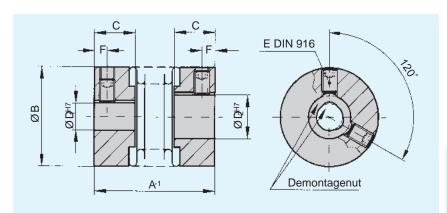

可用的 hat ergänzend zu diesem Katalog viele Möglichkeiten Sondertypen zu produzieren (andere Steigungen, andere Längen etc.).



Motorflansch

Motor

Die THK Kompaktlinearachse KR kann auf Wunsch mit einem geeigneten Motoradapter ausgeliefert werden. Geben Sie in diesem Fall den Namen des Motorherstellers und die Typennummer mit den Anschlussmaßen bei der Anfrage oder Bestellung an. Beachten Sie bitte bei der Anschlusskonstruktion, dass der Motor eventuell über die Aussenschiene hinausragen kann.


Bitte tragen Sie in diese Tabelle die Motordaten ein:

Maße in mm

	Motor- anschraub- fläche A × B	Lage der Befestigungs bohrungen C × D	Mittenkreis- durchmesser F	Bohrungs- durchmesser F	Bunddicke G	Bund- durchmesser H	Zapfenlänge incl. Bund	Zapfen- durchmesser
-			_	-				-

Kupplungen - Modell MK 1 -

Material:

Balg aus hochelastischem Edelstahl, Nabe AL

Aufbau:

Naben mit radialen Klemmschrauben DIN 916 und integrierter Demontagenut.

Eigenschaften

- spielfrei und verdrehsteif
- Ausgleich von Fluchtungsfehlern
- durch integrierte Demontagenut kann eine Abflachen der Welle entfallen
- preiswerte Ausführung
- niedriges Trägheitsmoment

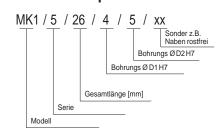
Bisherige Lösungen:

Technische Information

cgl ⁱ l	Serie Nematormonent Nussenductrinessen Possantasiande Standarthonhung Linguistation Robert Rabert Ra														
	T _{KN}	Α	В	С	D _{1/2}	D _{1/2}	Е	F	$J_{\rm ges}$		C _T			te	
0,5	0,05	14	6,5	4	1-3	2	1xM2	1,5	0,1	1	50	0,4	0,1	1	
1	0,1	20	10	5	1-5	3	1xM2,5	1,8	0,4	5	70	0,4	0,15	1	
		20							1,1	6	280	0,4	0,15	1	
5	0,5	23	15	6,5	3-9	6	1xM3	2	1,2	6	210	0,5	0,2	1,5	
		26							1,3	6	170	0,6	0,25	2	
		22							1,3	6	510	0,4	0,15	1	
10	1,0	25	15	6,5	3-9	6	1xM3	2	1,8	7	380	0,5	0,2	1,5	
		28							2	8	320	0,6	0,25	2	
15	1,5	24	19	7,5	3-12	6/10	2xM3	2	4,7	12	750	0,5	0,15	1,5	
13	1,0	29	13	7,5	0 12	0/10	ZAIVIO		5,5	14	700	0,7	0,2	1,5	
		26							15	22	1200	0,5	0,15	1,5	
20	2,0	31	25	11	3-16	6/10	2xM4	2,5	18	24	1300	0,6	0,2	1,5	
		35							20	26	1200	0,7	0,25	2	
45	4,5	37	32	13	6-22	10	2xM5	3,5	65	54	7000	0,7	0,2	1,5	
45	4,0	45	52	13	0-22	10	ZAIVIJ	5,5	70	58	5000	1	0,25	2	
100	10	43	40	15	6-28	10	2xM6	4	180	106	9050	1	0,2	1,5	
100	10	53	40	10	0 20	10	ZAIVIO		220	114	8800	1,2	0,3	2	

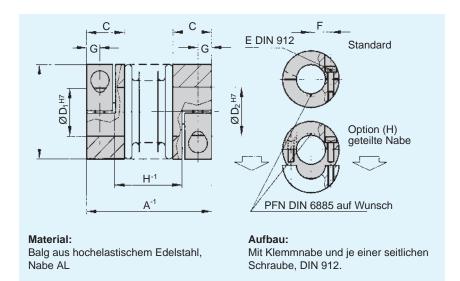
tegrierte Demontagenut ab ohrungsdurchmesser 4 H7.

Temperaturbereich:


-30 bis +120°C

Drehzahlen: bis 20.000 1/min., über 20.000 1/min. in ausgewuchteter Ausführung

Passungsspiel: Der Welle -Nabenverbindung 0,01 bis 0,08. Lebensdauer: Bei Beachtung der techn. Hinweise sind die Kupplungen dauerfest und wartungsfrei.


Sonderlösungen: Wie andere Passungen, Passfedernuten, Sondermaterial und Bälge sind kurzfristig möglich.

Bestellbeispiel:

Kupplungen - Modell MK 2 -

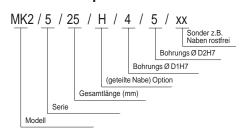
Eigenschaften

- spielfrei und verdrehsteif
- Ausgleich von Fluchtungsfehlern
- kraftschlüssige Verbindung durch Klemmnaben
- für hochdynamische Anwendungen
- niedriges Trägheitsmoment

Technische Information

cset	s he	nndre hno	ornerti Alla Santiános	inn)	innesser innesser	de der Me	Joe Immi Joe	AHT Inmil	Immi Immi Immon 2 Atanabatan			Intril Ge	/	gon ²]			John H. H. Lewel
	T _{KN}	А	В	С	D _{1/2}	D _{1/2}	Е	F	G	Н	J ges		Ст	N	1ax. Wer	te	
		25								12	2,6	9	280	0,4	0,15	1	
5	0,5	28	15	9	3-7	6	M2	4,5	4,5 3	15	2,8	9	210	0,5	0,2	1,5	
		31								18	3	9	170	0,6	0,25	1	
4.0		27						4,5 3		14	3	9	510	0,4	0,15	1	
10	1,0	30	15	9	3-7	6	M2		17	3,4	10	380	0,5	0,2	1,5		
		33								20	3,6	11	320	0,6	0,25	2	
15	1,5	30	19	11	3-8	6	M2,5	6	3,5	14,5	8,5	22	750	0,5	0,15	1,5	
		35								19,5	9,5	24	700	0,7	0,2	1,5	
00		35								17	25	36	1200	0,5	0,15	1,5	
20	2,0	40	25	13	3-12,7	6/10	M3	8	4	22	27	38	1300	0,6	0,2	1,5	
		44								26	29	40	1200	0,7	0,25	2	
45	4,5	46	32	16	5-16	10	M4	10	5	23,5	100	74	7000	0,7	0,2	1,5	
.5	,	54								31,5	108	78	5000	1	0,25	2	
100	10	50	40	16	5-24	10	M4	15	5	27,5	160	120	9050	1	0,2	1,5	
.00		60								37,5	205	130	8800	1,2	0,3	2	

Temperaturbereich:


-30 bis +120°C

Drehzahlen: bis 10.000 1/min., über 10.000 1/min. in ausgewuchteter Ausführung

Passungsspiel: Der Welle -Nabenverbindung 0,01 bis 0,05. **Lebensdauer:** Bei Beachtung der techn. Hinweise sind die Kupplungen dauerfest und wartungsfrei.

Sonderlösungen: Wie andere Passungen, Passfedernuten, Sondermaterial und Bälge sind kurzfristig möglich.

Bestellbeispiel:

Datasheet Kompaktlinearachse KR

bearbeitet von Firma Ansprechpartner Straße Postleitzahl/Ort	Telefo	Telefon Telefax					
Beschreibung der Anwendung:							
Achse		х	Υ	Z			
Einbaulage (horizontal, vertikal, quer)							
Hublänge	mm						

m/s

 m/s^2

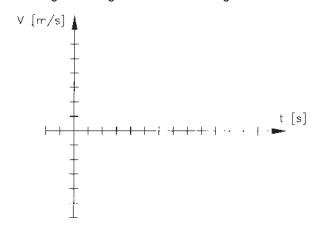
kg N

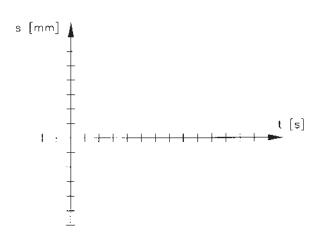
mm

mm

Bitte fügen Sie möglichst eine Anwendungskizze bei.

max. Geschwindigkeit


max. Beschleunigung

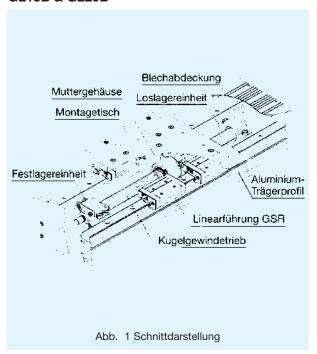

Positioniergenauigkeit

Wiederholgenauigkeit

bewegte Masse

Axiallast

Bitte folgende Optionen anbieten:


- Faltenbalgabdeckung
- Blechabdeckung
- induktive Näherungssensoren
- Photosensoren
- Sensorschiene, Schaltwinkel

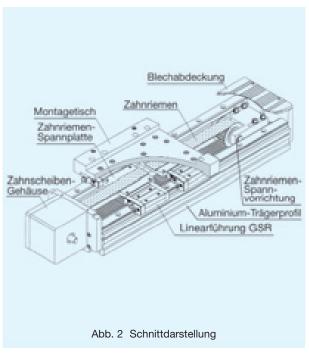
- Motorflansch (bitte Anschlussmaße beifügen)
- Kupplung

市出 Linearachse mit Kugelgewindetrieb

GL15B & GL20B

Steifer und kompakter Aufbau

Die Verbindung der THK Linearführung GSR mit einem steifen, extrudierten Aluminiumprofil und einem THK Kugelgewindetrieb ergibt für die Linearachsen der GL15B und GL20B einen steifen und kompakten Aufbau bei hohen Tragzahlen.


Hohe Geschwindigkeiten

Durch den Einsatz von Kugelgewindetrieben mit großer Steigung können einige Typen eine maximale lineare Verfahrgeschwindigkeit von 2 m/s erreichen.

Standardisierte Hübe bis 1,5 m

冗出ば Linearachse mit Zahnriemen

GL15E & GL20E

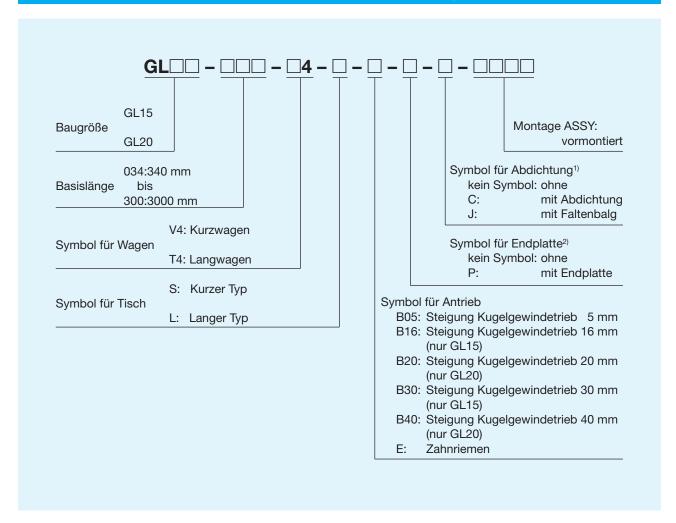
Steifer und kompakter Aufbau

Die Verbindung der THK Linearführung GSR mit einem steifen, extrudierten Aluminiumprofil und einem Polyurethanzahnriemen mit Stahllitzenträger ergibt für die Linearachsen GL15E und GL20E einen steifen und kompakten Aufbau bei hohen Tragzahlen.

Hohe Geschwindigkeiten

Durch den Einsatz von Zahnriemen können maximale lineare Verfahrgeschwindigkeiten von 3 m/s erreicht werden.

Standardisierte Hübe bis 2,7m



Standard - Hub- bzw. Basislängen (ohne Faltenbälge)

Tab. 1 Einheit: mm

Baugröße	Basislänge L ₀	340	460	580	700	820	1060	1240	1420	1600	1780	1960	2200	2320	2500	3000
GL15B	Hub (Kugelgewindetrieb)	100	220	340	460	580	820	1000	1180	_	_	_	_	_	_	_
GL15E	Hub (Zahnriemen)	70	190	310	430	550	790	970	1150	1330	1510	1690	_	_	_	_
GL20B	Hub (Kugelgewindetrieb)	_	200	320	440	560	800	980	1160	1340	1520	_	_	_	_	_
GL20E	Hub (Zahnriemen)	_	160	280	400	520	760	940	1120	1300	1480	1660	1900	2020	2200	2700

Aufbau der Bestellbezeichnung

¹⁾ Verfügbar bis zur Basislänge 1240 mm.

Beispiel 1: (Vormontiert)

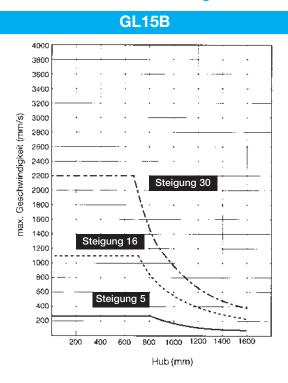
GL15-082-T4-L-B30-P-J-ASSY

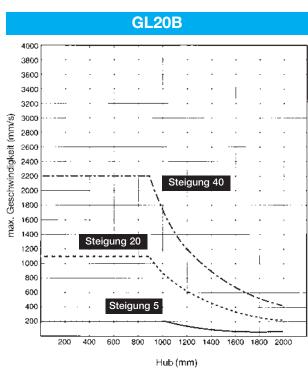
Beispiel 2: (Bausatz)

GL20-070-T4-L-E-C-KIT

Bei Bestellung eines Bausatzes werden alle Teile zusammen geliefert.

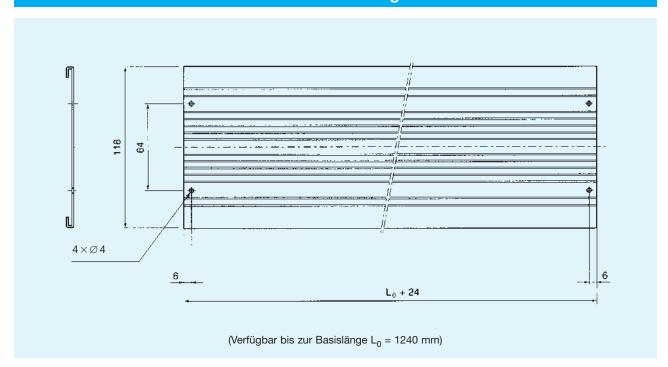
²⁾ Die Endplatten sind nur für Antriebe mit Kugelgewindetrieben. Bei Zahnriemen-Antrieb ist kein Symbol erforderlich.

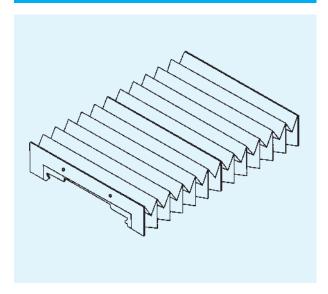

Technische Daten


Die dynamische und statische Tragzahl der Linearführung, des Kugelgewindetriebs und der Lager sowie die Momentenbelastungen des Linearführungssystems werden zur Ermittlung der statischen Sicherheit bzw. zur Lebensdauerberechnung herangezogen. Hierzu fließen die spezifischen Belastungsbedingungen und -zyklen mit ein. Bitte vergleichen Sie dazu die näheren Angaben zur Baureihe GSR (S. 300) und zu den Kugelgewindetrieben im Katalog "Standard-Kugelgewindetriebe".

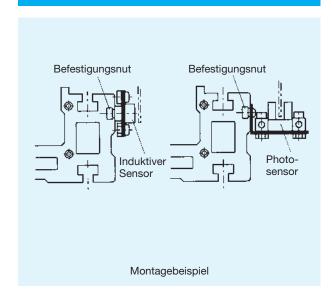
Die technischen Daten entnehmen Sie bitte den Seiten 450 bis 453.

Die Tragzahlen und die zulässigen statischen Momente der in der Linearachse GL eingebauten THK Kompaktführung GSR-T basieren auf einer nominellen Lebensdauer von 50.000 m Verfahrweg. Die angegebenen Werte gelten nur für das eingebaute Linearführungssystem. Im Hinblick auf die erwünschte Lebensdauer haben sich im allgemeinen geringere Belastungen als sinnvoll erwiesen. Bei Fragen zur technischen Auslegung wenden Sie sich daher bitte an den technischen Kundendienst Ihrer THK Niederlassung.


Maximale Geschwindigkeit für die Kugelgewindetriebachsen GL15B und GL20B



Blechabdeckung



Faltenbalgabdeckung

Für den Einsatz in Umgebungen mit starker Verschmutzung oder bei anderen kritischen Einflüssen können die Linearachsen des Typs GL mit Faltenbälgen ausgerüstet werden. Bitte wenden Sie sich an den technischen Kundendienst Ihrer

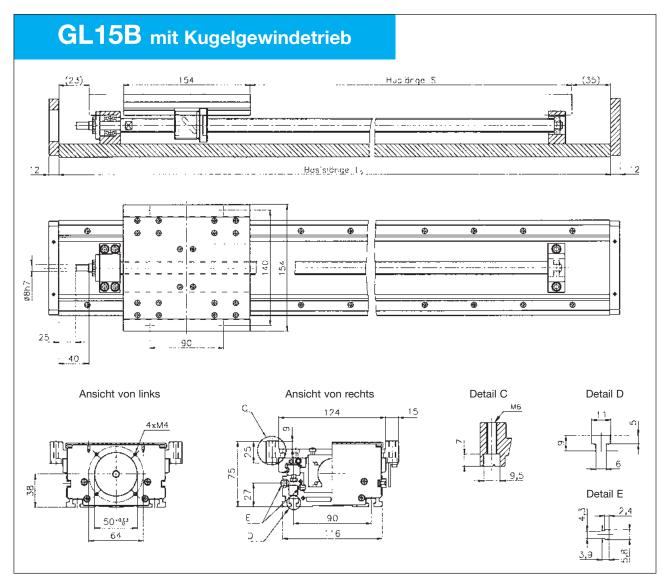

Sensoren

Photo-Sensor	EE-SX671	
Induktive Sensoren	TL-W3MC1	NPN-Schließer
	TL-W3MC2	NPN-Öffner
	TL-W3MB1	PNP-Schließer
	TL-W3MB2	PNP-Öffner

Für eine einfache Befestigung der Sensoren sind am Aluminium-Trägerprofil beidseitig Nuten vorgesehen. Die in der Tabelle aufgeführten Sensoren sind ab Lager lieferbar.

Daten der Kompaktführung								
Тур	GSR15T							
dyn. Tragzahl C (N)	5690 ¹⁾							
stat. Tragzahl C ₀ (N)	8430 ¹⁾							

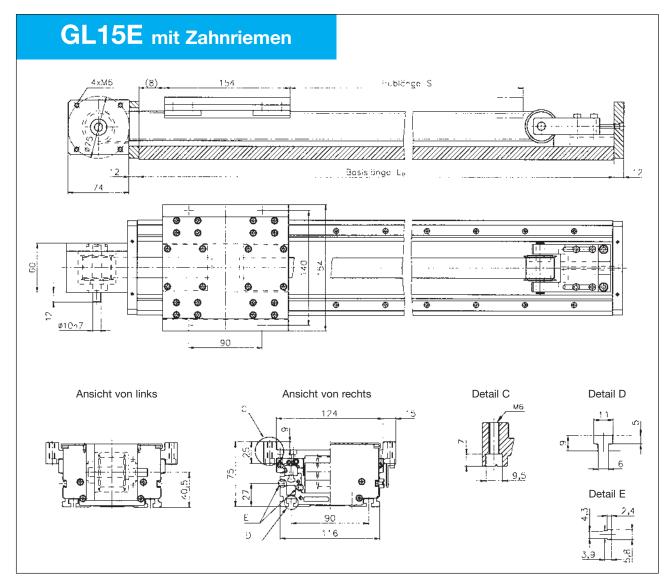
¹⁾ Werte beziehen sich auf einen Führungswagen.

Statische Momente							
M _a	(Nm)	1130					
M _b	(Nm)	1040					
M _c	(Nm)	1140					

Daten des Festlagers							
dyn. Tragzahl C (N) 6080							
stat. Tragzahl C ₀ (N)	450						

Daten des Kugelgewindetriebs									
Durchmesser (mm)	16	16	15						
Steigung (mm)	5	16	30						
dyn. Tragzahl C (N)	5400	5800	4300						
stat. Tragzahl C ₀ (N)	13300	12900	9300						
Genauigkeitsklasse	C10								
Axialspiel	<0,1mm								

Wiederholgenauigkeit	+/-0,02mm


Flächenträgheitsmomente								
l _x	(mm ⁴)	2.0×10^{5}						
l _y	(mm ⁴)	2,7 × 10 ⁶						
М	(kg/m)	7,41)						

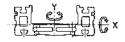
¹⁾ inkl. Schienen

Hublänge: S	100	220	340	460	580	820	1000	1180
Basislänge: L ₀	340	460	580	700	820	1060	1240	1420

Daten der Kompaktführung			
Typ GSR15T			
dyn. Tragzahl C (N)	5690 ¹⁾		
stat. Tragzahl C ₀ (N)	84301)		

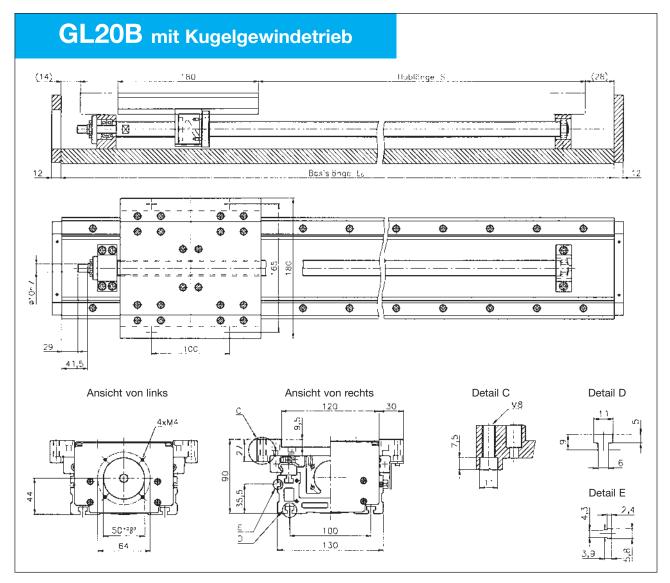
¹⁾ Werte beziehen sich auf einen Führungswagen.

Statische Momente				
M _a	(Nm)	1130		
M _b	(Nm)	1040		
M _c	(Nm)	1140		



Daten des Zahnriemens				
Durchmesser der				
Zahnscheibe (mm)	35,01			
Zahnteilung (mm)	5,0			
max. Zugkraft (N)	765			
Zahnriemenbreite (mm)	25			

Wiederholgenauigkeit	+/-0,08mm


Flächenträgheitsmomente				
$I_{\rm x}$ (mm ⁴) 2,0 × 10 ⁵				
l _y	(mm ⁴)	2.7×10^{6}		
М	(kg/m)	7,41)		

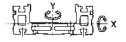
¹⁾ inkl. Schienen

Hublänge: S	70	190	310	430	550	790	970	1150	1330	1510	1690
Basislänge: L ₀	340	460	580	700	820	1060	1240	1420	1600	1780	1960

Daten der Kompaktführung				
Тур	GSR20T			
dyn. Tragzahl C (N)	92201)			
stat. Tragzahl C ₀ (N)	13200¹)			

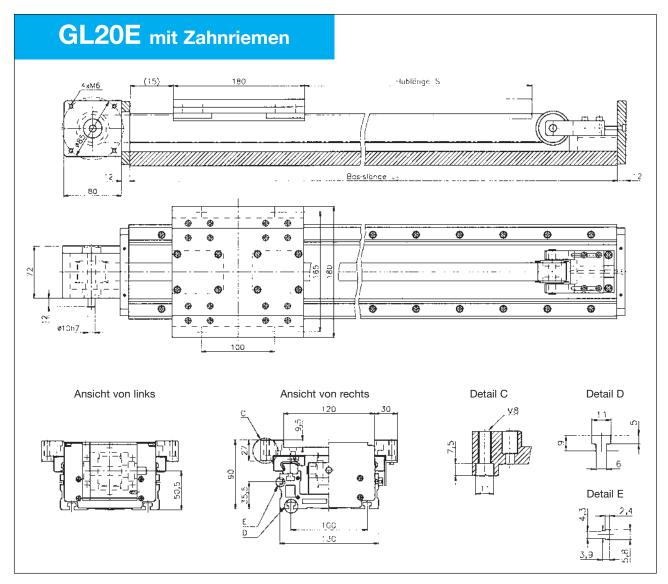
¹⁾ Werte beziehen sich auf einen Führungswagen.

Statische Momente				
M _a (Nm) 1970				
M _b	(Nm)	1810		
M _c	(Nm)	2000		



Daten des Festlagers				
dyn. Tragzahl C (N) 6660				
stat. Tragzahl C ₀ (N)	550			

Daten des Kugelgewindetriebs					
Durchmesser (mm)	20	20	20		
Steigung (mm)	5	20	40		
dyn. Tragzahl C (N)	6000	7700	5400		
stat. Tragzahl C ₀ (N)	16500 22300 13600				
Genauigkeitsklasse	C10				
Axialspiel	<0,1mm				


Flächenträgheitsmomente				
$I_{\rm x}$ (mm ⁴) 4,63 × 10 ⁵				
l _y	(mm ⁴)	4,68 × 10 ⁶		
М	(kg/m)	10,41)		

¹⁾ inkl. Schienen

Hublänge: S	200	320	440	560	800	980	1160	1340	1520
Basislänge: L ₀	460	580	700	820	1060	1240	1420	1600	1780

Daten der Kompaktführung							
Тур	GSR20T						
dyn. Tragzahl C (N)	92201)						
stat. Tragzahl C ₀ (N)	13200¹)						

¹⁾ Werte beziehen sich auf einen Führungswagen.

Statische Momente								
M _a	(Nm)	1970						
M _b	(Nm)	1810						
M _c	(Nm)	2000						

Daten des Zahnriemens								
Durchmesser der								
Zahnscheibe (mm)	38,2							
Zahnteilung (mm)	5,0							
max. Zugkraft (N)	765							
Zahnriemenbreite (mm)	25							

Wiederholgenauigkeit	+/-0,08mm

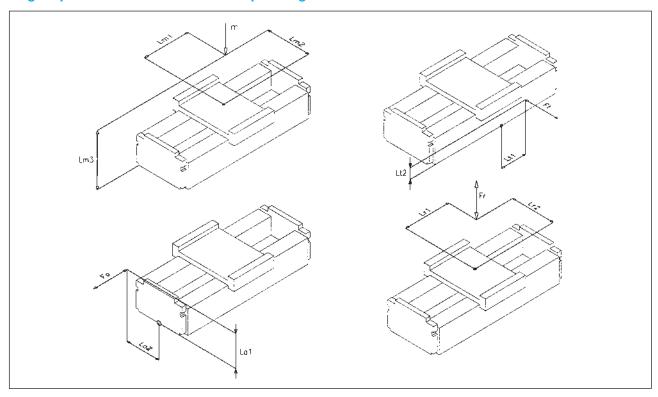
Flächenträgheitsmomente										
$I_{\rm x}$ (mm ⁴) 4,63 × 10 ⁵										
l _y	(mm ⁴)	4,68 × 10 ⁶								
М	(kg/m)	10,41)								

¹⁾ inkl. Schienen

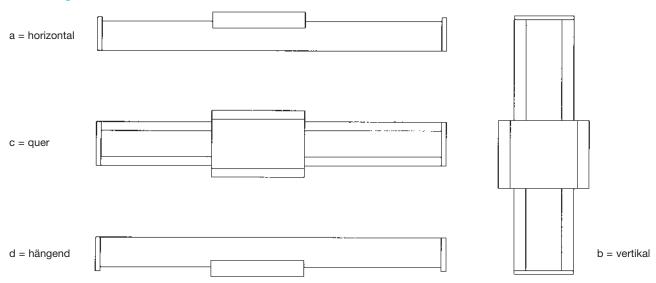
Hublänge: S	160	280	400	520	760	940	1120	1300	1480	1660	1900	2020	2200	2700
Basislänge: L ₀	460	580	700	820	1060	1240	1420	1600	1780	1960	2200	2320	2500	3000

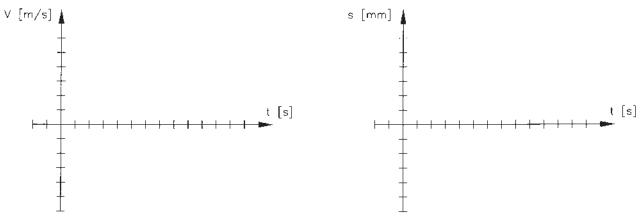
Datasheet Linearachse GL bearbeitet von Datum: **Firma** Telefon: Ansprechpartner Telefax: Straße Postleitzahl/Ort Beschreibung der Anwendung **Achse** у Einbaulage (horizontal, vertikal, quer, hängend) gewünschte Antriebsart Kugelgewindetrieb B (GL 15 - 5, 16, 30 mm) Steigung h (GL 20 - 5, 20, 40 mm) Zahnriemen E Hub s mm max. Geschwindigkeit v m/s m/s² max. Beschleunigung a bewegte Masse m kg Schwerpunktlage der Masse m LM₁ mm LM₂ mm LM₃ mm Zusätzliche Kraft F (r, t, a) Ν Angriffspunkte der Kräfte F (r, t, a) Lr1/Lr2 mm Lt1/Lt2 mm La1/La2 mm Positioniergenauigkeit mm Wiederholgenauigkeit mm Geforderte Lebensdauer km Bitte fügen Sie möglichst eine Anwendungskizze bei. Bitte folgende Optionen anbieten: O induktive Näherungssensoren Faltenbalg Blechabdeckung Photosensoren

Schaltwinkel

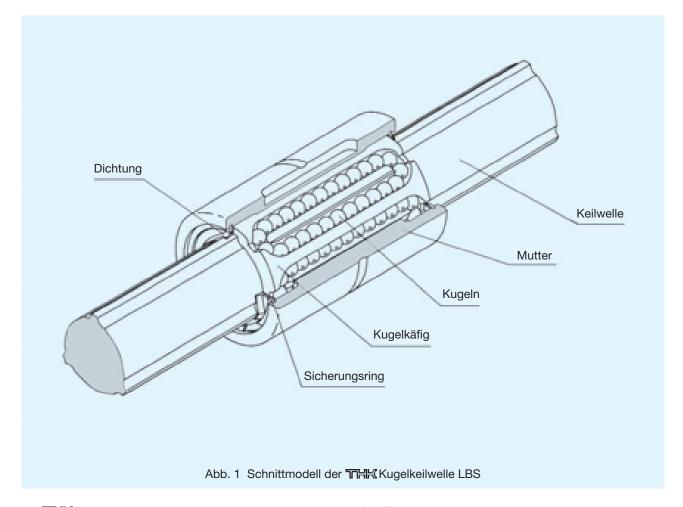

Kupplung

O Motorflansch (bitte Maßblatt des Motors beifügen)


○ max. Drehmoment M=....(Nm)


Angriffspunkte der Kräfte und Schwerpunktlagen der Massen:

Einbaulagen:



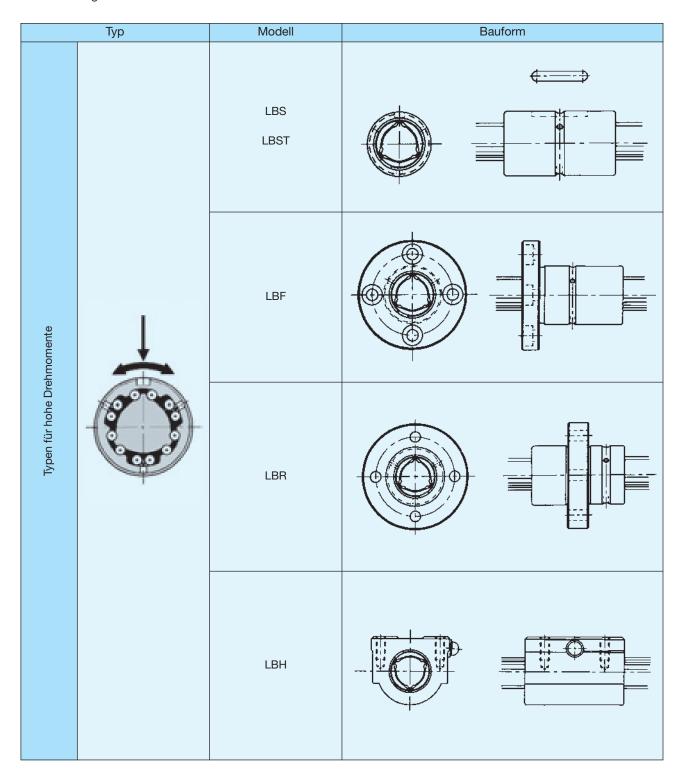
Verfahrzyklus:

1. 冗出 Kugelkeil- und Kugelnutwellen

Die THK Kugelkeil- und Kugelnutwellen sind verdrehgesicherte Wellenführungen, bei denen Kugeln zwischen Welle und Mutter in feingeschliffenen Laufrillen ablaufen. Auf diese Weise können Drehmomente übertragen und gleichzeitig lineare Bewegungen ausgeführt werden. Im Gegensatz zu konventionellen Systemen kann hierbei die Mutter vorgespannt werden, um auch unter schwierigen Betriebsbedingungen, wie bei Stößen und Vibrationen oder anderen anspruchsvollen Anforderungen, hervorragende Ergebnisse mit hoher Genauigkeit und guten Schnelllaufeigenschaften zu realisieren.

Die Tragzahlen einer Kugelkeil- bzw. einer Kugelnutwelle sind verglichen mit Kugelbuchsensystemen gleichen Durchmessers um mehr als das zehnfache größer. Somit können die Wellenführungen bei kompakteren Abmessungen und längerer Lebensdauer höhere überhängende Lasten und Momente aufnehmen als ein System mit Kugelbuchsen.

2. Auswahldiagramm


Bestimmung der Anwendungsbedingungen	Hublänge : Ls Einbauraum Geschwindigkeit : v Steifigkeit Belastung : W Arbeitszyklus Erforderliche L	ebensdauer
2. Auswahl des geeigneten Typs	Einteilung der verdrehgesicherten Wellenführungen	Siehe Seite 458
3. Berechnung des Wellendurchmessers	Berechnung des Wellendurchmessers und der Wellenlänge, Berücksichtigung der Einbaubedingung, der zulässigen Belastung, der Durchbiegung und der Torsion.	Siehe Seite 462
4. Lebensdauerberechnung Vorläufige Typenauswahl	Durchmesser der Muttern Wellendurchmesser Anzahl der Muttern Anzahl der Wellen Nein Lebensdauerberechnung	Siehe Seite 469
5. Festlegung der Genauigkeit	Genauigkeitsklasse der Welle	Siehe Seite 478
6. Schmierung und andere Schutzvorrichtungen	Schmierung, Staubschutz und Vorsichtsmaßnahmen	Siehe Seite 480

3. Einteilung der verdrehgesicherten Wellenführungen

Die Kugelkeilwellen und die Kugelnutwellen werden in die Baugruppen LBS und LT eingeteilt. Wichtige Unterscheidungskriterien sind dabei die Wellengeometrie mit Keilflanken oder Nuten sowie der unterschiedliche Kontaktwinkel zwischen den Wälzkörpern (Kugel) und den eingeschliffenen Führungsbahnen.

Zu jeder Baugruppe ist eine große Auswahl an verschiedenen Muttern für die unterschiedlichsten Einbaubedingungen lieferbar.

Wellendurchmesser	Siehe Seite	Aufbau und Merkmale	Typische Anwendungen
Nenndurchmesser 15 - 150 mm	S. 490	 Am Umfang der Welle sind in einem Winkel von 120° die Keilflanken angeordnet. An diesen Keilflanken befinden sich beidseitig geschliffene Kreisbogenlaufrillen, in denen Kugeln ohne oder mit einer bestimmten Vorspannung ablaufen. Durch die Umlenkung der Kugeln innerhalb der Keilwellenmutter wird ein mini- 	 Säulen und Arme von Industrierobotern automatische Ladevorrichtungen Transfermaschinen automatische Transfereinrichtungen Reifenformmaschinen Spindeln von Punktschweißmaschinen Führungswellen für schnelle Lackierautomaten
Nenndurchmesser	S. 490	maler Mutterdurchmesser realisiert. Auch bei erhöhter Vorspannung bleiben die guten Laufeigenschaften erhalten. Mit dem großen Kugel-Kontaktwinkel von 45° wird die Einfederung minimiert und eine sehr steife, verdrehgesicherte Wellenführung realisiert. Ohne Winkelspiel. Zur Übertragung von hohen	 Nietmaschinen Drahtwickelmaschinen Aufspannköpfe von Funkenerosionsmaschinen Antriebsspindeln von Schleifmaschinen Wechselgetriebe Präzisionsschaltspindeln
15 - 100 mm	S. 490	Drehmomenten.	
Nenndurchmesser 15 - 50 mm	S. 491		

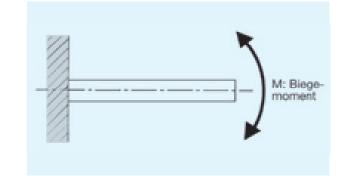
	Тур	Modell	Bauform
e Drehmomente		LT	
Typen für mittlere Drehmomente		LF	
ıstypen		LBG LBGT	
Rotationstypen		LTR	

Wellendurchmesser	Siehe Seite	Aufbau und Merkmale	Typische Anwendungen
Nenndurchmesser 4 - 100 mm	S. 515	 Auf der Welle sind längsseits Kreisbogenlaufrillen einge- schliffen, in denen Kugeln mit oder ohne einer bestim- mten Vorspannung abrollen. Der Kugel-Kontaktwinkel beträgt 20°. Mit einer ent- sprechenden Vorspannung besitzt diese Kugelnutwelle eine hervorragende Moment- steifigkeit ohne Winkelspiel. 	 Wellen für Führungsgestelle für lineare Bewegungen unter hoher Belastung. Ladevorrichtungen mit vorgegebener Winkelstellung bei festgelegten Positionen. Einachsige Konstruktionen, wie die Spindel von automatischen Brennschneidmaschinen, bei denen eine Welle verdrehfest gelagert
Nenndurchmesser 6 - 50 mm	S. 515		sein muß. Arme und Säulen von Industrierobotern Punktschweißmaschinen Buchbindemaschinen automatische Ladeein richtungen verschiedene XY-Schreiber automatische Zwirnmaschinen optische Meßgeräte
Nenndurchmesser 20 - 85 mm	S. 535	Gleicher Aufbau wie Typ LBS, nur daß die Mutter mittig mit einem Ritzel versehen ist. Beidseitig davon ist jeweils eine Außenbuchse, die auf kompakten Radial- und Axialnadellagern gelagert ist.	Ideal für Drehmoment- übertragung bei verschie- denen Zahnradantrieben.
Nenndurchmesser 16 - 60 mm	S. 544	Bei dieser leichten und kompakten Ausführung laufen die Kugeln wie bei dem Typ LT in Kreisbogenlaufrillen. Zusätzlich ist dieser Typ mit Stützlagern ausgestattet.	 Z-Achse für Scara-Roboter Wickelmaschinen

4. Berechnung des Wellendurchmessers

Auf die Welle können radiale Belastungen und Momente wirken. Bei verhältnismäßig hohen Belastungen oder angreifenden Momenten muß der erforderliche Wellendurchmesser berechnet werden.

4.1 Welle bei Biegemoment


Bei einem auf die Welle wirkenden Biegemoment benutzen Sie bitte die unten stehende Formel (1) zur Ermittlung des geeigneten Wellendurchmessers.

$$M = \sigma \times Z \text{ und } Z = \frac{M}{\sigma}$$
 (1)

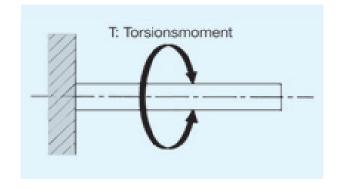
M: max. wirkendes Biegemoment (Nmm)

σ: zul. Biegespannung 98 N/mm²

Z: axiales Widerstandsmoment (mm³) (siehe Tab. 3 und 4)

4.2 Welle bei Torsionsmoment

Bei einem auf die Welle wirkendem Torsionsmoment benutzen Sie bitte die unten stehende Formel (2) zur Ermittlung des geeigneten Wellendurchmessers.


$$T = \tau_a \times Z_P \text{ und } Z_P = \frac{T}{\tau_a}$$
 (2)

T: max. wirkendes Torsionsmoment (Nmm)

 τ_a : zul. Torsionsspannung 49 N/mm²

Z_P: polares Widerstandsmoment (mm³)

(siehe Tab. 3 und 4)

4.3 Welle bei Biege- und Torsionsmomenten

Bei auf die Welle simultan einwirkenden Biege- und Torsionsmomenten sind das einfache äquivalente Biegemoment ($M_{\rm e}$) und das einfache äquivalente Torsionsmoment ($T_{\rm e}$) zu berechnen.

Anschließend ergibt der größere Wert aus diesen beiden Berechnungen den Wellendurchmesser.

Äquivalentes Biegemoment:

$$M_{e} = \frac{M + \sqrt{M^{2} + T^{2}}}{2} = \frac{M}{2} \left(1 + \sqrt{1 + (\frac{T}{M})^{2}} \right) \dots (3)$$

$$M_e = \sigma \times Z$$

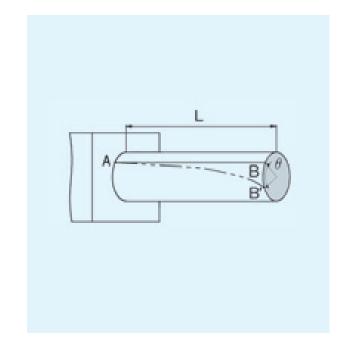
Äquivalentes Torsionsmoment:

$$T_e = \sqrt{M^2 + T^2} = M \times \sqrt{1 + (\frac{T}{M})^2}$$
(4)

$$T_e = \tau_a \times Z_P$$

4.4 Steifigkeit der Welle

Der Verdrehwinkel bezogen auf 1 m einer Welle drückt die Steifigkeit der Welle aus. Der zulässige Verdrehwinkel sollte 1/4° nicht überschreiten.


$$\theta = 57,3 \times \frac{\mathsf{T} \times \mathsf{L}}{\mathsf{G} \times \mathsf{I}_{\mathsf{P}}} \tag{5}$$

$$Torsionssteifigkeit = \frac{Verdrehwinkel}{Wellenlänge}$$

$$\frac{\theta \times \ell}{L} < 1/4^{\circ}$$

G: Schubmodul (7,9 \times 10⁴ N/mm²)

 ℓ : Wellenlänge 1000 mm

4.5 Durchbiegung und Biegewinkel der Welle

Die Durchbiegung und der Biegewinkel einer Welle sollten einzeln nach den unten aufgeführten Belastungsbedingungen und den entsprechenden Formeln ermittelt werden (siehe Tabellen 1 und 2). In den Tabellen 3 und 4 sind das Flächenträgheitsmoment (I) und das Widerstandsmoment (Z) zur Berechnung des Wellendurchmessers und der Wellendurchbiegung angegeben.

Tab. 1 Formeln zur Berechnung der Durchbiegung und des Biegewinkels

Lagerungsart	Belastung	Formel für Durchbiegung	Formel für Neigungswinkel
Lagerung los - los	χ ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν	$\delta_{\text{max}} = \frac{P\ell^3}{48 \text{ EI}}$	$\alpha_1 = 0$ $\alpha_2 = \frac{P\ell^2}{16 \text{ El}}$
Lagerung fest - fest	xemo P	$\delta_{\text{max}} = \frac{P\ell^3}{192 \text{ El}}$	$\alpha_1 = 0$ $\alpha_2 = 0$
Lagerung los - los	Streckenlast e	$\delta_{\text{max}} = \frac{5p\ell^4}{384 \text{ EI}}$	$\alpha_2 = \frac{p\ell^3}{24 \text{ El}}$
Lagerung fest - fest	Streckenlast	$\delta_{\text{max}} = \frac{p\ell^4}{384 \text{ EI}}$	α ₂ = 0

Tab. 2 Formeln zur Berechnung der Durchbiegung

Lagerungsart	Belastung	Formel für Durchbiegung	Formel für Neigungswinkel
Lagerung fest - frei	o max	$\delta_{\text{max}} = \frac{P\ell^3}{3 \text{ El}}$	$\alpha_1 = \frac{P\ell^2}{2 EI}$ $\alpha_2 = 0$
Lagerung fest - frei	Streckenlast X	$\delta_{\text{max}} = \frac{p\ell^4}{8 \text{ EI}}$	$\alpha_1 = \frac{p\ell^3}{6 \text{ EI}}$ $\alpha_2 = 0$
Lagerung los - los	Xemo α_1 M_0 α_2	$\delta_{\text{max}} = \frac{\sqrt{3} M_0 \ell^2}{216 \text{ EI}}$	$\alpha_1 = \frac{M_0 \ell}{12 \text{ EI}}$ $\alpha_2 = \frac{M_0 \ell}{24 \text{ EI}}$
Lagerung fest - fest	Xemo xemo	$\delta_{\text{max}} = \frac{M_0 \ell^2}{216 \text{ EI}}$	$\alpha_1 = \frac{M_0 \ell}{16 \text{ EI}}$ $\alpha_2 = 0$

P : Einzelkraft (N) δ_{1} : Durchbiegung am Belastungspunkt (mm) $\delta_{ ext{max}}$: max. Durchbiegung p : Streckenlast (N/mm) (mm) ℓ : ungestützte Länge (mm) α_{1} : Biegewinkel am Belastungspunkt $lpha_{
m 2}$: Biegewinkel an der Lagerung I : Flächenträgheitsmoment (mm⁴)M₀: Moment (Nmm) E: Elastizitätsmodul (2,06 x 10⁵ N/mm²)

4.6 Kritische Drehzahl

Wird die Drehzahl der Welle während des Betriebs bis zu ihrer Eigenfrequenz erhöht, kann dies zum Ausfall der Wellenführung durch Resonanzschwingungen führen. Deshalb sollte die Drehzahl die kritische Drehzahl nicht erreichen oder überschreiten.

Läuft die Welle mit einer Drehzahl, die im kritischen Bereich liegt, muß der Wellendurchmesser überprüft werden. Im allgemeinen sollte die tatsächliche Drehzahl mindestens 20% unter der kritischen Drehzahl liegen.

Kritische Drehzahl:

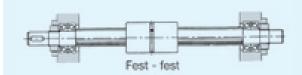
$$N_{C} = \frac{60\lambda^{2}}{2\pi \times \ell_{b}^{2}} \times \sqrt{\frac{E \times 10^{3} \times I}{\gamma \times A}} \dots (6)$$

 $N_{\mathbb{C}}$: kritische Drehzahl (min⁻¹) $\ell_{\rm b}$: Stützlänge (mm) $(2,06 \times 10^5 \text{ N/mm}^2)$ E: Elastizitätsmodul I: min. Flächenträgheitsmoment (mm⁴)


 $I = \frac{\pi}{64} d_1^4$ d₁: Kerndurchmesser (mm)

 $(7,85 \times 10^{-6} \text{ kg/mm}^3)$ γ : Dichte A : Querschnittsfläche (mm²)

 $A = \frac{\pi}{4} d_1^2$ d₁: Kerndurchmesser (mm)


λ : Faktor für Lagerungsart

① fest - frei $\lambda = 1,875$ 2 los - los $\lambda = 3,142$ $\lambda = 3,927$ 3 fest - los 4 fest - fest $\lambda = 4,730$

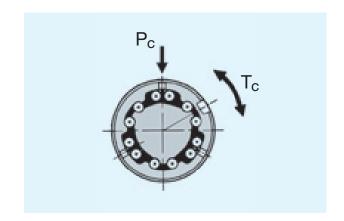
4.7 Flächenträgheits- und Widerstandsmomente

Tab. 3 Flächenträgheits- und Widerstandsmomente der Keilwelle LBS

Baugröße		Flächenträgheits- moment I [mm ⁴]	Widerstands- moment Z [mm³]	polares Flächen- trägheitsmoment I _p [mm ⁴]	polares Wider- standsmoment Z _p [mm³]
LBS 15	Vollwelle	$1,27 \times 10^{3}$	$2,00 \times 10^{2}$	$2,55 \times 10^{3}$	$4,03 \times 10^{2}$
LBS 20	Vollwelle	$3,82 \times 10^{3}$	$4,58 \times 10^{2}$	$7,72 \times 10^3$	$9,26 \times 10^{2}$
LBO ZO	Hohlwelle	$3,79 \times 10^{3}$	$4,56 \times 10^{2}$	$7,59 \times 10^{3}$	$9,11 \times 10^{2}$
LBS 25	Vollwelle	$9,62 \times 10^{3}$	$9,14 \times 10^{2}$	1,94×10 ⁴	$1,85 \times 10^{3}$
LBO 25	Hohlwelle	$9,50 \times 10^{3}$	$9,05 \times 10^{2}$	1,90×10 ⁴	$1,81 \times 10^{3}$
LBS 30	Vollwelle	1,87×10 ⁴	$1,50 \times 10^3$	$3,77 \times 10^4$	$3,04 \times 10^{3}$
LDO 30	Hohlwelle	1,78×10 ⁴	$1,44 \times 10^{3}$	$3,57 \times 10^{4}$	$2,88 \times 10^{3}$
LBS 40	Vollwelle	6,17×10 ⁴	$3,69 \times 10^{3}$	1,25×10 ⁵	$7,46 \times 10^{3}$
LDO 40	Hohlwelle	5,71×10 ⁴	$3,42 \times 10^{3}$	1,14×10 ⁵	$6,84 \times 10^{3}$
LBS 50	Vollwelle	1,49×10 ⁵	$7,15 \times 10^{3}$	3,01×10 ⁵	$1,45 \times 10^{4}$
LDO 30	Hohlwelle	1,34×10 ⁵	$6,46 \times 10^{3}$	2,69×10 ⁵	$1,29 \times 10^4$
LBS 60	Vollwelle	$3,17 \times 10^{5}$	$1,26 \times 10^4$	6,33×10 ⁵	$2,53 \times 10^{4}$
LDO 00	Hohlwelle	$2,77 \times 10^{5}$	$1,11 \times 10^4$	5,54×10 ⁵	$2,21 \times 10^{4}$
LBS 70	Vollwelle	5,77×10 ⁵	$1,97 \times 10^{4}$	1,16×10 ⁶	$3,99 \times 10^{4}$
LBO 10	Hohlwelle	5,07×10 ⁵	$1,74 \times 10^{4}$	1,01×10 ⁶	$3,49 \times 10^{4}$
LBS 85	Vollwelle	1,33×10 ⁶	$3,69 \times 10^{4}$	2,62×10 ⁶	$7,32 \times 10^4$
LDO 00	Hohlwelle	1,11×10 ⁶	$3,10 \times 10^{4}$	$2,22 \times 10^{6}$	$6,20 \times 10^4$
LBS 100	Vollwelle	2,69×10 ⁶	6,25×10 ⁴	5,33×10 ⁶	1,25×10⁵
LDO 100	Hohlwelle	2,18×10 ⁶	5,10×10 ⁴	$4,37 \times 10^{6}$	1,02×10 ⁵
LBS 120	Vollwelle	5,95×10 ⁶	1,13×10 ⁵	1,18×10 ⁷	2,26×10 ⁵
LDO 120	Hohlwelle	5,28×10 ⁶	1,01×10 ⁵	1,06×10 ⁷	2,02×10 ⁵
LBS 150	Vollwelle	1,61 × 10 ⁷	2,40×10 ⁵	$3,20 \times 10^{7}$	4,76×10 ⁵
LDO 100	Hohlwelle	$1,40 \times 10^{7}$	2,08×10 ⁵	$2,79 \times 10^{7}$	4,16×10 ⁵

Tab. 4 Flächenträgheits- und Widerstandsmomente der Nutwelle LT

Baugröße		Flächenträgheits- moment	Widerstands- moment	polares Flächen- trägheitsmoment	polares Wider- standsmoment	
'	Baagiono		l [mm⁴]	Z [mm³]	l _p [mm⁴]	Z _p [mm³]
LT 4	Vollwelle		11,39	5,84	22,78	11,68
LT 5	Vollw		27,88	11,43	55,76	22,85
	Vollw		57,80	19,70	1,19×10 ²	40,50
LT 6	Hohlwelle		55,87	18.90	$1,16 \times 10^2$	39,20
I.T. 0	Vollw	elle	1,86×10 ²	47,40	3,81×10 ²	96,60
LT 8	Hohlwelle	е Тур К	1,81×10 ²	46,00	$3,74 \times 10^{2}$	94,60
LT 10	Vollw	elle	$4,54 \times 10^{2}$	92,60	9,32×10 ²	1,89×10 ²
LT 10	Hohlwelle	е Тур К	4,41×10 ²	89,50	$9,09 \times 10^{2}$	$1,84 \times 10^{2}$
LT 13	Vollw	elle	1,32×10 ³	2,09×10 ²	$2,70 \times 10^{3}$	$4,19 \times 10^{2}$
LI IS	Hohlwelle	е Тур K	1,29×10 ³	$2,00 \times 10^{2}$	2,63×10 ³	$4,09 \times 10^{2}$
	Vollw	elle	$3,09 \times 10^{3}$	$3,90 \times 10^{2}$	6,18×10 ³	$7,80 \times 10^{2}$
LT 16	Hohlwelle	Тур К	$2,97 \times 10^{3}$	$3,75 \times 10^{2}$	$5,95 \times 10^{3}$	$7,51 \times 10^{2}$
	Tioniwelle	Тур N	$2,37 \times 10^{3}$	$2,99 \times 10^{2}$	$4,74 \times 10^{3}$	$5,99 \times 10^{2}$
	Vollw	elle	$7,61 \times 10^{3}$	$7,67 \times 10^{2}$	1,52×10 ⁴	$1,53 \times 10^{3}$
LT 20	Hohlwelle	Тур К	$7,12 \times 10^3$	$7,18 \times 10^{2}$	1,42×10 ⁴	$1,43 \times 10^{3}$
	Tioniwelle	Тур N	$5,72 \times 10^3$	$5,77 \times 10^{2}$	1,14×10 ⁴	$1,15 \times 10^3$
	Vollw	elle	1,86×10 ⁴	$1,50 \times 10^{3}$	$3,71 \times 10^{4}$	$2,99 \times 10^{3}$
LT 25	Hohlwelle	Тур К	1,75×10 ⁴	$1,41 \times 10^{3}$	$3,51 \times 10^{4}$	$2,83 \times 10^{3}$
	Tioniwono	Typ N	1,34×10 ⁴	$1,08 \times 10^{3}$	2,68×10 ⁴	$2,16 \times 10^{3}$
	Vollw	elle	3,86×10 ⁴	$2,59 \times 10^{3}$	$7,71 \times 10^4$	$5,18 \times 10^{3}$
LT 30	Hohlwelle	Тур К	$3,53 \times 10^{4}$	$2,37 \times 10^{3}$	$7,07 \times 10^4$	$4,74 \times 10^{3}$
		Тур N	2,90×10 ⁴	$1,95 \times 10^{3}$	5,80×10 ⁴	$3,89 \times 10^{3}$
	Vollw		5,01×10 ⁴	$3,15 \times 10^{3}$	9,90×10 ⁴	$6,27 \times 10^3$
LT 32	Hohlwelle	Тур К	$4,50 \times 10^4$	$2,83 \times 10^{3}$	$8,87 \times 10^4$	$5,61 \times 10^{3}$
		Тур N	3,64×10 ⁴	$2,29 \times 10^{3}$	$7,15 \times 10^4$	$4,53 \times 10^{3}$
	Vollw		1,22×10 ⁵	$6,14 \times 10^3$	$2,40 \times 10^{5}$	$1,21 \times 10^4$
LT 40	Hohlwelle	Тур К	1,10×10 ⁵	$5,55 \times 10^{3}$	$2,17 \times 10^{5}$	$1,10 \times 10^4$
		Тур N	$8,70 \times 10^4$	$4,39 \times 10^{3}$	$1,71 \times 10^{5}$	$8,64 \times 10^{3}$
	Vollw		$2,97 \times 10^{5}$	1,20×10 ⁴	5,94×10 ⁵	$2,40 \times 10^4$
LT 50	Hohlwelle	Тур К	$2,78 \times 10^{5}$	1,12×10 ⁴	$5,56 \times 10^{5}$	$2,24 \times 10^4$
		Typ N	2,14×10 ⁵	8,63×10 ³	4,29×10 ⁵	1,73×10 ⁴
LT 60	Vollw		6,16×10 ⁵	2,07×10 ⁴	1,23×10 ⁶	4,14×10 ⁴
	Hohlwelle		5,56×10 ⁵	1,90×10 ⁴	1,13×10 ⁶	3,79×10 ⁴
LT 80	Vollw		1,95×10 ⁶	4,91×10 ⁴	3,90×10 ⁶	9,82×10 ⁴
	Hohlwelle		1,58×10 ⁶	3,97×10 ⁴	3,15×10 ⁶	7,95×10 ⁴
LT 100	Vollw		4,78×10 ⁶	9,62×10 ⁴	9,56×10 ⁶	1,92×10 ⁵
	Hohlwelle	е Гур К	$3,76 \times 10^6$	$7,57 \times 10^4$	$7,52 \times 10^{6}$	$1,51 \times 10^{5}$



5. Lebensdauerberechnung

5.1 Nominelle Lebensdauer

Die Lebensdauer von einzelnen Linearführungssystemen ist auch bei Systemen unterschiedlich, die unter gleichen Bedingungen hergestellt und betrieben werden. Im allgemeinen wird die nominelle Lebensdauer wie folgt definiert:

Die nominelle Lebensdauer wird durch die Gesamtlaufstrecke ausgedrückt, die 90% einer genügend großen Anzahl von Linearführungssystemen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor erste Anzeichen einer Werkstoffermüdung auftreten.

5.2 Berechnung der nominellen Lebensdauer

Die Betriebsbedingungen einer Wellenführung werden wie folgt eingeteilt:

Betrieb unter Drehmomentbelastung Betrieb unter Radialbelastung Betrieb unter Momentbelastung (M_A)

Die Tragzahlen zu diesen Betriebsbedingungen finden Sie in den Maßtabellen zu den einzelnen verdrehgesicherten Wellenführungen. Mit folgender Formel wird die nominelle Lebensdauer ermittelt:

• Betrieb unter reiner Drehmomentbelastung:

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C_T}{T_C}\right)^3 \times 50 \quad ... \tag{7}$$

• Betrieb unter Radialbelastung:

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_C}\right)^3 \times 50$$
 (8)

• Betrieb unter äquivalenter Radialbelastung:

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_{E \text{ gesamt}}}\right)^3 \times 50 \dots (9)$$

 $\begin{array}{ll} \mathbf{f_T} & : \mathbf{Temperaturfaktor} \\ \mathbf{f_C} & : \mathbf{Kontaktfaktor} \\ \mathbf{f_W} & : \mathbf{Belastungsfaktor} \end{array}$

 Bei gleichzeitiger Radial- und Drehmomentbelastung: Zuerst muß die äquivalente Radialbelastung und dann die nominelle Lebensdauer berechnet werden:

$$P_{E} = P_{C} + \frac{4 \times T_{C} \times 10^{3}}{i \times dp \times \cos \alpha}$$
 (10)

P_F : äquivalente Radialbelastung (N)

 $\cos \alpha$: Kontaktwinkel

i : Anzahl der tragenden Laufrillenpaare

dp : Kugelmittenkreis-Durchmesser (mm)

Kontaktwinkel und Laufrillenpaare einzelner Typen:

Typ LBS:

 $\cos \alpha$: 45°

ab Baugröße LBS15 : i = 3

Typ LT:

 $\cos \alpha$: 70°

bis Baugröße LT13 : i = 2 ab Baugröße LT16 : i = 3

 Momentbelastung bei einer oder mehreren zusammengesetzten Muttern: Zuerst muß die äquivalente Radialbelastung und daraus dann die nominelle Lebensdauer berechnet werden.

$$P_u = K \times M_A$$
(11)

P_u: äquivalente Radialbelastung
(durch äußeres Moment)

K: Äquivalenzfaktor (siehe Tab. 1 und 2)

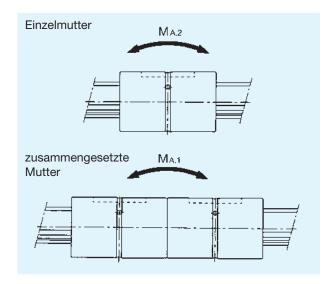
M_A: Momentbelastung

(Nmm)

Anm.: Diese Berechnungsformel setzt voraus, daß M kleiner ist als das zulässige statische Moment.

 Bei gleichzeitiger Radial- (P_C) und Drehmomentbelastung (T_C) sowie zusätzlicher äußerer Momentbelastung (M_A) pro Mutter ist zu der Belastung P_E eine Belastung P_U zu addieren. Aus dieser Summe wird dann die nominelle Lebensdauer ermittelt (siehe Formel 9).

Aus der nominellen Lebensdauer wird die Lebensdauer in Stunden bei konstanter Hublänge und gleicher Anzahl von Hüben pro Minute ermittelt.


$$L_h = \frac{L \times 10^3}{2 \times \ell_s \times n_1 \times 60}$$
 (12)

 $\begin{array}{lll} \mathsf{L_h}: \mathsf{Lebens dauer in \ Stunden} & & (\mathsf{h}) \\ \ell_{\mathsf{S}}: \mathsf{Hubl \ddot{a}nge} & & (\mathsf{m}) \\ \mathsf{n_1}: \mathsf{Hubf requenz} & & (\mathsf{min^{-1}}) \end{array}$

5.3 Äquivalenzfaktoren

In den Tabellen 1 und 2 sind die Äquivalenzfaktoren zur Ermittlung der äquivalenten Radialbelastung für einzelne Anordnungen unter Momentbelastung angegeben.

Äquivalenzfaktoren für Kugelkeilwellen

Tab. 1 Äquivalenzfaktoren

LBST 150

Baugröße	Äquivaler	zfaktor K
Daugione	Einzelmutter	zusammengesetzte Mutter
LBS 15	0,22	0,022
LBS 20	0,24	0,030
LBST 20	0,17	0,027
LBS 25	0,19	0,026
LBST 25	0,14	0,023
LBS 30	0,16	0,022
LBST 30	0,12	0,020
LBS 40	0,12	0,017
LBST 40	0,10	0,016
LBS 50	0,11	0,015
LBST 50	0,09	0,014
LBST 60	0,08	0,013
LBS 70	0,10	0,013
LBST 70	0,08	0,012
LBS 85	0,08	0,011
LBST 85	0,07	0,010
LBS 100	0,08	0,009
LBST 100	0,06	0,009
LBST 120	0,05	0,008

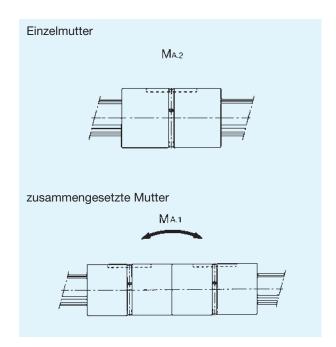
Einheit: mm⁻¹

Anm.: • Die Werte für LBF sind die gleichen wie für LBS.

0,045

 Die Werte für LBR, LBG, LBGT und LBH sind die gleichen wie für LBST.

0,006


 Der Wert für LBF60 ist der gleiche wie für LBST60.

0,008

Einheit: mm⁻¹

Äquivalenzfaktoren für Kugelnutwellen

5.4 Beispiel zur Lebensdauerberechnung

Berechnungsbeispiel 1

Arm eines Industrieroboters (horizontal)

1. Anwendungsbedingung)

Belastung (am Ausleger)

Abstand zwischen Wellenmuttern

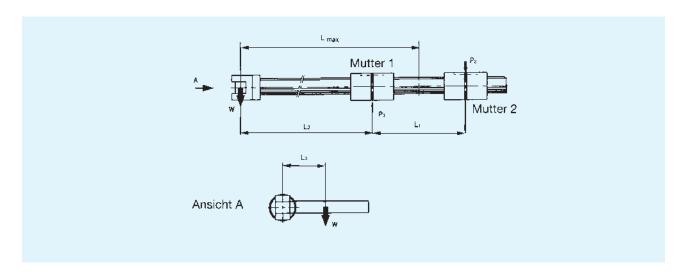
Armlänge beim max. Hub

= 50 kg= 200 mm

= 150 mm

= 400 mm= 325 mm

= 50 mm


Äquivalenzfaktor K Baugröße Einzelmutter zusammengesetzte Mutter LT 0.65 0,096 LT 0,55 0,076 5 LT 6 0,47 0,060 LT 0,47 0,058 LT 10 0,31 0,045 13 0,30 0,042 LT 16 0,19 0,032 LT 20 0,16 0,026 LT LT 25 0,13 0,023 LT 30 0,12 0,020 LT 40 0,088 0,016 LT 50 0,071 0,013 0,070 LT 60 0,011 LT 80 0,062 0,009

Tab. 2 Äquivalenzfaktoren

Anm.: Die Werte für LT gelten auch für LF.

0,057

LT 100

2. Berechnung des Wellendurchmessers

Berechnung des auf die Welle wirkenden Biegemoments (M) und Torsionsmoments (T):

$$M = W \times 9.8 \times L_{max} = 196.000 \text{ Nmm}$$

 $T = W \times 9.8 \times L_{3} = 24.500 \text{ Nmm}$

Da auf die Welle gleichzeitig Biege- und Torsionsmomente wirken, ist das äquivalente Biegemoment Me und das äquivalente Torsionsmoment T_e zu ermitteln. Dabei bestimmt das größere Moment den Wellendurchmesser.

Nach den Formeln (3) und (4) auf S. 463 ergeben sich folgende Momente:

$$M_e = \frac{M + \sqrt{M^2 + T^2}}{2} \approx 196.762,7 \text{ Nmm}$$

$$T_e = \sqrt{M^2 + T^2}$$
 $\approx 197.525,3 \text{ Nmm}$

$$M_e < T_e$$

Nach der Formel $T_e = \tau_a \times Z_p$ ergibt sich:

$$Z_P = \frac{T_e}{\tau_a}$$
 $\approx 4.031 \text{ mm}^3$

Berücksichtigt man den Wert Zp, muß nach Tab. 3 auf S. 467 entsprechend des Nenndurchmessers mindestens die Baugröße LBS40 verwendet werden.

3. Mittlere Belastung P_m

Zuerst ist die Belastung bei vollständig ausgefahrenem Arm (P_{max}) und bei eingefahrenem Arm (P_{min}) zu berechnen. Danach wird die mittlere Belastung für jede einzelne Mutter

Bei vollständig ausgefahrenem Arm:

$$P_{1max} = \frac{W \times 9.8 \times (L_1 + L_2)}{L_1} \approx 1551.7 \text{ N}$$

$$P_{2max} = \frac{W \times 9.8 \times L_2}{L_1} \approx 1061.7 \text{ N}$$

Bei vollständig eingefahrenem Arm:

$$\begin{split} P_{1min} = & \frac{W \times 9.8 \times [(L_2 - \ell_s) + L_1]}{L_1} = 898.3 \text{ N} \\ P_{2min} = & \frac{W \times 9.8 \times (L_2 - \ell_s)}{L_1} = 408.3 \text{ N} \end{split}$$

$$P_{2min} = \frac{W \times 9.8 \times (L_2 - \ell_s)}{L_1} = 408.3 \text{ N}$$

Da die Belastung linear verläuft, ist mit der Formel (2) auf S. 63 die mittlere Belastung zu ermitteln.

Mittlere Belastung (P_{1m}) auf Mutter 1:

$$P_{1m} = \frac{1}{3} (P_{1min} + 2P_{1max}) = 1.333,9 N$$

Mittlere Belastung (P_{2m}) auf Mutter 2:

$$P_{2m} = \frac{1}{3} (P_{2min} + 2P_{2max}) = 843.9 \text{ N}$$

Anschließend ist das Drehmoment bei einer Mutter zu ermitteln:

$$T = \frac{W \times 9.8 \times L_3}{2} = 12.250 \text{ Nmm}$$

Da gleichzeitig eine Radialbelastung und ein Drehmoment anliegen, ist mit der Formel (10) auf S. 469 die äquivalente Radialbelastung zu ermitteln.

$$P_{1E} = P_{1m} + \frac{4 \times T}{3 \times dp \times \cos \alpha} = 1911,4 \text{ N}$$

$$P_{2E} = P_{2m} + \frac{4 \times T}{3 \times dp \times \cos \alpha} = 1421,4 \text{ N}$$

4. Nominelle Lebensdauer L_n

Die nominelle Lebensdauer kann mit der Formel (9) auf S. 469 ermittelt werden:

$$L_1 = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_{1F}}\right)^3 \times 50 = 36.598,9 \text{ km}$$

$$L_2 = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_{2E}}\right)^3 \times 50 = 88.996,8 \text{ km}$$

Bei
$$f_T = 1$$
, $f_C = 0.81$ und $f_W = 1.5$.

Die Lebensdauer einer Einheit wird von der Mutter 1 bestimmt und beträgt demnach 36.598,9 km.

Berechnungsbeispiel 2

1. Anwendungsbedingung

Antriebsposition : Fs

Geschwindigkeit : $V_{max} = 0.25 \text{ m/s}$ Beschleunigung : $a = 0.36 \text{ m/s}^2$

(siehe Geschwindigkeitsdiagramm)

 $\begin{array}{lll} \mbox{Hublänge} & : \mbox{S} = 700 \mbox{ mm} \\ \mbox{Gehäusemasse} & : \mbox{W}_1 = 30 \mbox{ kg} \\ \mbox{Armmasse} & : \mbox{W}_2 = 20 \mbox{ kg} \\ \mbox{Kopfmasse} & : \mbox{W}_3 = 15 \mbox{ kg} \\ \mbox{Werkstück} & : \mbox{W}_4 = 12 \mbox{ kg} \end{array}$

Lage der Schwerpunkte:

 $\ell_1 = 200 \text{ mm}$ $\ell_2 = 500 \text{ mm}$ $\ell_3 = 1276 \text{ mm}$ $\ell_4 = 308,7 \text{ mm}$

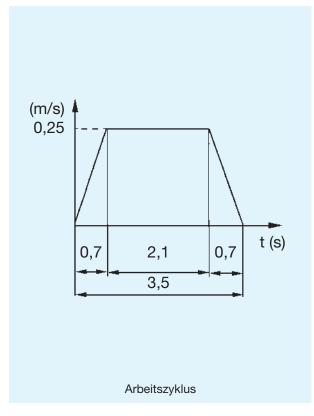
 $\ell_5 = 400 \text{ mm}$

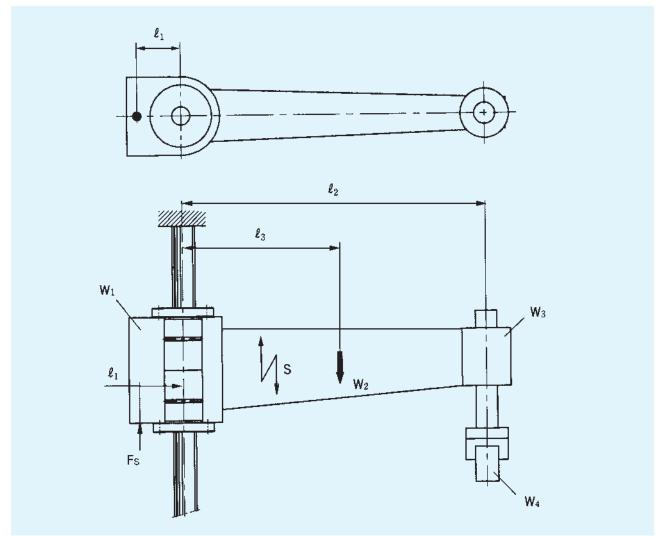
Hubzyklus (insgesamt 30 s):

1. Nach unten (3,5 s)

2. Stop (1 s) : Werkstückaufnahme

3. Nach oben (3,5 s)


4. Stop (7 s)


5. Nach unten (3,5 s)

6. Stop (1 s) : Werkstückentladung

7. Nach oben (3,5 s)

8. Stop (7 s)

2. Berechnung der Baugröße

Verwendeter Typ: LBS60 mit zwei Muttern.

3. Berechnung der Belastung entsprechend der einzelnen Massen (W_n)

- 1) Berechnung der anliegenden Momente (M_n) bei Beschleunigung, konstanter Geschwindigkeit und Verzögerung der einzelnen Massen (W_n)
- Moment bei Beschleunigung: M₁

$$M_1 = W_n \times 9.8 \left(1 \pm \frac{a}{g}\right) \times \ell_n$$
 (a)

Moment bei konstanter Geschwindigkeit: M₂

$$M_2 = W_n \times 9.8 \times \ell_n$$
 (b)

Moment bei Verzögerung: M₃

$$M_3 = W_n \times 9.8 \left(1 \pm \frac{a}{g}\right) \times \ell_n$$
(c)

W_n: einzelne Massen

(kg)

a : Beschleunigung

(m/s²)

g: Erdbeschleunigung

(m/s²)

 $\ell_{\rm p}$: Distanz vom Antriebspunkt zu den einzelnen

Angriffspunkten der einzelnen Belastungen (mm)

Daraus folgt:

$$A = \left(1 + \frac{a}{q}\right) , B = \left(1 - \frac{a}{q}\right)$$

a) Bei Abwärtsbewegung:

Entsprechend der Formel (c):

$$\begin{aligned} \mathsf{M}_{\mathsf{W1}} &= \mathsf{W}_{1} \times 9.8 \times \mathsf{B} \times \ell_{1} + \mathsf{W}_{2} \times 9.8 \times \mathsf{B} \times \\ & (\ell_{1} + \ell_{2}) + \mathsf{W}_{3} \times 9.8 \times \mathsf{B} \times (\ell_{1} + \ell_{3}) \\ &= 398.105.01 \; \mathsf{Nmm} \end{aligned}$$

Entsprechend der Formel (b):

$$\begin{aligned} \mathsf{M}_{\mathsf{W2}} &= \mathsf{W}_1 \times 9.8 \times \ell_1 + \mathsf{W}_2 \times 9.8 \times \\ & (\ell_1 + \ell_2) + \mathsf{W}_3 \times 9.8 \times (\ell_1 + \ell_3) \\ &= 412.972 \; \mathsf{Nmm} \end{aligned}$$

Entsprechend der Formel (a):

$$\begin{array}{ll} \mathsf{M}_{\mathsf{W3}} &= \mathsf{W}_{1} \times 9.8 \times \mathsf{A} \times \ell_{1} + \mathsf{W}_{2} \times 9.8 \times \mathsf{A} \times \\ & (\ell_{1} + \ell_{2}) + \mathsf{W}_{3} \times 9.8 \times \mathsf{A} \times (\ell_{1} + \ell_{3}) \\ &= 427.838.99 \; \mathsf{Nmm} \end{array}$$

b) Bei Aufwärtsbewegung:

Entsprechend der Formel (a):

$$M_{W1}' = W_1 \times 9.8 \times A \times \ell_1 + W_2 \times 9.8 \times A \times (\ell_1 + \ell_2) + W_3 \times 9.8 \times A \times (\ell_1 + \ell_3)$$

= 427.838,99 Nmm

Entsprechend der Formel (b):

$$M_{W2}' = W_1 \times 9.8 \times \ell_1 + W_2 \times 9.8 \times (\ell_1 + \ell_2) + W_3 \times (\ell_1 + \ell_3)$$

= 412.972 Nmm

Entsprechend der Formel (c):

$$M_{W3}' = W_1 \times 9.8 \times B \times \ell_1 + W_2 \times 9.8 \times B \times (\ell_1 + \ell_2) + W_3 \times 9.8 \times B \times (\ell_1 + \ell_3)$$

= 398.105.01 Nmm

c) Bei Abwärtsbewegung mit Werkstück:

Entsprechend der Formel (c):

$$M_{W1}$$
" = $M_{W1} + W_4 \times 9.8 \times B \times (\ell_1 + \ell_3)$
= 565.433.83 Nmm

Entsprechend der Formel (b):

$$M_{W2}$$
" = $M_{W2} + W_4 \times 9.8 \times (\ell_1 + \ell_3)$
= 586.549,6 Nmm

Entsprechend der Formel (a):

$$M_{W3}$$
" = $M_{W3} + W_4 \times 9.8 \times A \times (\ell_1 + \ell_3)$
= 607.665,37 Nmm

d) Bei Aufwärtsbewegung mit Werkstück:

Entsprechend der Formel (a):

$$M_{W1}$$
" = M_{W1} ' + $W_4 \times 9.8 \times A \times (\ell_1 + \ell_3)$
= 607.665,37 Nmm

Entsprechend der Formel (b):

$$M_{W2}$$
" = M_{W2} ' + $W_4 \times 9.8 \times (\ell_1 + \ell_3)$
= 586.549.6 Nmm

Entsprechend der Formel (c):

$$M_{W3}$$
" = M_{W3} ' + $W_4 \times 9.8 \times B \times (\ell_1 + \ell_3)$
= 565.433,83 Nmm

Daraus folgt:

$$M_1 = M_{W1} = M_{W3}' = 398.105,01 \text{ Nmm}$$

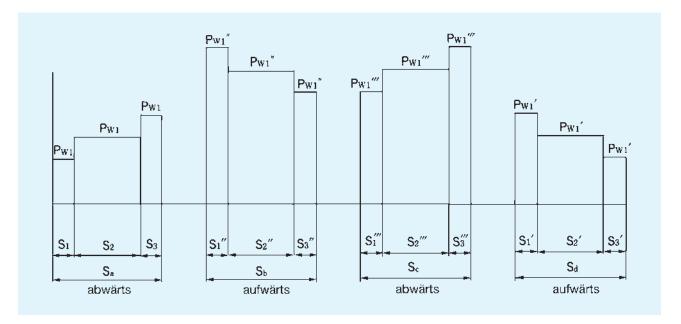
 $M_2 = M_{W2} = M_{W2}' = 412.972 \text{ Nmm}$
 $M_3 = M_{W3} = M_{W1}' = 427.838,99 \text{ Nmm}$

$$M_{1}' = M_{W1}" = M_{W3}"' = 565.433,83 \text{ Nmm} \\ M_{2}' = M_{W2}" = M_{W2}"' = 586.549,6 \text{ Nmm} \\ M_{3}' = M_{W3}" = M_{W1}"' = 607.665,37 \text{ Nmm}$$

2) Berechnung der äquivalenten Radialbelastung unter Berücksichtigung der einzelnen Momente

 Das Moment M_n und die äquivalente Radialbelastung P_n stehen nach folgender Formel in Beziehung:

$$P_n = M_n \times K \tag{N}$$


 P_n : äquivalente Radialbelastung (N) M_n : Moment (Nmm) K: Äquivalenzfaktor (mm $^{-1}$)

Für Typ LBF60 mit zwei zusammengesetzten Muttern ist $K = 0.013 \text{ mm}^{-1}$

Mit der Formel (d) wird die äquivalente Belastung bei den einzelnen Momenten ermittelt:

$$\begin{aligned} P_{W1} &= P_{W3}\text{'} = M_1 \times 0,013 \approx 5.175,4 \text{ N} \\ P_{W2} &= P_{W2}\text{'} = M_2 \times 0,013 \approx 5.368,6 \text{ N} \\ P_{W3} &= P_{W1}\text{'} = M_3 \times 0,013 \approx 5.561,9 \text{ N} \end{aligned}$$

$$\begin{array}{l} P_{W1}" = P_{W3}"' = M_{1}' \times 0,013 \approx 7.350,7 \; N \\ P_{W2}" = P_{W2}"' = M_{2}' \times 0,013 \approx 7.625,2 \; N \\ P_{W3}" = P_{W1}"' = M_{3}' \times 0,013 \approx 7.899,7 \; N \end{array}$$

$$\left\{ \begin{array}{l} P_1 = P_{W1} = P_{W3}' \approx 5.175,4 \text{ N} \\ P_2 = P_{W2} = P_{W2}' \approx 5.368,6 \text{ N} \\ P_3 = P_{W3} = P_{W1}' \approx 5.561,9 \text{ N} \end{array} \right.$$

$$\begin{cases} S = S_a = S_b = S_c = S_d = 700 \text{ mm} \\ S_I = S_1 = S_1' = S_1" = S_1" = 87,5 \text{ mm} \\ S_{II} = S_2 = S_2' = S_2" = S_2" = 525 \text{ mm} \\ S_{III} = S_3 = S_3' = S_3" = S_3" = 87,5 \text{ mm} \end{cases}$$

$\left\{ \begin{array}{l} P_4 = P_{W1}" = P_{W3}"" \approx 7.350,7 \; N \\ P_5 = P_{W2}" = P_{W2}"" \approx 7.625,2 \; N \\ P_6 = P_{W3}" = P_{W1}"" \approx 7.899,7 \; N \end{array} \right.$

3) Ermittlung der durchschnittlichen Belastung P_m

Entsprechend der Formel (1) auf S. 70.

$$P_{m} = \sqrt{\frac{2}{4 \times S} \left[P_{1}^{3} \times S_{I} + P_{2}^{3} \times S_{II} + P_{3}^{3} \times S_{III} + P_{4}^{3} \times S_{III} + P_{5}^{3} \times S_{II} + P_{6}^{3} \times S_{I} \right]}$$

$$\approx 6689.5 \text{ N}$$

4) Berechnung der nominellen Lebensdauer basierend auf der durchschnittlichen Belastung

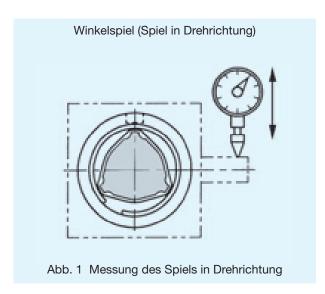
Entsprechend der Formel (8) auf S. 469.

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_C}\right)^3 \times 50$$
$$= 7.630 \text{ km}$$

C: dynamische Tragzahl = 66,2 kN

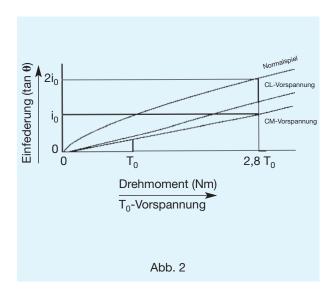
 f_T : Temperaturfaktor = 1 f_C : Kontaktfaktor = 0,81 f_W : Belastungsfaktor = 1,5

Demnach beträgt die nominelle Lebensdauer für den Typ LBF60 mit zusammengesetzten Muttern 7.630 km.



6. Vorspannung

Durch Aufbringung einer Vorspannung kann die Steifigkeit bei verdrehgesicherten Wellenführungen wesentlich erhöht werden. Daher sollte die Vorspannungsklasse dem Anwendungszweck entsprechend ausgewählt werden.


6.1 Spiel in Drehrichtung

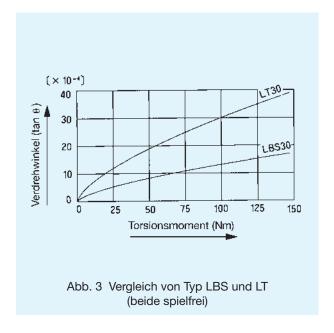
Das Winkelspiel wird über den arithmetischen Mittelwert der gemessenen Spiele ermittelt. Für die Baureihen LBS und LT ist das Winkelspiel bei der Übertragung von Drehmomenten von großer Bedeutung, denn das Spiel ist in Drehrichtung definiert (siehe Erläuterungen zu den einzelnen Typen).

6.2 Verhältnis von Vorspannung und Steifigkeit

Vorspannung bedeutet, daß die Kugeln bereits mit einer bestimmten Belastung beaufschlagt sind, und somit die Einfederung aufgrund der veränderten Federkennlinie bei hohen Belastungen verringert wird.

Die Abbildung 2 zeigt die entsprechenden Steifigkeitswerte bei den einzelnen Vorspannungsklassen für verdrehgesicherte Wellenführungen.

Im Vergleich zu nicht vorgespannten Systemen besitzt ein vorgespanntes System bei gleicher Drehmomentbelastung eine bis zum Faktor 2,8 höhere Steifigkeit bei gleichzeitiger Halbierung der Einfederung.



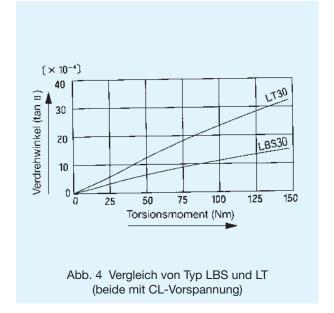
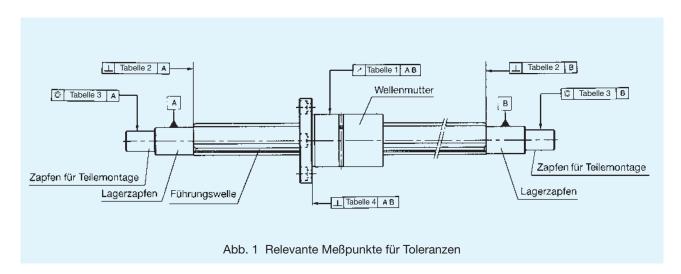

6.3 Anwendungsbedingungen und Auswahl der Vorspannung

Tabelle 1 dient als Auswahlhilfe zur Wahl der geeigneten Vorspannungsklasse.

Tab. 1

		Einsatzbedingungen
	СМ	 Anwendungen, die hohe Steifigkeit erfordern und bei denen Vibrationen und Stoßbelastungen auftreten. Anwendungen, bei denen die Wellenmutter Verdrehbelastungen ausgesetzt ist.
Vorspannungsklasse	CL	 Anwendungen mit ausladenden oder Verdrehbelastungen. Anwendungen, die eine hohe Wiederholgenauigkeit erfordern. Anwendungen mit Wechselbelastung.
>	Normal	 Anwendungen ohne große Belastung. Anwendungen mit stets gleichgerichtetem Drehmoment.



7. Genauigkeit

7.1 Genauigkeitsspezifizierung

Die Genauigkeitsklassen der verdrehgesicherten Wellenführungen werden entsprechend der Laufgenauigkeit der Mutter unter Berücksichtigung des Lagerzapfens der Welle eingeteilt. Folgende Klassen sind definiert: Normalklasse (kein Symbol), Hochgenaue Klasse (H) und Präzisionsklasse (P). Abb. 1 zeigt die für die Genauigkeitsmessung relevanten Meßpunkte.

7.2 Genauigkeitsklassen

Die Tabellen 1-4 geben die Toleranzen für die einzelnen Wellenführungen an. Der Genauigkeitsstandard wird für die Baureihen LBS und LT verwendet.

Tab. 1 Rundlauf der Außenfläche der Wellenmutter zum Lagerzapfen

Einheit: µm

	Genauigkeit		max. Rundlauf																						
Gesamt- länge der Welle (mm)	lenndurch- messer der Welle (mm)	4	l ~ 8			10		13	3 ~ 2	0	25	5 ~ 3	2	4	0, 50)	6	0, 80)	85	~ 12	20		150	
über	unter	Normal	I	Р	Normal	Н	Р	Normal	Τ	Р	Normal	Η	Р	Normal	Н	Р	Normal	Н	Р	Normal	Η	Р	Normal	I	Р
-	200	72	72	26	59	36	20	56	34	18	53	32	18	53	32	16	51	30	16	51	30	16	-	-	-
200	315	133	89 ¹⁾	-	83	54	32	71	45	25	58	39	21	58	36	19	55	34	17	53	32	17	-	-	-
315	400	-	-	-	103	68	-	83	53	31	70	44	25	63	39	21	58	36	19	55	34	17	-	-	-
400	500	-	1	-	123	-	-	95	62	38	78	50	29	68	43	24	61	38	21	57	35	19	46	36	19
500	630	-	-	-	-	-	-	112	-	-	88	57	34	74	47	27	65	41	23	60	37	20	49	39	21
630	800	-	-	-	-	-	-	-	-	-	103	68	42	84	54	32	71	45	26	64	40	22	53	43	24
800	1000	-	1	-	-	-	-	-	1	-	124	83	-	97	63	38	79	51	30	69	43	24	58	48	27
1000	1250	-	1	-	-	-	-	-	1	-	-	-	-	114	76	47	90	59	35	76	48	28	63	55	32
1250	1600	-	1	-	-	-	-	-	1	-	-	-	-	139	93	-	106	70	43	86	55	33	80	65	40
1600	2000	-	1	-	-	-	-	-	1	-	-	-	-	-	-	-	128	86	54	99	65	40	100	80	50
2000	2500	-	1	-	-	-	-	1	1	-	-	1	-	-	-	-	156	-	-	117	78	49	125	100	68
2500	3000	-	-	ı	-	-	-	ı	ı	-	-	ı	ı	-	-	ı	1	-	-	143	96	61	150	129	84

¹⁾ Der Wert gilt nicht bei einem Nenndurchmesser der Welle von 4 mm.

Tab. 2 Rechtwinkligkeitstoleranz der Lagerschulter zum Lagerzapfen

40

50 60

70

80

85 100

120 150 Einheit: µm

Genauigkeit	Rechtwinkligkeit (max.)								
Bau- größe	Normal- klasse	Hochgenaue Klasse (H)	Präzisions- klasse (P)						
4 5 6 8 10	22	9	6						
13 15 16 20	27	11	8						
25 30 32	33	13	9						

16

19

22

25

Tab. 4 Rechtwinkligkeitstoleranz der Flanschanschlussfläche im Bezug auf die Lagerzapfen

39

46

54

63

Einheit: µm

11

13

15

18

Genauigkeit	Rechtwinkligkeit (max.)									
Bau- größe	Normal- klasse	Hochgenaue Klasse (H)	Präzisions- klasse (P)							
6 8	27	11	8							
10 13	33	13	9							
15 16 20 25 30	39	16	11							
40 50	46	19	13							
60 70 80 85	54	22	15							
100	63	25	18							

Anm.: Nicht anwendbar für die Typen LBG, LBGT und LTR.

Tab. 3 Koaxialitätstoleranz des Anschlusszapfens zum Lagerzapfen

Einheit: µm

Genauigkeit	K	Koaxialität (max.)								
Bau- größe	Normal- klasse	Hochgenaue Klasse (H)	Präzisions- klasse (P)							
4 5 6 8	33	14	8							
10	41	17	10							
13 15 16 20	46	19	12							
25 30 32	53	22	13							
40 50	62	25	15							
60 70 80	73	29	17							
85 100 120	86	34	20							
150	100	40	23							

8. Schmierung und Schutzvorrichtungen

8.1 Schmierung

Staubschutz und Schmierung

Damit ein Schmierstoffverlust während des Betriebs oder ein Eindringen von Fremdstoffen in die Mutter vermieden wird, sind abriebfeste Dichtungen aus hochwertigem synthetischen Gummi für die verdrehgesicherten Wellenführungen erhältlich.

Muttern mit Dichtungen (Kennzeichen UU oder U in der Bestellbezeichnung) sind bereits mit Lithiumseifenfett (NLGI2) gefüllt. Trotzdem ist gerade bei hohen Verfahrgeschwindigkeiten oder langen Hüben ein erstes Abschmieren nach dem Einlaufen aber vor der Inbetriebnahme mit der gleichen Fettsorte über die Schmiereinrichtung erforderlich. Anschließend sollte ein Nachschmieren in bestimmten Intervallen abhängig von den Betriebsbedingungen erfolgen.

Im allgemeinen ist unter normalen Betriebsbedingungen spätestens nach 100 km Laufstrecke oder nach sechs Monaten nachzuschmieren.

Bei Muttern ohne Dichtungen ist das Fett direkt in die Mutter hineinzupressen oder auf die Laufrillen der Welle aufzutragen.

Es ist unbedingt zu beachten, daß die Wellenführungen vor Staub oder anderen Fremdstoffen geschützt sind. Auch sollte die Mutter (nicht notwendigerweise) von der Welle abgezogen werden. Insbesondere bei mit Fett gefüllten Muttern muß darauf geachtet werden, daß keine Fremdstoffe in die Muttern gelangen, wenn sie von der Welle getrennt sind. Sie müssen sonst gereinigt und anschließend erneut gefettet werden.

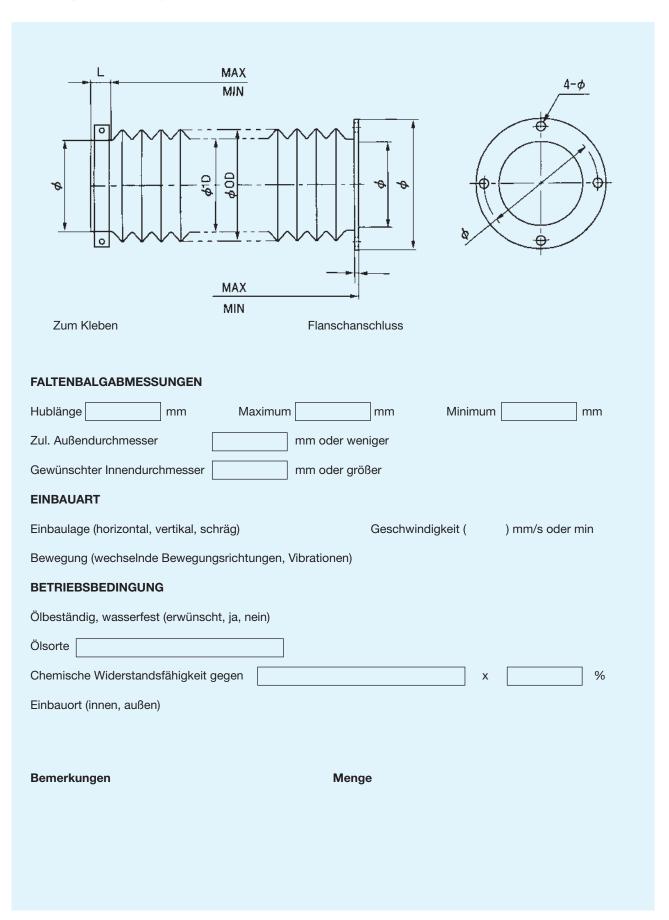
Schmierung unter besonderen Betriebsbedingungen

Teile einer Maschine können der Tribokorrosion ausgesetzt sein, wenn Vibrationen oder Stöße während des Betriebs auftreten oder Schwingungen mit niedriger Frequenz sich durch den Transport der Maschine ergeben.

In diesen Fällen empfiehlt THK das AFC-Schmierfett, das sich ausgezeichnet gegen Tribokorrosion bewährt hat. Es besteht aus einer hochwertigen kohlenstoffhaltigen Ölmischung, der organische Verbindungen auf Urea-Basis beigemengt sind. Weiterhin besitzt das AFC-Fett sehr gute Langzeit-Schmiereigenschaften und ist für Temperaturbereiche von -54°C bis +177°C geeignet.

8.2 Schutzvorrichtungen

Staubschutz


Staub oder andere Fremdstoffe können bei Wellenführungen zu erhöhtem Verschleiß und verkürzter Lebensdauer führen. Um dies zu vermeiden, ist eine effektive Abdichtung oder eine andere Schutzmaßnahme erforderlich.

Für alle Nut- und Keilwellenführungen von THK sind abriebfeste Dichtungen aus hochwertigem synthetischem Kunststoff erhältlich. Für problematische Umgebungsbedingungen können runde Faltenbälge geliefert werden.

Wahl des Materials und Oberflächenbehandlung

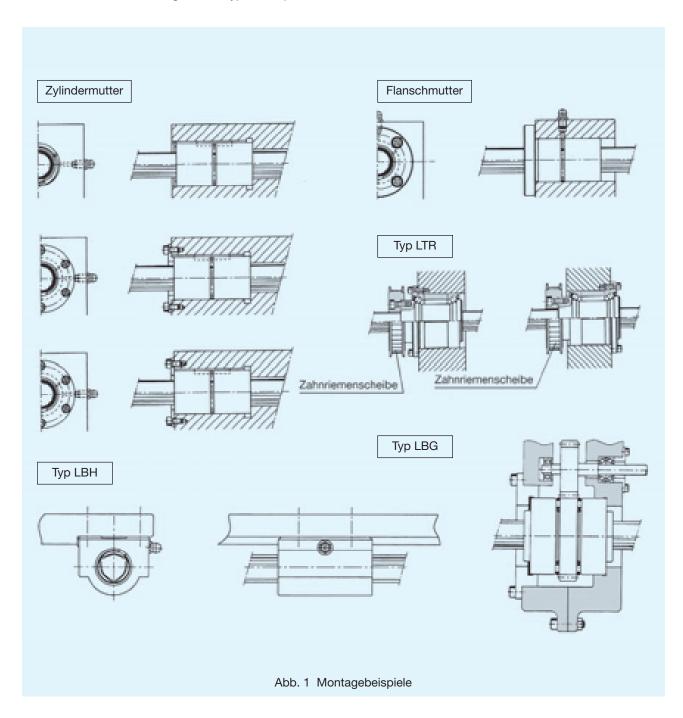
Faltenbalgspezifizierung

Anm.: Bitte kopieren Sie das Bestellformular für Faltenbälge, und benutzen Sie es bei Anfragen oder Bestellungen.

9. Montagehinweise

9.1 Passung

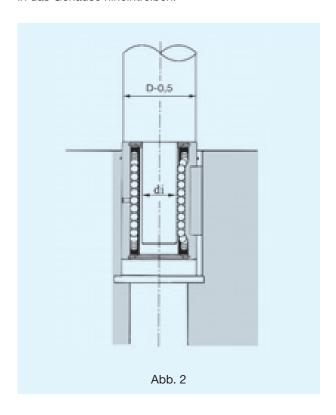
Zwischen Mutter und Gehäuse wird im allgemeinen eine Übergangspassung und bei geringeren Anforderungen an die Genauigkeit eine Spielpassung gewählt.

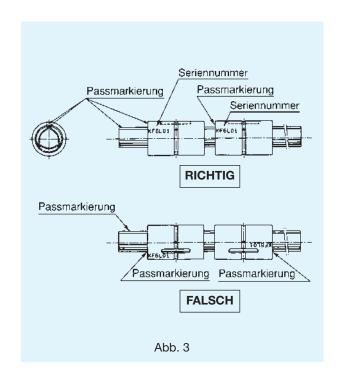

Tab. 1 Gehäusepassung

Passung	Normale Einsatzbedingungen	H7
Muttergehäuse	Für spielfreien Lauf	J6

Anm.: H7 wird für die Passung bei dem Typ LTR empfohlen.

9.2 Montage


Montagebeispiele für Muttern in verschiedenen Ausführungen finden Sie in der unteren Abbildung. In axialer Richtung reicht eine axiale Fixierung der Mutter aus. Eine Passung ist deshalb nicht unbedingt erforderlich. Wird doch eine Passung gewählt, darf die Mutter nicht hineingepreßt werden, weil sonst ihre Funktion beeinträchtigt werden könnte.


Montage der Mutter

Zur Montage der Mutter in das Gehäuse ist ein Dorn zu benutzen, damit die Dichtungen nicht beschädigt werden (siehe Abb. 2). Bitte die Mutter vorsichtig und gleichmäßig in das Gehäuse hineintreiben.

Montage der Welle

Beim Aufziehen der Mutter auf die Welle ist auf die richtige Lage der Passmarkierungen zu achten (siehe Abb. 3). Die Welle vorsichtig und ohne Verdrehen einsetzen. Bei gewaltsamen Vorgehen können Kugeln aus der Mutter herausgedrückt werden. Ist die Mutter vorgespannt, muß die Welle vorher mit Schmierfett versehen werden.

Tab. 2 Dornmaße für Typ LBS

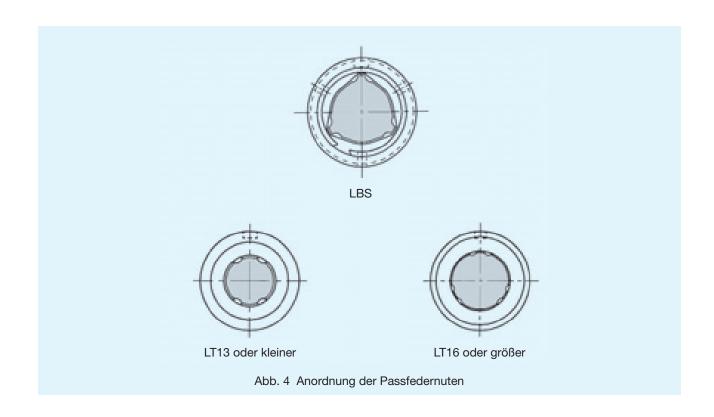
Einheit: mm

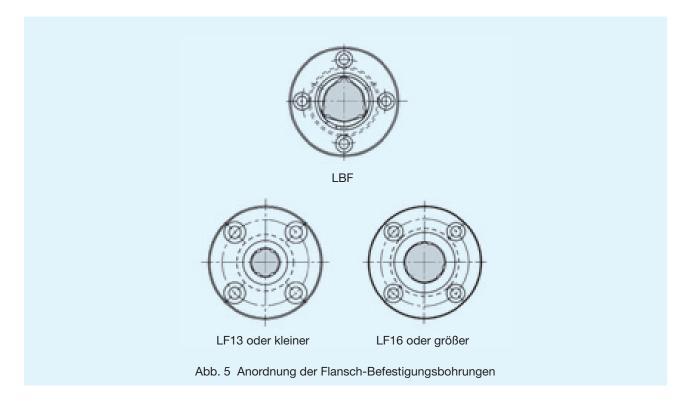
Baugröße	15	20	25	30	40	50	60	70	85	100	120	150
di	12,5	16,1	20,3	24,4	32,4	40,1	47,8	55,9	69,3	83,8	103,8	131,8

Tab. 3 Dornmaße für Typ LT

Einheit: mm

Baugröße	6	8	10	13	16	20	25	30	40	50	60	80	100
di	5,0	7,0	8,5	11,5	14,5	18,5	23	28	37,5	46,5	56	75,5	94,5

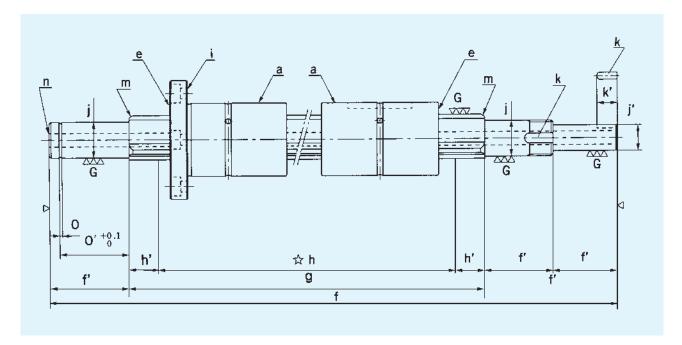



Lage der Passfedernut und Befestigungsbohrungen

Die Passfedernut in den verschiedenen Muttertypen ist zentral über zwei tragenden Kugelreihen angeordnet (siehe Abb. 4).

Die gewünschte Lage der Passfedernut in der Welle sollte bei der Bestellung angegeben werden.

Von den vier Befestigungsbohrungen im Flansch liegt jeweils eine in der Mitte zwischen zwei tragenden Kugelreihen (siehe Abb. 5).

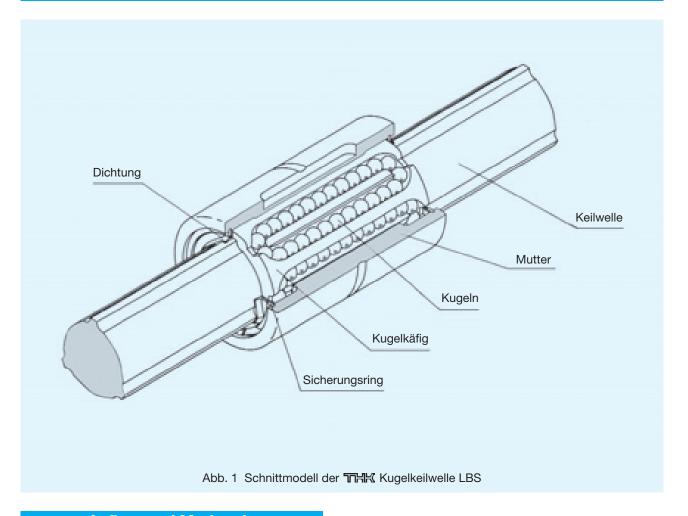


10. Checkliste für Endenbearbeitung

Vor der Bestellung ist die richtige Wellenführung mit der entsprechenden Endenbearbeitung sorgfältig auszuwählen. Bitte beachten Sie dazu die unten aufgeführten Punkte.

Die folgende Abbildung zeigt eine typische Wellenführung:

Zu berücksichtigende Punkte:


- a) Ausführung der zur Welle passenden Mutter
- b) Anzahl der Muttern
- c) Vorspannungsklasse
- d) Genauigkeit
- e) Mit oder ohne Dichtungen Angabe der Einbaurichtung bei Mutter mit einer Dichtung
- f) Gesamtlänge Außerdem Überprüfung aller Maße und Angabe bei der Bestellung
- g) Effektive Länge der Welle
- h) Härtebereich Bitte markieren Sie den Härtebereich mit einem ☆ und geben Sie den Zweck der Härtung an.
- i) Einbaurichtung bei Muttern mit Flansch

- j) Ausführung der Wellenenden Die Endendurchmesser dürfen nicht größer sein als der kleinste Wellendurchmesser, da sonst unbearbeitete Flächen oder Laufrillen vorhanden sein könnten
- k) Positionierung der Wellenmutter zum Wellenende (z.B. Anordnung der Paßfedernut im Wellenende zu den Flansch-Befestigungsbohrungen)
-) Fasen an Mutter/Welle
- m) Fasen am Wellenende
- n) Angabe des Zwecks für vorgesehene Bohrungen in der Welle
- o) (o') Nut für Sicherungsring
- p) Maximal herstellbare Länge
- q) Diverses Siehe auch frühere Bestellungen
- r) THK Zeichnung, falls vorhanden

THK Kugelkeilwelle LBS

Aufbau und Merkmale

Die drei Laufrillenpaare der Keilwelle befinden sich an den um 120° versetzten Keilflanken längs der Welle. Die Laufrillen selbst sind präzisionsgeschliffen.

Die Kugelreihen werden durch einen Käfig innen an der Mutter geführt und umgelenkt. So wird eine ruhige und stabile Laufeigenschaft erzielt. Ein weiterer Vorteil des Käfigs besteht darin, daß die Kugeln bei Trennung der Mutter von der Welle nicht herausfallen können.

Wirkt ein Drehmoment auf die Mutter, tragen die drei in Lastrichtung angeordneten Kugelreihen gleichmäßig die Belastung, so daß sich der Drehpunkt selbst einstellt. Bei umgekehrtem Drehmoment tragen die entgegengesetzten Kugelreihen die Belastung.

Winkelspielfrei

Aufgrund der beschriebenen Bauweise kann das Winkelspiel (Spiel in Drehrichtung) auf ein Minimum reduziert werden. Um das Winkelspiel zu beseitigen und die Steifigkeit zu erhöhen, kann eine Vorspannung aufgebracht werden.

Im Gegensatz zu konventionellen Lagern mit Kreis- oder Gotikbogen-Laufrillen ist es hierbei nicht erforderlich, für eine Vorspannung zwei Muttern gegeneinander zu verdrehen bzw. zu verspannen. So ist eine kompakte Bauweise möglich.

Hohe Steifigkeit und präzise Positionierung

Durch den großen Flächenkontakt der Laufkugeln in der Laufrille und die Möglichkeit, eine Vorspannung aufzubringen, wird die Einfederung minimal gehalten. Somit wird eine hohe Steifigkeit und präzise Positionierung gewährleistet.

Geeignet für schnelle Linearbewegung und Rotation

Aufgrund der geringen Reibungskräfte, der ausgezeichneten Fettrückhaltung und der steifen Kugelkäfige sind Geschwindigkeiten von über 150 m/min über lange Zeiträume bei Fettschmierung möglich.

Die fast gleichen Radialabstände der tragenden und nicht tragenden Kugeln ergeben geringe Fliehkrafteinflüsse auf die Kugeln und ermöglichen stabile Laufeigenschaften.

Kompakter Aufbau

Der Kugelumlauf der nicht tragenden Kugeln liegt nahezu in gleicher Höhe wie die belasteten Kugeln. Daher ist eine kompakte Bauweise der Mutter mit kleinem Außendurchmesser möglich.

Einfache Montage

Die Kugeln in der Mutter sind durch einen Käfig gesichert und fallen auch nicht heraus, wenn die Mutter von der Keilwelle abgezogen wird. Dieses erleichtert die Montage in vielen Anwendungsfällen. Zudem wird die Wartung und Überprüfung vereinfacht.

Einsatz als Kugelumlaufbuchse bei Schwerlastbetrieb möglich

Der Radius der Kugeln entspricht nahezu dem der Laufrillen, so daß sich verhältnismäßig große Kugelkontaktflächen für hohe radiale Belastungen ergeben.

Zwei parallele Wellen können durch eine einzige Wellenführung ersetzt werden

Da gleichzeitig Dreh- und Radialbelastungen aufgenommen werden können, sind kompakte Konstruktionen möglich.

Vorteile gegenüber Systemen mit Kugelumlaufbuchsen:

- geringer Bauraum (eine Welle statt zwei Wellen)
- einfachere Montage

Anwendungen

Verdrehgesicherte Wellenführungen sind hochbelastbare Führungssysteme für vielfältige Anwendungszwecke. Dazu gehören Arme und Säulen von Industrierobotern, automatische Bestücker, Transfermaschinen, automatische Transporteinrichtungen, Reifen-Auswuchtmaschinen, Spindeln für Punkt-Schweißmaschinen, Führungswellen für Hochgeschwindigkeits-Lackiereinrichtungen, Nietmaschinen, Drahtwickelmaschinen, Aufspannköpfe von Funkenerosionsmaschinen, Antriebsspindeln von Schleifmaschinen, Wechselgetriebe und Präzisionsschaltspindeln.

Typen und Ausführungen

Bei diesem Typ hat die Mutter eine zylindrische Bauform für eine äußerst kompakte Bauweise. Die Drehmoment- übertragung erfolgt hier mittels einer Passfeder. Dieser Außenring der Mutter ist nicht gehärtet, daher kann eine weitere Bearbeitung erfolgen.

Über den Flansch ist eine einfache Montage der Mutter an ein Gehäuse möglich. Dieses ist die optimalste Einbauart, wenn das Einbaugehäuse schmal baut oder man eine Verformung des Gehäuses durch die Bearbeitung für eine Paßfeder befürchtet.

Weiterhin kann mit einem Spannstift die Mutter im Anbauteil genau fixiert und gegen Verdrehen gesichert werden.

Der Typ entspricht im Außendurchmesser dem Typ LBS, die Mutter ist jedoch länger und daher stärker belastbar. Dieser Typ ist ideal zur Übertragung von hohen Drehmomenten auf engstem Raum und bei Verdrehbelastungen mit den entsprechenden Momenten.

Dieser Typ basiert auf dem Schwerlasttyp LBST. Er eignet sich besonders für den Einsatz in Industrierobotern (speziell in den Roboterarmen) und andere Anwendungen mit Momentbelastungen.

Die steife, blockförmige Mutter benötigt kein Einbaugehäuse und kann direkt montiert werden. Mit ihr werden einfach kompakte und hochsteife Führungssysteme realisiert.

Die Muttern sind auf präzisionsgeschliffenen Wellen montiert. Dabei sind die Wellenlängen für die Baugrößen LBS15 bis LBS50 standardisiert. Sie sind kurzfristig lieferbar.

Nach dem Kaltziehen werden die Keilwellen präzisionsgeschliffen. Die Muttern sind auf der Welle aufgezogen.

Kaltgezogene, hohle Keilwellen sind für das Durchführen von Leitungen oder Kabeln, zur Belüftung oder für ein geringes Gewicht lieferbar.

Keilwellen können auch mit einem größeren Durchmesser am Ende oder in der Mitte geliefert werden.

Die Kugelkeilwelle LBS als Vollkeilwelle besteht aus zwei oder mehr Muttern auf einer Welle. Die Vollkeilwelle kann auf die gewünschte Länge geschnitten bzw. mit der gewünschten Anzahl von Muttern geliefert werden.

Keilwellendurchmesser

Genauigkeitsklassen

Siehe S. 462.

Siehe S. 478.

Spiel in Drehrichtung

Das Spiel in Drehrichtung hat einen großen Einfluß auf die Genauigkeit und Steifigkeit der Mutter. Daher muß eine geeignete Vorspannung für die geplante Anwendung ausgesucht werden. Im allgemeinen werden vorgespannte Kugelkeilwellen eingesetzt.

Bei Einsatz mit ruckweiser Rotationsbewegung oder hoher Hubfrequenz wird die Mutter Stößen und Vibrationen ausgesetzt. Unter diesen Bedingungen verbessert die Vorspannung die Genauigkeit und letztendlich die Lebensdauer.

Zur Auswahl der optimalen Vorspannung fragen Sie bitte

Tab. 1 Auswahl der Vorspannungsklasse

		Anwendungsbedingungen	Anwendungsbeispiele
	СМ	 Betrieb mit Vibrationen und Stoßbelastungen. Hohe Steifigkeit erforderlich. Mutter ist Verdrehbelastungen ausgesetzt. 	Lenkwellen für Baufahrzeuge, Wellen von Punkt- schweißmaschinen, Schaltspindeln für Werkzeughalter von Drehmaschinen
Vor- spannungs- klasse	CL	 Betrieb mit Überhang- oder Verdrehbelastungen. Hohe Wiederholgenauigkeit erforderlich. Betrieb unter Wechselbelastungen. 	Arme für Industrieroboter, automatische Ladevorrichtungen, Führungswellen für Lackierautomaten, Hauptspindeln für Funkenerosionsmaschinen, Wellen für Führungsgestelle, Hauptspindeln von Bohrmaschinen.
	Normal	 Für gleichmäßigen Betrieb mit geringer Antriebskraft. Betrieb mit stets gleichgerichtetem Drehmoment. 	Messinstrumente, automatische Zeichenmaschinen, Dynanometer, Drahtwickelmaschinen, Schweißautomaten, Verpackungsmaschinen.

Tab. 2 Spiel der Kugelkeilwelle in Drehrichtung

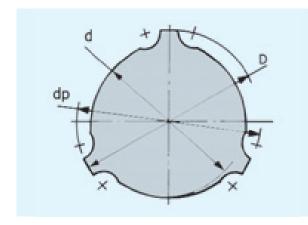
Einheit: µm

Symbol	Normal	Leichte Vorspannung	Mittlere Vorspannung
Baugröße	kein Symbol	CL	CM
15	-3 ~ +2	-9 ~ -3	-15 ~ -9
20 25 30	-4 ~ +2	-12 ~ -4	-20 ~ -12
40 50 60	-6 ~ +3	-18 ~ -6	-30 ~ -18
70 85	-8 ~ +4	-24 ~ -8	-40 ~ -24
100 120	-10 ~ +5	-30 ~ -10	-50 ~ -30
150	-15 ~ +7	-40 ~ -15	-70 ~ -40

Anm.: Bei Normalspiel wird kein Kennzeichen verwendet. Die Kennzeichen für mittlere Vorspannung CM und leichte Vorspannung CL sind bei der Bestellung mit anzugeben. Siehe S. 498 zum Aufbau der Bestellbezeichnung. Das Spiel in Drehrichtung ist auf den Kugelmittenkreis de bezogen.

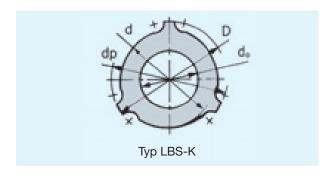
Einbautoleranzen

Siehe S. 479.


Keilwellen

Wie auf Seite 492 dargestellt, gibt es drei verschiedene Typen von Keilwellen. Das sind massive Präzisions-Keilwellen, hohle Keilwellen und Keilwellen ohne Endenbearbeitung. Spezialgefertigte Keilwellen werden nach Vorgabe auf Bestellung gefertigt.

Standard-Keilwellen sind ab Lager preisgünstig lieferbar.


Keilwellen-Querschnitte

Die verschiedenen Querschnittsformen der Keilwellen gehen aus Tabelle 3 hervor. Sollen die Wellenenden bearbeitet werden, sollte der maximale Durchmesser nicht größer als der Kerndurchmesser d gewählt werden.

Bohrungsdurchmesser von hohlen Standard-Keilwellen

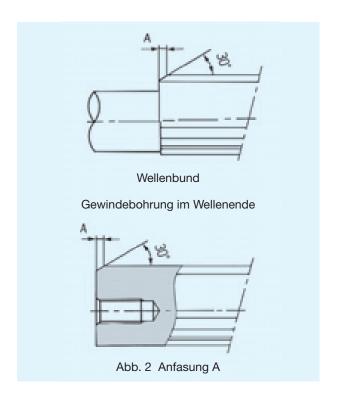
Tabelle 4 gibt die Abmessungen und Gewichte von hohlen Standard-Keilwellen an. Hohle Keilwellen sind besonders geeignet zum Durchführen von Leitungen und Kabeln sowie zur Belüftung.

Tab. 4 Bohrungsdurchmesser von hohlen Standard-Keilwellen

Baugröße	Bohrungs- durchmesser d ₀ [mm]	Gewicht [kg/m]
20	6	1,58
25	8	2,3
30	12	2,9
40	18	4,9
50	24	7,0
60	30	10,0
70	35	13,7
85	45	19,5
100	56	25,7
120	60	47,3
150	80	77,1

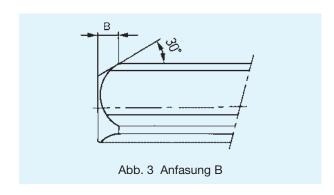
Tab. 3 Abmessungen der Keilwellenquerschnitte

Baugröße	15	20	25	30	40	50	60	70	85	100	120	150
Kerndurchmesser d	11,7	15,3	19,5	22,5	31,0	39,0	46,5	54,5	67,0	81,0	101,0	130,0
Außendurchmesser D	14,5	19,7	24,5	29,6	39,8	49,5	60,0	70,0	84,0	99,0	117,0	147,0
Kugelmittenkreis dp	15	20	25	30	40	50	60	70	85	100	120	150



Anfasung der Wellenenden

Damit die Muttern problemlos auf die Keilwellen gezogen werden können, werden die Enden angefast, sofern nicht bei der Bestellung eine andere Ausführung gewünscht wird.

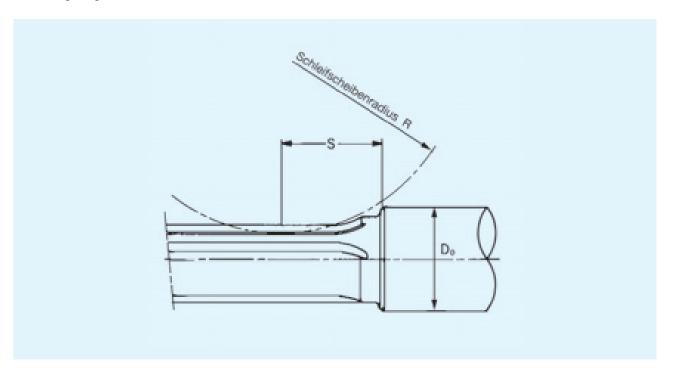

Anfasung A

Die Anfasung A erfolgt entweder am Abschlussbund der Keilverzahnung, an der Stirnfläche bei vorhandener Bohrung bzw. Gewindebohrung (siehe Abb. 2) oder wenn das Wellenende einem besonderen Zweck dient.

Anfasung B

Dient das Wellenende keinem besonderen Zweck, erfolgt die Anfasung mit dem Maß B.

Tab. 5 Anfasung der Keilwellenenden

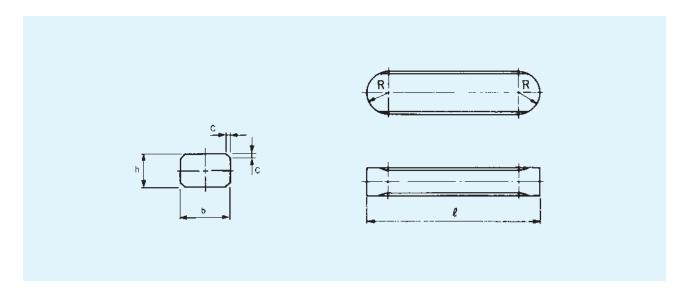

Baugröße	15	20	25	30	40	50	60	70	85	100	120	150
Anfasung A	1,0	1,0	1,5	2,5	3,0	3,5	5,0	6,5	7,0	7,0	7,5	8,0
Anfasung B	3,5	4,5	5,5	7,0	8,5	10,0	13,0	15,0	16,0	17,0	17,0	18,0

Schleifscheibenauslauf bei der Fertigung von Keilwellenverzahnungen

Bei spezialgefertigten Keilwellen mit einem Zapfen bzw. einem Flansch am Ende oder in der Mitte der Welle, dessen Durchmesser größer als der Kerndurchmesser d ist, können die Laufrillen aus fertigungstechnischen Gründen nicht vollständig ausgeführt werden.

Tabelle 6 zeigt die nicht zu bearbeitende Länge S unter Berücksichtigung des Schaftdurchmessers D_0 . Die hier angegebenen Längen gelten nicht bei Wellenlängen über 1.500 mm. Fragen Sie bitte in diesem Fall

Tab. 6 Unvollständig bearbeitete Länge S


Einheit: mm

Schaftdurch- messer D ₀	15	20	25	30	35	40	50	60	80	100	120	140	160	180	200
15	23	35	42	47	52	_	_	_	_	-	-	_	_	_	-
20	_	25	36	43	48	53	_	-	_	_	-	_	_	_	-
25	_	_	32	46	55	62	73	-	-	-	-	-	-	-	-
30	_	_	_	35	48	56	69	78	_	_	-	-	-	_	-
40	_	_	_	_	_	38	59	71	88	_	_	_	_	_	-
50	_	_	_	_	_	-	42	61	82	96	_	-	-	-	-
60	_	_	_	_	_	_	_	45	74	91	102	-	-	_	-
70	-	-	_	_	_	_	_	-	64	85	98	108	-	-	-
85	_	-	_	_	_	_	_	-	34	72	90	102	-	_	_
100	_	_	_	_	_	_	_	_	_	70	110	134	153	_	-
120	_	-	-	_	-	-	_	-	-	-	72	112	137	155	-
150	_	-	_	_	_	-	_	-	_	-	_	42	103	133	153

Zubehör

Die Kugelkeilwellen LBS und LBST sind mit einer Standard-Passfeder ausgerüstet (siehe Tabelle 7).

Tab. 7 Standard-Passfedern für LBS und LBST

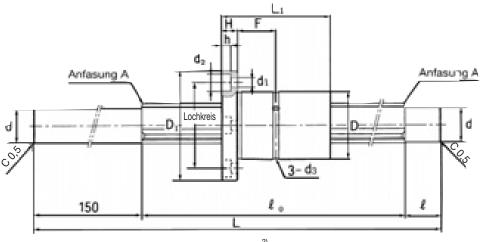
Baugröße		Breite		Höhe		Länge	R	С
Baugrobe	b	Toleranz (p7)	h	Toleranz (h9)	ℓ	Toleranz (h12)	ר	C
LBS 15	3,5		3,5		20	0	1,75	
LBS 20 LBST 20	4	+0,024 +0,012	4	0 -0,030	26	-0,210	2	0,5
LBS 25 LBST 25	5		5		33	0	2,5	0,5
LBS 30 LBST 30	7	+0,030	7		41	-0,250	3,5	
LBS 40 LBST 40	10	+0,015	8	0 -0,036	55		5	0,8
LBS 50 LBST 50	15	+0,036	10		60	- 0	7,5	,,,
LBST 60 LBS 70 LBST 70	18	+0,036	12		68	-0,300	9	
LBS 85 LBST 85	20		13	0 -0,043	80		10	1,2
LBS 100 LBST 100	28	+0,043 +0,022	18	-0,043	93	0 -0,350	14	
LBST 120	28		18		123	0	14	
LBST 150	32	+0,051 +0,026	20	0 -0,052	157	-0,400	16	2

Aufbau der Bestellbezeichnung

Die Bestellbezeichnung setzt sich bei Kugelkeilwellen wie folgt zusammen:

Symbol für Keilwellenausführung kein Symbol : massive Keilwelle K : hohle Standard-Keilwelle M : Spezialwerkstoff nach Absprache F : Oberflächenbehandlung nach Absprache (Bei mehr als einer Angabe bitte die Symbole in alphabetischer Reihenfolge angeben.)
Symbol für Genauigkeitsklasse kein Symbol: Normalklasse H: hochgenaue Klasse P: Präzisionsklasse
Keilwellen-Gesamtlänge (mm)
Symbol für Mutternausführung kein Symbol: Standardausführung M: Spezialwerkstoff nach Absprache F: Oberflächenbehandlung nach Absprache E: zusätzliche Bearbeitung der Mutter (Bei mehr als einer Angabe bitte die Symbole in alphabetischer Reihenfolge angeben.) Symbol für Spiel in Drehrichtung kein Symbol: Standardausführung
CL : leichte Vorspannung CM : mittlere Vorspannung
Symbol für Dichtungen kein Symbol : ohne Dichtungen UU : beidseitig mit Gummidichtungen U : einseitig mit Gummidichtung DD : beidseitig mit Filzdichtungen D : einseitig mit Filzdichtung
Zusatzsymbole kein Symbol: mit Kunststoffkäfig A: Stahlkäfig für hohe Temperatur T: Standardausführung
gruppe/-größe

²⁾ Zur Wahl der Oberflächenbehandlung wie Hartverchromen oder Vernickelung wenden Sie sich an ☐☐☐.

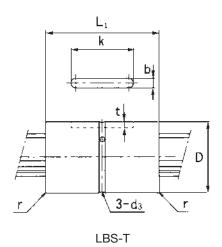

498 THK

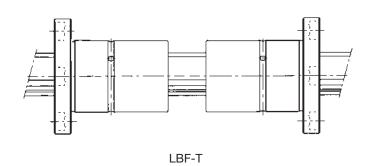
Standard-Kugelkeilwelle LBS

(Lagerartikel)¹⁾

LBF - T

						Abmessur	ngen N	Mutter	4)				
Baugröße ³⁾	Außendurchmesser		Länge		Abmessungen Flansch							nessun ssfeder	
	D	Toleranz	L ₁	Toleranz	D ₁	Toleranz	Н	F	Loch- kreis	$d_1 \times d_2 \times h$	b H8	t +0,05	k
LBS 15 T LBF 15 T 2LBF 15 T	23 23 23	0 -0,013	40 40 40	0	- 43 43	0		— 13 13	— 32 32		3,5 — —	2	20 — —
LBS 20 T LBF 20 T 2LBF 20 T	30 30 30		50 50 50	-0,2	— 49 49	-0,2	7 7	— 18 18	— 38 38	$ \begin{array}{c} - \\ 4,5 \times 8 \times 4,4 \\ 4,5 \times 8 \times 4,4 \end{array} $	4 — —	2,5 — —	26 — —
LBS 25 T LBF 25 T 2LBF 25 T	37 37 37	0 -0,016	60 60 60	0	60 60		9 9	21 21	— 47 47		5	3	33 — —
LBS 30 T LBF 30 T 2LBF 30 T	45 45 45		70 70 70		70 70	0	— 10 10	— 25 25	— 54 54		7 —	4 — —	41 — —
LBS 40 TX LBF 40 TX 2LBF 40 TX	60 57 57	0	90 90 90	-0,3	90 90	-0,3	— 14 14	— 31 31	— 70 70	9 × 14 × 8,6 9 × 14 × 8,6	10 — —	4,5 — —	55 — —
LBS 50 TX LBF 50 TX 2LBF 50 TX	75 70 70	-0,019	100 100 100		— 108 108		— 16 16	— 34 34	— 86 86		15 —	5	60 — —


Standardtypen sind in der Vorspannungsklasse "Normal" und in der Genauigkeitsklasse "Normal" lagerhaltig. Nur die Oberflächen der Laufrillen sind gehärtet (H_RC58 bis H_RC64).


Zur Bestellbezeichnung siehe S. 498.

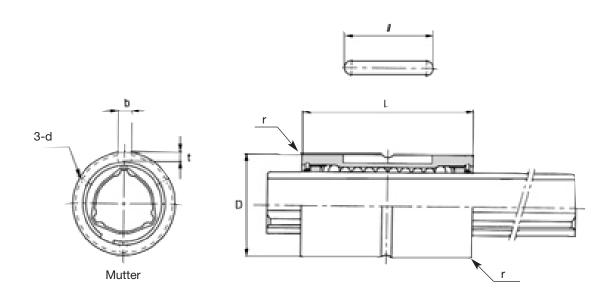
Die Muttern werden mit Käfigen aus synthetischem Kunststoff geliefert.

Die angegebenen Tragzahlen und Torsionsbelastungen gelten für eine Mutter.

		Abmessungen Keil	welle		Torsionsb	elastung ⁵⁾	Tragz	zahl ⁵⁾
Schmier- bohrung d ₃	r	Länge L (ℓ_0)	d ^{+0,1}	ℓ	C _T [Nm]	С _{от} [Nm]	C [kN]	C ₀ [kN]
2 2 2	0,5 — —	265 (100) 365 (200) 465 (300)	11,7	15	30,4	74,5	4,4	8,4
2 2 2	0,5 — —	365 (200) 665 (500) 465 (300) 565 (400)	15,2	15	74,5	160	7,8	14,9
2 2 2	0,5 — —	370 (200) 670 (500) 470 (300) 870 (700) 570 (400)	19,2	20	154	307	13,0	23,5
3 3 3	1,0 — —	470 (300) 770 (600) 570 (400) 970 (800) 670 (500) 1170 (1000)	22,2	20	273	538	19,3	33,8
3 3 3	1,0 — —	575 (400) 1175 (1000) 775 (600) 1375 (1200) 975 (800)	30,2	25	599	1140	31,9	53,4
4 4 4	1,5 — —	675 (500) 1375 (1200) 875 (700) 1775 (1600) 1175 (1000)	38,2	25	1100	1940	46,6	73,0

LBS

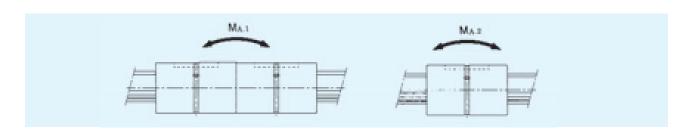
(für mittlere Belastung)



		Abmessungen Mutter ²⁾											
Baugröße ¹⁾	Διιβεη	durchmesser		Länge	Abmessı	ungen Pass	sfedernut		Schmier-				
baugrobe	/ (di)Ci			Lango	b	t +0,05	0	_	bohrung				
	D	Toleranz	L	Toleranz	H8	- 0	ℓ	r	d				
LBS 15	23	0 -0,013	40	0	3,5	2	20	0,5	2				
LBS 20	30	0	50	-0,2	4	2,5	26	0,5	2				
LBS 25	37	0 -0,016	60	0	5	3	33	0,5	2				
LBS 30	45	0,010	70		7	4	41	1,0	3				
LBS 40	60	0	90	0 -0,3	10	4,5	55	1,0	3				
LBS 50	75	-0,019	100	0,0	15	5	60	1,5	4				
LBS 70	100	0	110		18	6	68	2,0	4				
LBS 85	120	-0,022	140	0	20	7	80	2,5	5				
LBS 100	140	0 -0,025	160	-0,4	28	9	93	3,0	5				

LBS20ACL + 500LH (Symbol A: Einsatz bei Temperaturen > 80° C) Für die Baugröße LBS15 sind Metallkäfige nicht erhältlich.

¹⁾ Zur Bestellbezeichnung siehe S. 498.
Die Muttern der Baugrößen LBS20 bis 70 sind mit Käfigen aus synthetischem Kunststoff für geringe Geräuschentwicklung ausgestattet. Bei Betrieb über 80° C sind Metallkäfige einzusetzen (Symbol A in der Bestellbezeichnung). Bestellbeispiel:



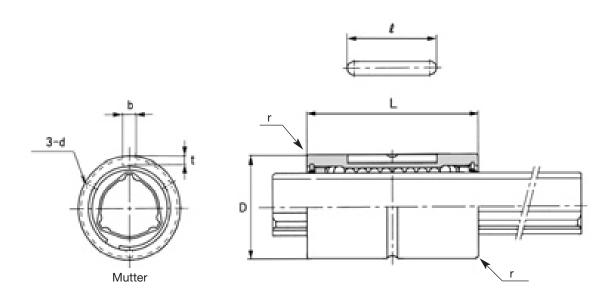
Einheit: mm

Torsions	pelastung	Trag	zahl	Zulässiges statisches Moment		Gew	vicht
C _T [Nm]	C _{oT} [Nm]	C [kN]	C _o [kN]	M _{A.1} ³⁾ [Nm]	M _{A.2} 4) [Nm]	Mutter [kg]	Welle [kg/m]
30,4	74,5	4,4	8,4	185	25,4	0,06	1,0
74,5	160	7,8	14,9	408	60,2	0,14	1,8
154	307	13,0	23,5	760	118	0,25	2,7
273	538	19,3	33,8	1270	203	0,44	3,8
599	1140	31,9	53,4	2640	387	1,0	6,8
1100	1940	46,6	73,0	4050	594	1,7	10,6
2190	3800	66,4	102	6530	895	3,1	21,3
3620	6360	90,5	141	12600	2000	5,5	32,0
5910	12600	126	237	20600	3460	9,5	45,0

M_{A.1} ist das zulässige statische Moment in Axialrichtung für zwei auf einer Keilwelle zusammengesetzte Muttern (siehe Abb. unten).
 M_{A.2} ist das zulässige statische Moment in Axialrichtung für eine Mutter auf einer Keilwelle (siehe Abb. unten).
 Hinweis: Für eine hohe Genauigkeit sollte der Typ LBST bzw. zwei Muttern des Typs LBS in engem Kontakt anstelle einer Mutter des Typs LBS eingesetzt werden.

LBST

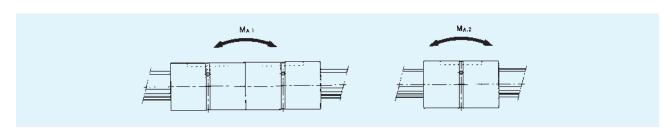
(für schwere Belastung)



Baugröße ¹⁾	Außer D	durchmesser Toleranz	L	Abme Länge Toleranz	ssungen M Abmessı b H8	lutter ²⁾ ungen Pass +0,05 t 0	sfedernut 	r	Schmier- bohrung d
LBST 20	30		60	0 -0,2	4	2,5	26	0,5	2
LBST 25	37	0 -0,016	70		5	3	33	0,5	2
LBST 30	45	-0,010	80		7	4	41	1,0	3
LBST 40	60	0	100	0	10	4,5	55	1,0	3
LBST 50	75	-0,019	112	-0,3	15	5	60	1,5	4
LBST 60	90	0	127		18	6	68	1,5	4
LBST 70	100	0 -0,022	135		18	6	68	2,0	4
LBST 85	120	0,022	155	0	20	7	80	2,5	5
LBST 100	140	0	175	-0,4	28	9	93	3,0	5
LBST 120	160	-0,025	200	0	28	9	123	3,5	6
LBST 150	205	0 -0,029	250	-0,5	32	10	157	3,5	6

¹⁾ Zur Bestellbezeichnung siehe S. 498.

Die Muttern der Baugrößen LBST20 bis 70 sind mit Käfigen aus synthetischem Kunststoff für geringe Geräuschentwicklung ausgestattet. Bei Betrieb über 80° C sind Metallkäfige einzusetzen (Symbol A in der Bestellbezeichnung). Für die Baugrößen LBST70 oder kleiner sind Metallkäfige nicht erhältlich. Bestellen Sie bitte in diesem Fall den Typ LBS.



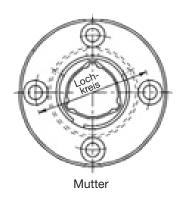
Einheit: mm

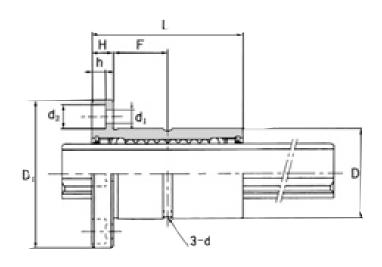
Torsionsk	pelastung	Trag	zahl		statisches nent	Gewicht	
C _T [Nm]	C _{0T} [Nm]	C [kN]	C ₀ [kN]	M _{A.1} ³⁾ [Nm]	M _{A.2} 4) [Nm]	Mutter [kg]	Welle [kg/m]
90,2	213	9,4	20,1	632	103	0,17	1,8
176	381	14,9	28,7	1060	171	0,29	2,7
312	657	22,5	41,4	1740	295	0,50	3,8
696	1420	37,1	66,9	3540	586	1,1	6,8
1290	2500	55,1	94,1	5610	941	1,9	10,6
1870	3830	66,2	121	8280	1300	3,3	15,6
3000	6090	90,8	164	11800	2080	3,8	21,3
4740	9550	119	213	17300	3180	6,1	32,0
6460	14400	137	271	25400	4410	10,4	45,0
8380	19400	148	306	32400	5490	12,9	69,5
13900	32200	196	405	55400	8060	28,0	116,6

 $^{^{3)}}$ $M_{A.1}$ ist das zulässige statische Moment in Axialrichtung für zwei auf einer Keilwelle zusammengesetzte Muttern (siehe Abb. unten). $^{4)}$ $M_{A.2}$ ist das zulässige statische Moment in Axialrichtung für eine Mutter auf einer Keilwelle (siehe Abb. unten).

LBF

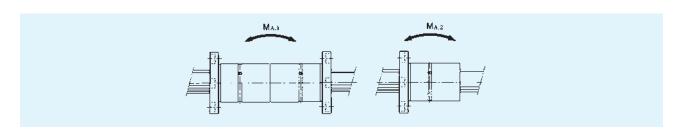
(für mittlere Belastung)


				Abme	ssunge	n Mutter ²⁾				
Baugröße ¹⁾	Außen	durchmesser	Länge		Flansch		Н	F	Schmier- bohrung	Loch- kreis
	D	Toleranz	L	Toleranz	D ₁	Toleranz			d	KIEIS
LBF 15	23	0 -0,013	40	0	43		7	13	2	32
LBF 20	30	0	50	-0,2	49	0	7	18	2	38
LBF 25	37	0 -0,016	60		60	0 -0,2	9	21	2	47
LBF 30	45	0,010	70		70	0,2	10	25	3	54
LBF 40	57		90	0	90		14	31	3	70
LBF 50	70	0 -0,019	100	-0,3	108		16	34	4	86
LBF 60	85	0,010	127		124	0	18	45,5	4	102
LBF 70	95	0	110		142	-0,3	20	35	4	117
LBF 85	115	-0,022	140	0	168		22	48	5	138
LBF 100	135	0 -0,025	160	-0,4	195	0 -0,4	25	55	5	162


¹⁾ Zur Bestellbezeichnung siehe S. 498.

LBF20ACL + 500LH (Symbol A: Einsatz bei Temperaturen > 80° C).

Die Muttern der Baugrößen LBF15 bis 70 sind durchweg mit synthetischen Kunststoffkäfigen für geringe Geräuschentwicklung ausgestattet. Bei Betrieb über 80° C sind Metallkäfige einzusetzen (Symbol A in der Bestellbezeichnung). Für die Baugrößen LBF15 und LBF60 sind keine Metallkäfige erhältlich. Bestellbeispiel:



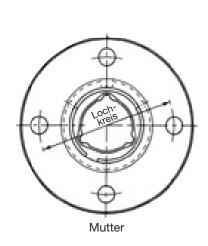
Einheit: mm

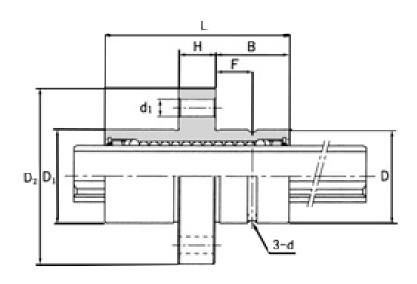
Befestigungs-	Torsions	pelastung	Trag	zahl		statisches nent	Gewicht		
bohrung $d_1 \times d_2 \times h$	C _T [Nm]	C _{oT} [Nm]	C [kN]	C _o [kN]	M _{A.1} ³⁾ [Nm]	M _{A.2} 4) [Nm]	Mutter [kg]	Welle [kg/m]	
$4,5 \times 8 \times 4,4$	30,4	74,5	4,4	8,4	185	25,4	0,11	1,0	
$4,5 \times 8 \times 4,4$	74,5	160	7,8	14,9	408	60,2	0,20	1,8	
$5.5 \times 9.5 \times 5.4$	154	307	13,0	23,5	760	118	0,36	2,7	
$6,6 \times 11 \times 6,5$	273	538	19,3	33,8	1270	203	0,60	3,8	
9 × 14 × 8,6	599	1140	31,9	53,4	2640	387	1,2	6,8	
$11 \times 17,5 \times 11$	1100	1940	46,6	73,0	4050	594	1,9	10,6	
$11 \times 17,5 \times 11$	1870	3830	66,2	121	8280	1300	3,5	15,6	
14 × 20 × 13	2190	3800	66,4	102	6530	895	3,6	21,3	
$16 \times 23 \times 15,2$	3620	6360	90,5	141	12600	2000	6,2	32	
$18 \times 26 \times 17,5$	5910	12600	126	237	20600	3460	11,0	45	

 $M_{A,1}$ ist das zulässige statische Moment in Axialrichtung für zwei zusammengesetzte Muttern auf einer Keilwelle (siehe Abb. unten). $M_{A,2}$ ist das zulässige statische Moment in Axialrichtung für eine Mutter auf einer Keilwelle (siehe Abb. unten). **Hinweis:** Für eine hohe Genauigkeit sollte der Typ LBF mit zwei zusammengesetzten Muttern eingesetzt werden.

LBR

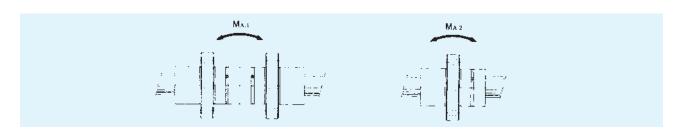
(für mittlere Belastung)


				Abmessungen Mutter ²⁾							
Baugröße ¹⁾	F	Außendurchmesser			Länge	Flansch	Н	В	Loch-		
	D	Toleranz	D ₁	L	Toleranz	D_2			kreis		
LBR 15	25	0 -0,013	25,35	40	0	45,4	9	15,5	34		
LBR 20	30	0	30,35	60	-0,2	56,4	12	24	44		
LBR 25	40	0 -0,016	40,35	70		70,4	14	28	54		
LBR 30	45	0,010	45,4	80		75,4	16	32	61		
LBR 40	60	0	60,4	100	0	96,4	18	41	78		
LBR 50	75	-0,019	75,4	112	-0,3	112,4	20	46	94		
LBR 60	90		90,5	127		134,5	22	52,5	112		
LBR 70	95	0 -0,022	95,6	135		140,6	24	55,5	117		
LBR 85	120	ĺ	120,6	155	0	170,6	26	64,5	146		
LBR 100	140	0 -0,025	140,6	175	-0,4	198,6	34	70,5	170		


¹⁾ Zur Bestellbezeichnung siehe S. 498.

LBR20ACL + 500LH (Symbol A: Einsatz bei Temperaturen > 80° C).

Die Muttern der Baugrößen LBR15 bis 70 sind durchweg mit synthetischen Kunststoffkäfigen für geringe Geräuschentwicklung ausgestattet. Bei Betrieb über 80° C sind Metallkäfige einzusetzen (Symbol A in der Bestellbezeichnung). Für die Baugrößen LBR70 oder kleiner sind keine Metallkäfige erhältlich. Bestellbeispiel:

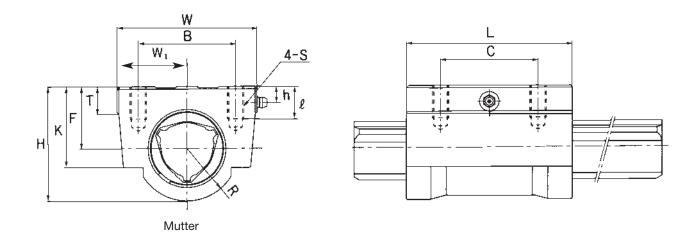


				pelastung	Trag	ızahl	Zulässiges stat	isches Moment	Gew	vicht
d ₁	F	Schmier- bohrung d	C _T [Nm]	С _{от} [Nm]	C [kN]	C ₀ [kN]	M _{A.1} ³⁾ [Nm]	M _{A.2} ⁴⁾ [Nm]	Mutter [kg]	Welle [kg/m]
4,5	7,5	2	30,4	74,5	4,4	8,4	185	25,4	0,14	1,0
5,5	12	2	90,2	213	9,4	20,1	632	103	0,33	1,8
5,5	14	2	176	381	14,9	28,7	1060	171	0,54	2,7
6,6	16	3	312	657	22,5	41,4	1740	295	0,90	3,8
9	20,5	3	696	1420	37,1	66,9	3540	586	1,7	6,8
11	23	4	1290	2500	55,1	94,1	5610	941	2,7	10,6
11	26	4	1870	3830	66,2	121	8280	1300	3,7	15,6
14	27	4	3000	6090	90,8	164	11800	2080	6,0	21,3
16	32	5	4740	9550	119	213	17300	3180	8,3	32,0
18	35	5	6460	14400	137	271	25400	4410	14,2	45,0

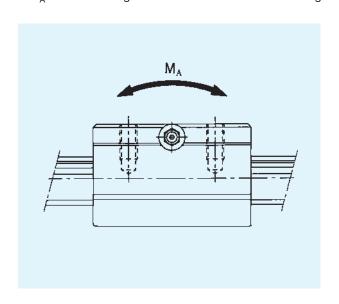
 $M_{A.1}$ ist das zulässige statische Moment in Axialrichtung für zwei zusammengesetzte Muttern auf einer Keilwelle

⁽siehe Abb. unten).

M_{A,2} ist das zulässige statische Moment in Axialrichtung für eine Mutter auf einer Keilwelle (siehe Abb. unten). **Hinweis:** Für eine hohe Genauigkeit sollte der Typ LBR mit zwei zusammengesetzten Muttern eingesetzt werden.

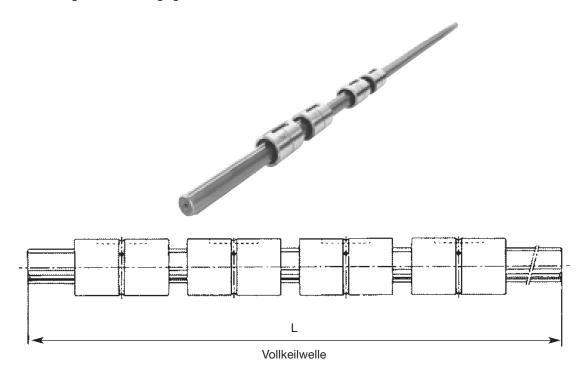

LBH

					Abme	ssungen Mutter ²⁾				
Baugröße ¹⁾	Höhe H	Breite W	Länge L	В	С	S×ℓ	F ±0,15	W ₁ ±0,15	Т	K
LBH 15	29	34	43	26	26	M 4×10	15	17	6	20
LBH 20	38	48	62	35	35	M 6 × 12	20	24	7	26
LBH 25	47,5	60	73	40	40	M 8 × 16	25	30	8	33
LBH 30	57	70	83	50	50	M 8 × 16	30	35	10	39
LBH 40	70	86	102	60	60	M10 × 20	38	43	15	50
LBH 50	88	100	115	75	75	M12 × 25	48	50	18	63


Zur Bestellbezeichnung siehe S. 498.
 Die Muttern sind mit synthetischen Kunststoffkäfigen für eine geringe Geräuschentwicklung ausgestattet. Käfige für hohe Temperaturen sind nicht verfügbar.

	Abme	ssungen	Torsionsbelastung		Tragzahl		Zul. statisches Moment	Gew	vicht
R	h	Schmier- einrichtung	C _T [Nm]	C _{oT} [Nm]	C [kN]	C _o [kN]	M _{A³⁾ [Nm]}	Mutter [kg]	Welle [kg/m]
14	5	4 mm Ø Eintreibnippel	30,4	74,5	4,4	8,4	25,4	0,23	1,0
18	7	A-M6F	90,2	213	9,4	20,1	103	0,58	1,8
22	6	A-M6F	176	381	14,9	28,7	171	1,10	2,7
26	8	A-M6F	312	657	22,5	41,4	295	1,73	3,8
32	10	A-M6F	696	1420	37,1	66,9	586	3,18	6,8
40	13,5	A-PT1/8	1290	2500	55,1	94,1	941	5,10	10,6

 $^{^{3)}}$ $\mathrm{M_{A}}$ ist das zulässige statische Moment in Axialrichtung für eine Mutter auf der Keilwelle (siehe Abb. unten).



Vollkeilwelle LBS

(Lagerartikel)

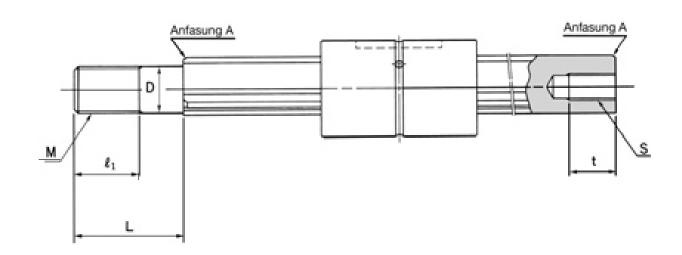
Eine Kugelkeilwelle des Typs LBS als Vollkeilwelle besteht aus mindestens zwei Muttern auf einer Keilwelle. Die Keilwelle kann auf die gewünschte Länge geschnitten bzw. mit einer bestimmten Anzahl von Muttern geliefert werden. Spiel und Genauigkeit entsprechen bei dieser Kugelkeilwelle der Normalklasse.

Einheit: mm

		Zii ii oiti ii iii
Baugröße ^{1) 2)}	Gesamtlänge	Anzahl der Muttern
LBS 15	1500	5
LBS 20	1800	6
LBS 25	2500	6
LBS 30	3000	6
LBS 40	3000	4
LBS 50	3000	4

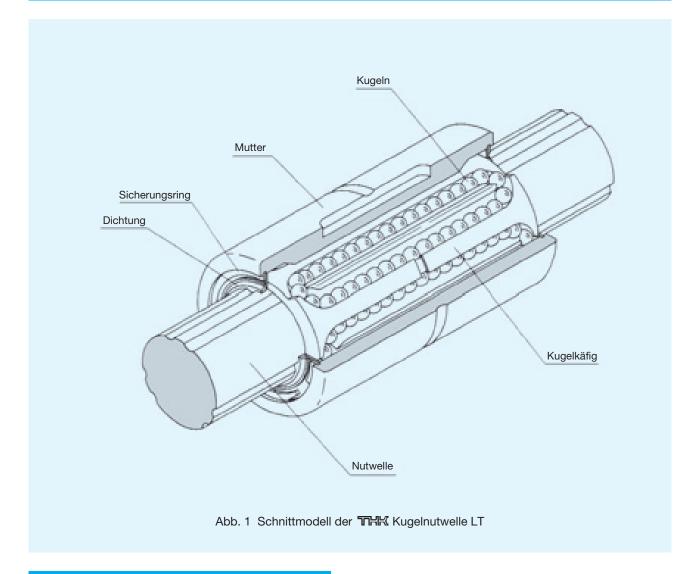
Die Muttern des Typs LBF sind für die Vollkeilwelle ebenfalls erhältlich.

Zusätzliche Endenbearbeitung


Die Oberfläche der Keilwelle ist über die gesamte Länge induktiv gehärtet. Folgen Sie bitte der unten stehenden Anleitung für eine weitere Endenbearbeitung.

- 1. Die Keilwelle ist mit einem entsprechenden Schneidwerkzeug auf die gewünschte Länge zu kürzen.
- Anschließend ist der zu bearbeitende Endenbereich spannungsarm zu glühen (Normalglühen). Während des Glühvorgangs muß unbedingt der nicht zu bearbeitende Teil gekühlt werden.
- 3. Danach kann die entsprechende Endenbearbeitung vorgenommen werden.
- 4. Je nach benötigter Genauigkeit und Ausführung der Enden sind geeignete Bearbeitungsschritte mit entsprechenden Maschinen vorzunehmen.

Zur Bestellbezeichnung siehe S. 498.


Empfohlene Zapfenformen für Endenlagerung

Baugröße	D	Toleranz	L	M	ℓ_1	S×t
LBS 15	10	0 -0,015	23	M10 × 1,25	14	M 6 × 10
LBS 20	14	0 -0,018	30	M14 × 1,5	18	M 8 × 15
LBS 25	18	-0,018	42	M18 × 1,5	25	M10 × 18
LBS 30	20	0 -0,021	46	M20 × 1,5	27	M12 × 20
LBS 40	30	-0,021	70	M30 × 2,0	40	M18 × 30
LBS 50	36	0 -0,025	80	M36 × 3,0	46	M20 × 35

THK Kugelnutwelle LT/LF

Aufbau und Merkmale

Bei den '고 H본 Kugelnutwellen LT und LF sind je nach Baugröße zwei oder drei Laufrillenpaare am Umfang der Welle eingeschliffen. In diesen Laufrillenpaaren laufen die Kugelreihen ab, die bei Bedarf mit einer entsprechenden Vorspannung versehen werden können. Ein Kugelkäfig aus speziellem Kunststoff garantiert einen optimalen Kugelumlauf in der Mutter. Dazu bewahrt er die Kugeln beim Abziehen der Mutter von der Nutwelle vor dem Herausfallen.

Hohe radiale Tragzahlen

Die Laufrillen sind in der Geometrie des Kreisbogens geschliffen, wobei die Schmiegung der Rillen annähernd dem Kugelradius entspricht. Zusammen mit der Winkelanordnung der Kugeln können dadurch hohe radiale Tragzahlen und eine hohe Aufnahme von Torsionsbelastungen realisiert werden.

Winkelspielfrei

Die Winkelanordnung und die Vorspannung der Kugeln gewährleisten Spielfreiheit in Drehrichtung sowie eine hohe Steifigkeit der Kugelnutwelle.

Ausgezeichnete Steifigkeit

Mit dem großen Kontaktwinkel der Kugeln und einer entsprechenden Vorspannung wird eine hohe Steifigkeit der Kugelnutwellen gegenüber Torsionsbelastungen und Momenten erreicht.

Einfache Montage

Der Kugelkäfig ermöglicht ein Abziehen der Mutter von der Welle, ohne daß die Kugeln herausfallen. Somit werden Montage und Wartungsarbeiten vereinfacht.

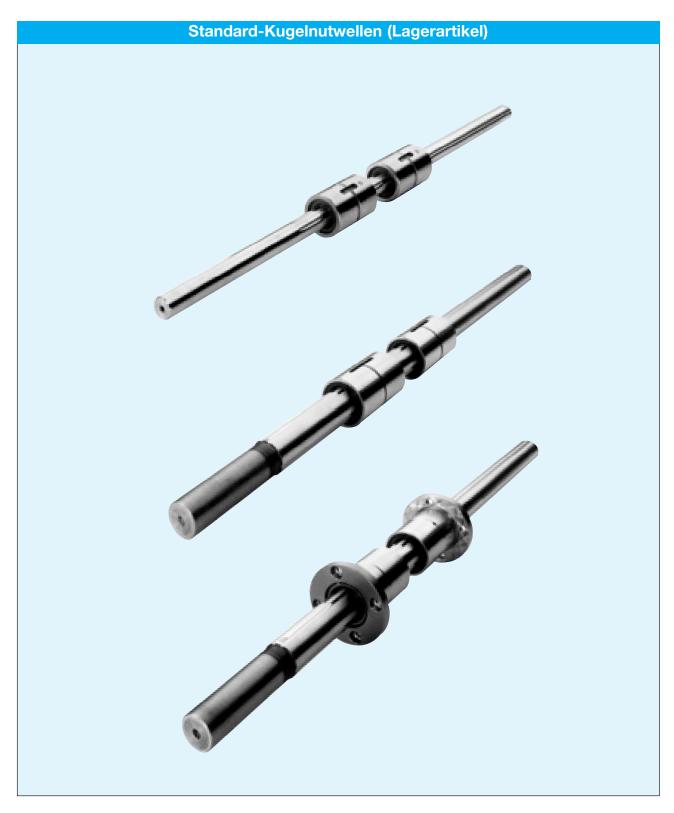
Hinweis: Die Typen LT4 und LT5 sind wegen ihrer minimalen Baugröße ohne Kugelkäfig.

Typenauswahl

Dieser Typ besteht aus einer zylindrischen Mutter mit einer Passfedernut zur Übertragung von Drehmomenten. Es ist der kompakteste Typ.

Der Flansch ermöglicht eine einfache Montage der Mutter in einem Gehäuse. Diese Einbauart bietet sich bei schmalen Einbaugehäusen an oder wenn eine Verformung des Gehäuses durch die Bearbeitung für eine Passfeder zu befürchten ist. Mit Spannstiften kann der Flansch im Anbauteil fest fixiert werden.

Die Nutwellen sind präzisionsgeschliffen.


Nutwellen können auch mit einem größeren Durchmesser am Ende oder in der Mitte hergestellt werden.

Kaltgezogene, hohle Nutwellen sind zum Durchführen von Leitungen oder Kabeln, zur Belüftung oder für Konstruktionen mit geringem Gewicht erhältlich.

Die Muttern sind auf präzisionsgeschliffenen Nutwellen aufgezogen. Für die Baugrößen LT6 bis LT50 sind die Wellenlängen standardisiert. Die Standard-Kugelnutwellen sind preiswert und kurzfristig lieferbar.

Nutwellendurchmesser

Genauigkeitsklassen

Siehe S. 462.

Siehe S. 478.

Spiel in Drehrichtung

Das Spiel in Drehrichtung hat einen großen Einfluß auf die Genauigkeit und Steifigkeit der Mutter. Daher muß eine geeignete Vorspannung für die geplante Anwendung ausgesucht werden. Im allgemeinen werden vorgespannte Kugelnutwellen eingesetzt.

Bei Einsatz mit ruckweisen Drehbewegungen oder hohen Hubfrequenzen wirken Stöße und Vibrationen auf die Mutter. Unter diesen Bedingungen verbessert die Vorspannung die Genauigkeit und letztendlich die Lebensdauer.

Zur Auswahl der optimalen Vorspannung fragen Sie bitte TIHK. In Tabelle 2 ist das jeweilige Spiel für LT und LF angegeben.

Tab. 1 Auswahl der Vorspannungsklasse

		Anwendungsbedingungen	Anwendungsbeispiele
sse	СМ	 Betrieb mit Vibrationen und Stoßbelastungen. Hohe Steifigkeit erforderlich. Mutter ist Verdrehbelastungen ausgesetzt. 	Lenkwellen für Baufahrzeuge, Wellen von Punktschweißmaschinen, Schaltspindeln für Werkzeughalter von Drehmaschinen.
Vorspannungsklasse	CL	 Betrieb mit Überhang- oder Verdrehbelastungen. Hohe Wiederholgenauigkeit erforderlich. Betrieb unter Wechselbelastungen. 	Arme für Industrieroboter, automatische Ladevorrichtungen, Führungswellen für Lackierautomaten, Hauptspindeln für Funkenerosionsmaschinen, Wellen für Führungsgestelle, Hauptspindeln von Bohrmaschinen.
Vors	Normal	 Für gleichmäßigen Betrieb mit geringer Antriebskraft. Betrieb mit stets gleichgerichtetem Drehmoment. 	Messinstrumente, automatische Zeichenmaschinen, Dynanometer, Drahtwickelmaschinen, Schweißautomaten, Verpackungsmaschinen.

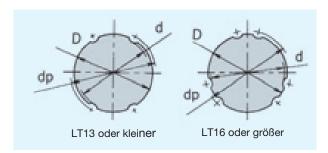
Tab. 2 Spiel der Kugelnutwelle in Drehrichtung

nheit: μm

, ,	· ·		πιοπ. μπ
Symbol	Normal	leichte Vorspannung	mittlere Vorspannung
Baugröße	kein Symbol	CL	CM
4			
5			
6			
8			
10	- 2∼+1	-6∼-2	
13			
16			- 9∼-5
20			-9~-5
25	- 3∼+2	- 10∼-4	-14~-8
30	-3~+2	-10~-4	-14~-0
40	- 4∼+2	-16∼-8	-22~-14
50	-4'-72	-10/0	-22:14
60	-5~+2	-22~-12	-30~-20
80	-5 - 72	-2212	-0020
100	- 6∼+3	-26~-14	-36~-24

Anm.: Bei Normalspiel wird kein Kennzeichen verwendet. Die Kennzeichen für mittlere Vorspannung CM und leichte Vorspannung CL sind bei der Bestellung mit anzugeben. Siehe S. 522 zum Aufbau der Bestellbezeichnung. Das Spiel in Drehrichtung ist auf den Kugelmittenkreis dp bezogen.

Einbautoleranzen


Siehe S. 479.

Nutwellen

Querschnittsabmessungen

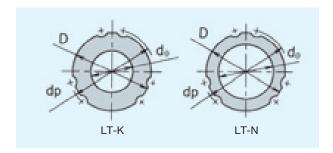
Entsprechend den Kundenanforderungen können Nutwellen mit verschiedenen Wellenenden hergestellt werden. Fügen Sie daher bitte Ihrer Anfrage oder Bestellung eine Skizze zu der gewünschten Ausführung der Nutwelle bei.

Tabelle 3 gibt den Kern- und Außendurchmesser und die Toleranz des Außendurchmessers an.

Tab. 3 Querschnittsabmessung der Nutwellen

Einheit: mm

			LIIIIEIL. IIIIII
Baugröße	Kerndurch- messer d	Außendurch- messer D	Außen- durchmesser Toleranz
4	3,5	4	0
5	4,5	5	0 -0,012
6	5,0	6	0,0.1
8	7,0	8	0
10	8,5	10	-0,015
13	11,5	13	0
16	14,5	16	-0,018
20	18,5	20	0
25	23,0	25	0 -0,021
30	28,0	30	0,021
40	37,5	40	0
50	46,5	50	-0,025
60	56,5	60	0
80	75,5	80	-0,030
100	95,0	100	0 -0,035


Tab. 5 Kugelmittenkreis dp bei Nutwellen

Einheit: mm Baugröße 4 5 6 8 10 13 16 20 25 30 40 50 60 80 100 dp 4,6 5,7 9,3 11,5 14,8 17,8 22,1 27,6 33,2 44,2 55,2 66,3 87,9 109,5

Querschnittsabmessungen von Hohlwellen

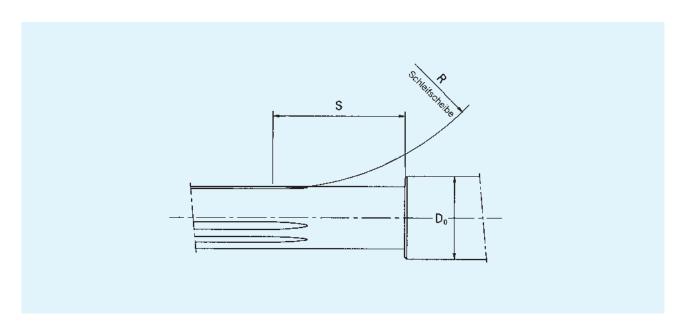
Bei Hohlwellen können hydraulische oder pneumatische Leitungen durchgeführt werden. Zur Gewichtsreduzierung einer Gesamtkonstruktion werden auch Hohlwellen ein-

Tabelle 4 gibt dazu die Querschnittsabmessungen von Standardhohlwellen an.

Tab. 4 Bohrungsdurchmesser von hohlen Standard-Nutwellen

Einheit: mm

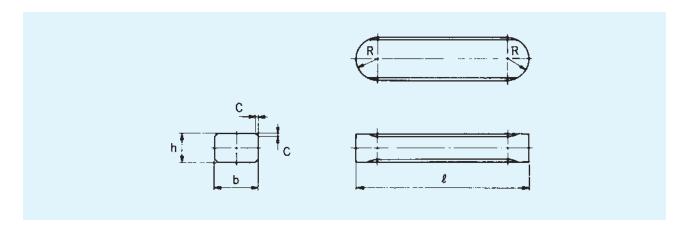
Bau-	Außen- durch-	Тур	o K	Тур	o N
größe	messer D	Bohrung d ₀	Gewicht [kg/m]	Bohrung d ₀	Gewicht [kg/m]
6	6	2,5	0,20	_	_
8	8	3,0	0,35	_	_
10	10	4,0	0,52	_	_
13	13	5,0	0,95	_	_
16	16	7	1,3	11	0,8
20	20	10	1,8	14	1,3
25	25	12	3,0	18	1,9
30	30	16	4,0	21	2,8
40	40	22	6,9	29	4,7
50	50	25	11,6	36	7,4
60	60	32	16,0	_	_
80	80	52,5	22,6	_	_
100	100	67,5	33,7	_	_


Anm.: Die Typen K und N sind Standard-Nutwellen. Bei Bestellung geben Sie bitte in der Bestellbezeichnung ein K oder N an.

Unvollständige Bearbeitung der Laufrillen bei spezialgefertigten Nutwellen

Bei spezialgefertigten Nutwellen mit einem Zapfen am Ende oder in der Mitte der Welle, dessen Durchmesser über dem Kerndurchmesser d liegt, können die Laufrillen aus technischen Gründen nicht vollständig ausgeschliffen werden.

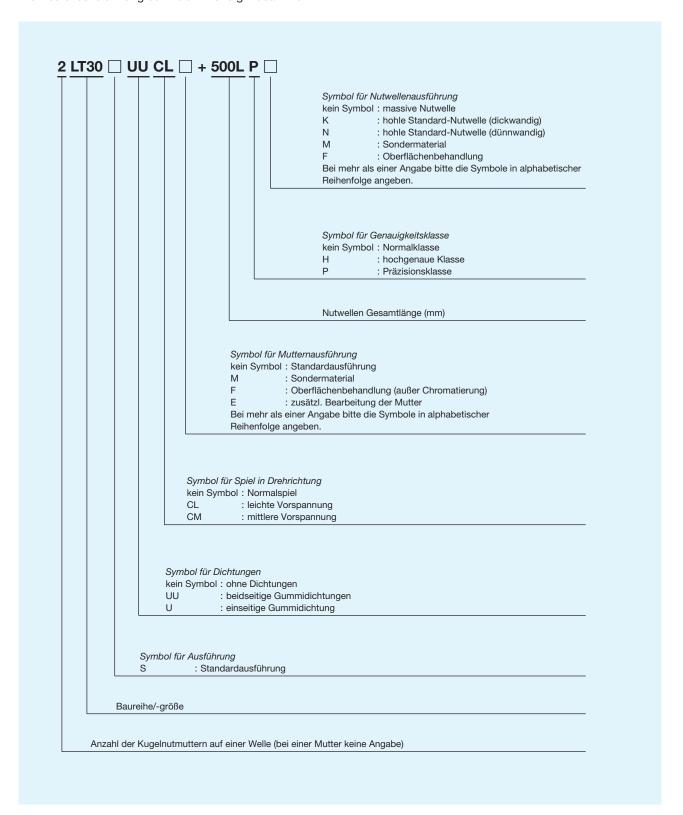
Tabelle 6 zeigt die nicht bearbeitete Länge S infolge des größeren Schaftdurchmessers D_0 . Die hier angegebenen Längen gelten nicht bei Wellenlängen über 1500 mm. Fragen Sie bitte in diesem Fall THK.


Tab. 6 Unvollständig bearbeitete Länge S

Schaftdurchmesser D ₀	4	5	6	8	10	13	16	20	25	30	40	50	60	80	100	120	140	160
4	13	20	24	31	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5	_	14	21	28	33	_	_	_	_	_	_	_	_	_	_	_	_	_
6	_	_	16	24	28	33	_	_	_	_	_	_	_	_	_	_	_	_
8	_	_	_	16	24	30	35	_	_	_	_	_	_	_	_	_	_	_
10	_	_	_	_	17	27	32	37	_	_	_	_	_	_	_	_	_	_
13	_	_	_	_	_	17	27	34	40	_	_	_	_	_	_	_	_	_
16	_	_	_	_	_	_	21	36	46	54	_	_	_	_	_	_	_	_
20	_	_	_	_	_	_	_	21	38	48	62	_		_	_	_	_	_
25	_	_	_	_	_	_	_	_	23	39	56	67	_	_	_	_	_	_
30	_	_	_	_	_	_	_	_	_	24	49	62	72	_	_	_	_	_
40	_	_	_	_	_	_	_	_	_	_	27	50	63	81	_	_	_	_
50	_	_	_	_	_	_	_	_	_	_	1	29	51	74	89	_	_	
60	_	_	_	_	_	_	_	_	_	_	_	_	28	56	71	82	_	_
80	_	_	_	_	_	_	_	_	_	_	_	_	_	31	57	72	83	_
100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	58	73	83

Zubehör

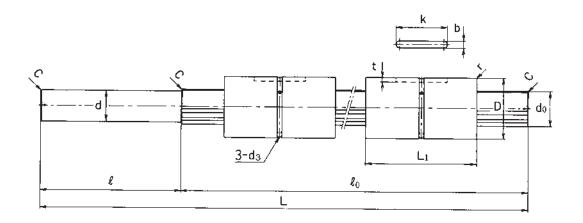
Die Kugelnutwelle Typ LT wird mit einer Standard-Paßfeder ausgerüstet (siehe Tabelle 7).


Tab. 7 Standard-Passfedern für LT

Tab. 7 Standard-1 assisted in tul El												
Pougräßs		Breite		Höhe		Länge	В	C				
Baugröße	b	Toleranz p7	h	Toleranz h9	ℓ	Toleranz h12	R	С				
LT4	2		2		6	0 -0,120	1	0,3				
LT5	2,5		2,5		8	0 -0,150	1,25	0,5				
LT6 LT8	2,5	+0,016 +0,006	2,5	0 -0,025	10,5		1,25					
LT10	3		3		13	0	1,5					
LT13	3		3		15	-0,180	1,5					
LT16	3,5		3,5		17,5		1,75					
LT20	4		4	0 -0,030	29	0 -0,210	2	0,5				
LT25	4	+0,024 +0,012	4		36	0	2					
LT30	4		4		42	-0,250	2					
LT40	6		6		52		3					
LT50	8	+0,030 +0,015	7		58	0	4					
LT60	12	+0,036	8	0 -0,036	67	-0,300	6					
LT80	16	+0,018	10		76		8	0,8				
LT100	20	+0,043 +0,022	13	0 -0,043	110	0 -0,350	10					

Aufbau der Bestellbezeichnung

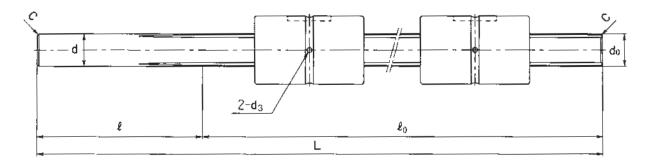
Die Bestellbezeichnung setzt sich wie folgt zusammen:



Standard-Nutwellenführung LT

(Lagerartikel)

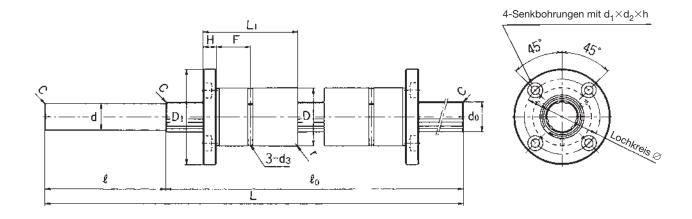
				Ak	messunge	n Mutter 2)				
Baugröße 1)	Außer	ndurchmesser		Länge	Abmess	ungen Pass	federnut		Schmier- bohrung	
ŭ	D	Toleranz	L ₁	Toleranz	b H8	t ^{+0,05}	k	r	d_3	d ₀ h7
LT 6S 2LT 6S	14	0	25		2,5	1,2	10,5	0,5	1	6
LT 8S 2LT 8S	16	-0,011	25		2,5	1,2	10,5	0,5	1,5	8
LT 10 S 2LT 10 S	21		33	0	3	1,5	13	0,5	1,5	10
LT 13 S 2LT 13 S	24	0 -0,013	36	-0,2	3	1,5	15	0,5	1,5	13
LT 16 S 2LT 16 S	31		50		3,5	2	17,5	0,5	2	16
LT 20 S 2LT 20 S	35		63		4	2,5	29	0,5	2	20
LT 25 S 2LT 25 S	42	0 -0,016	71		4	2,5	36	0,5	3	25
LT 30 S 2LT 30 S	47		80	0	4	2,5	42	0,5	3	30
LT 40 S 2LT 40 S	64	0	100	-0,3	6	3,5	52	0,5	4	40
LT 50 S 2LT 50 S	80	-0,019	125		8	4	58	1	4	50


¹⁾ Zur Bestellbezeichnung siehe S. 522.

²⁾ Die Muttern sind für geringe Laufgeräusche mit synthetischen Kunststoffkäfigen ausgestattet. Käfige für den Betrieb bei Temperaturen über 80°C sind nicht erhältlich.

 $^{^{3)}}$ Die Nutwelle ist nur über die Länge ℓ_0 induktionsgehärtet (H_RC58 bis H_RC64). Bei der Nutwelle, deren Länge mit einem Sternchen versehen ist, beträgt die unbearbeitete Länge ℓ = 200 mm.

⁴⁾ Die angegebenen Tragzahlen und zulässigen Torsionsmomente gelten für eine Mutter.


LT13S oder kleiner

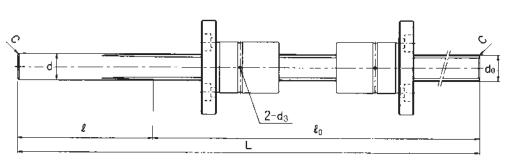
			At	messun	gen Nut	welle 3)				Tragz	ahl ⁴⁾	zulässiges Torsionsmoment ⁴⁾	
d	Toleranz	ℓ				inge (ℓ_0)			Anfasung C	C [kN]	C ₀ [kN]	C _T [Nm]	C _{OT} [Nm]
6	0 -0,012	100	150	(50)	200	(100)			0,5	1,18	2,16	0,98	1,96
8	0	100	150	(50)	200	(100)	250	(150)	0,5	1,47	2,55	1,96	2,94
10	-0,015	100	200	(100)	300	(200)			0,5	2,84	4,90	3,92	7,84
13	0 -0,018	100	200	(100)	300	(200)	400	(300)	0,5	3,53	5,78	5,88	10,8
14,3		100	200	(100)	300	(200)	400	(300)	0,5	7,06	12,6	31,4	34,3
17,8		100	300 600	(200) (500)	400	(300)	500	(400)	0,5	10,2	17,8	56,9	55,9
22,8	+0,1	100	300 600	(200) (500)	400 800	(300) (700)	500	(400)	0,5	15,2	25,8	105	103
27,8	0	100	400 700	(300) (600)	500 1100	(400) (1000)	600	(500)	0,5	20,5	34,0	171	148
36,3		100	500 1100	(400) (1000)	700 1600	(600) (1500)	900	(800)	1	37,8	60,5	419	377
45,3		100 (200)	600 1700	(500) (1600)		(1000) (2000)	1300	(1200)	1	60,9	94,5	842	769

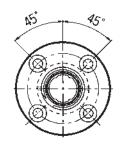
Standard-Nutwellenführung LF

(Lagerartikel)

					Abmessungen Mutter 2)											
Baugröße 1)	Auße	ndurchmesser		Länge	Flanso	chdurchmesser						Schmier-				
	D	Toleranz	L ₁	Toleranz	D ₁	Toleranz	Н	F	Loch- kreis	Senkbohrung $d_1 \times d_2 \times h$	r	bohrung d ₃	d ₀ h7			
LF 6S 2LF 6S	14	0	25		30		5	7,5	22	3,4×6,5×3,3	0,5	1	6			
LF 8S 2LF 8S	16	-0,011	25		32		5	7,5	24	3,4×6,5×3,3	0,5	1,5	8			
LF 10 S 2LF 10 S	21		33	0 -0,2	42		6	10,5	32	4,5×8×4,4	0,5	1,5	10			
LF 13 S 2LF 13 S	24	0 -0,013	36		44		7	11	33	4,5×8×4,4	0,5	1,5	13			
LF 16 S 2LF 16 S	31		50		51	0	7	18	40	4,5×8×4,4	0,5	2	16			
LF 20 S 2LF 20 S	35		63		58	-0,2	9	22,5	45	5,5×9,5×5,4	0,5	2	20			
LF 25 S 2LF 25 S	42	0 -0,016	71		65		9	26,5	52	5,5×9,5×5,4	0,5	3	25			
LF 30 S 2LF 30 S	47		80	0	75		10	30	60	6,6×11×6,5	0,5	3	30			
LF 40 S 2LF 40 S	64	0	100	-0,3	100		14	36	82	9×14×8,6	0,5	4	40			
LF 50 S 2LF 50 S	80	-0,019	125		124		16	46,5	102	11×17,5×11	1	4	50			

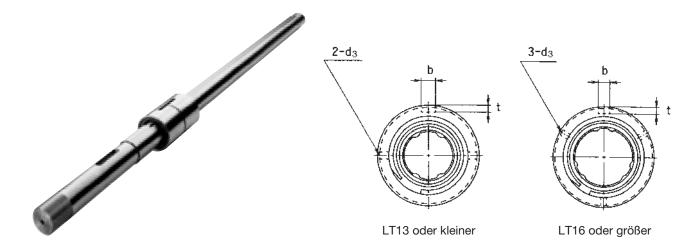
¹⁾ Zur Bestellbezeichnung siehe S. 522.


Bei der Nutwelle, deren Länge mit einem Sternchen versehen ist, beträgt die unbearbeitete Länge ℓ = 200 mm.


²⁾ Die Muttern sind für geringe Laufgeräusche mit synthetischen Kunststoffkäfigen ausgestattet. Käfige für den Betrieb bei Temperaturen über 80°C sind nicht erhältlich. Bei einer Nutwelle mit nur einer Mutter ist deren Flansch in Richtung ℓ ausgerichtet.

³⁾ Die Nutwelle ist nur über die Länge ℓ_0 induktionsgehärtet (H_RC58 bis H_RC64).

⁴⁾ Die angegebenen Tragzahlen und zulässigen Torsionsmomente gelten für eine Mutter.


LF13S oder kleiner

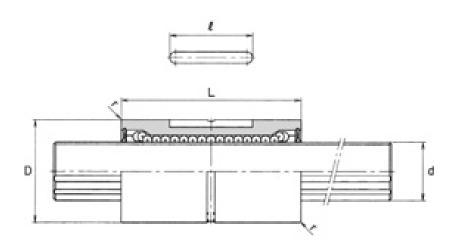
Einheit: mm

			Ab	messun	gen Nut	welle 3)				Tragz	ahl ⁴⁾	zulässiges Torsionsmoment 4)	
d	Toleranz	ℓ				inge (ℓ_0)			Anfasung C	C [kN]	C ₀ [kN]	C _T [Nm]	C _{OT} [Nm]
6	0 -0,012	100	150	(50)	200	(100)			0,5	1,18	2,16	0,98	1,96
8	0	100	150	(50)	200	(100)	250	(150)	0,5	1,47	2,55	1,96	2,94
10	-0,015	100	200	(100)	300	(200)			0,5	2,84	4,90	3,92	7,84
13	0 -0,018	100	200	(100)	300	(200)	400	(300)	0,5	3,53	5,78	5,88	10,8
14,3		100	200	(100)	300	(200)	400	(300)	0,5	7,06	12,6	31,4	34,3
17,8		100	300 600	(200) (500)	400	(300)	500	(400)	0,5	10,2	17,8	56,9	55,9
22,8	+0,1	100	300 600	(200) (500)	400 800	(300) (700)	500	(400)	0,5	15,2	25,8	105	103
27,8	0	100	400 700	(300) (600)	500 1100	(400) (1000)	600	(500)	0,5	20,5	34,0	171	148
36,3		100	500 1100	(400) (1000)	700 1600	(600) (1500)	900	(800)	1	37,8	60,5	419	377
45,3		100 (200)	600 1700	(500) (1600)		(1000) (2000)	1300	(1200)	1	60,9	94,5	842	769

LT

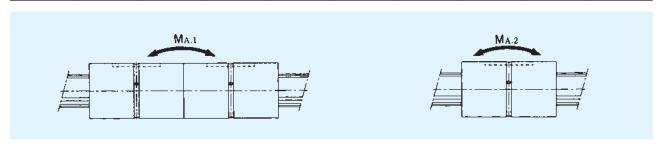
				Ak	omessunge	n Mutter 2)			
Baugröße 1)	Außer	ndurchmesser		Länge	Abmess	ungen Pass	federnut		Schmier-
	D	Toleranz	L	Toleranz	b H8	t ^{+0,05}	ℓ	r	bohrung d ₃
LT 4 3)	10	0 -0,009	16		2	1,2	6	0,5	_
LT 5 3)	12	0	20		2,5	1,2	8	0,5	_
LT 6	14	-0,011	25		2,5	1,2	10,5	0,5	1
LT 8	16	0,0	25	0	2,5	1,2	10,5	0,5	1,5
LT 10	21	0	33	-0,2	3	1,5	13	0,5	1,5
LT 13	24	-0,013	36		3	1,5	15	0,5	1,5
LT 16	31	,,,,,	50		3,5	2	17,5	0,5	2
LT 20	35	0	63		4	2,5	29	0,5	2
LT 25	42	-0,016	71		4	2,5	36	0,5	3
LT 30	47	2,010	80	0	4	2,5	42	0,5	3
LT 40	64	0	100	-0,3	6	3,5	52	0,5	4
LT 50	80	-0,019	125		8	4	58	1,0	4
LT 60	90	0	140	0	12	5	67	1,0	5
LT 80	120	-0,022	160	0 -0,4	16	6	76	2,0	5
LT 100	150	0 -0,025	185	<u> </u>	20	7	110	2,5	5

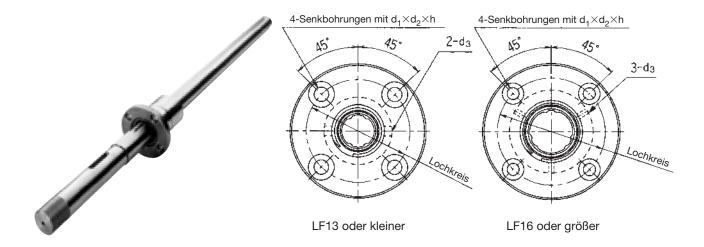
¹⁾ Zur Bestellnummer siehe S. 522.


²⁾ Die Muttern sind für geringe Laufgeräusche mit synthetischen Kunststoffkäfigen ausgestattet. Käfige für den Betrieb bei Temparaturen über 80°C sind nicht erhältlich.

³⁾ Die Baugrößen LT4 und LT5 sind ohne Käfige. Dichtungen werden auf Anfrage geliefert.

⁴⁾ M_{A.1} ist das zulässige statische Moment in Axialrichtung bei zwei auf einer Nutwelle eng zusammengesetzten Muttern (siehe Abb. rechts).

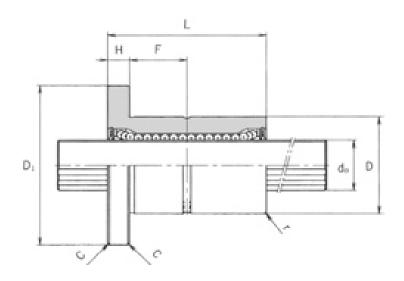

⁵⁾ M_{A.2} ist das zulässige statische Moment in Axialrichtung bei einer Mutter auf der Nutwelle (siehe Abb. rechts). Hinweis: Für eine hohe Genauigkeit sollte der Typ LT mit zwei eng aneinanderliegenden Muttern eingesetzt werden.


Einheit: mm

VA / a II a ca		Trag	zahl	zul. Torsio	nsmoment	zul. stat.	Moment	Gew	vicht
Wellen- durchmesser d h7	Anzahl der Kugelreihen	C [kN]	C ₀ [kN]	C _T [Nm]	C _{OT} [Nm]	M _{A.1} ⁴⁾ [Nm]	M _{A.2} 5) [Nm]	Mutter [kg]	Welle [kg/m]
4	4	0,44	0,61	0,59	0,78	6,4	0,88	0,0052	0,10
5	4	0,66	0,88	0,88	1,37	11,6	1,5	0,0091	0,15
6	4	1,18	2,16	0,98	1,96	36,3	4,9	0,017	0,23
8	4	1,47	2,55	1,96	2,94	44,1	5,9	0,018	0,40
10	4	2,84	4,90	3,92	7,84	98,0	15,7	0,050	0,62
13	4	3,53	5,78	5,88	10,8	138	19,6	0,055	1,1
16	6	7,06	12,6	31,4	34,3	393	67,6	0,165	1,6
20	6	10,2	17,8	56,9	55,9	700	118	0,225	2,5
25	6	15,2	25,8	105	103	1140	210	0,335	3,9
30	6	20,5	34,0	171	148	1710	290	0,375	5,6
40	6	37,8	60,5	419	377	3760	687	1,000	9,9
50	6	60,9	94,5	842	769	7350	1340	1,950	15,5
60	6	73,5	111,7	1220	1040	9990	1600	2,500	22,3
80	6	104,9	154,8	2310	1920	16000	2510	4,680	39,6
100	6	136,2	195,0	3730	3010	24000	3400	9,550	61,8

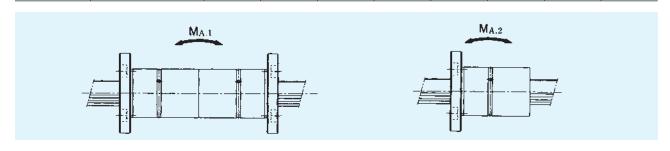
LF

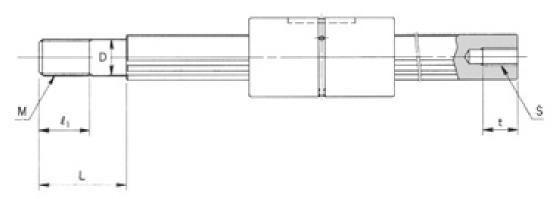
	Abmessungen Mutter 2)											
Baugröße 1)	Auße	ndurchmesser		Länge	Flanso	chdurchmesser				Schmier- bohrung	Loch-	d ₀
	D	Toleranz	L	Toleranz	D_1	Toleranz	Н	F	C/r	d ₃	kreis	h7
LF 6	14	0	25		30		5	7,5	0,5	1	22	6
LF 8	16	-0,011	25		32		5	7,5	0,5	1,5	24	8
LF 10	21	0	33	0	42		6	10,5	0,5	1,5	32	10
LF 13	24	0 -0,013	36	-0,2	44		7	11	0,5	1,5	33	13
LF 16	31	0,010	50		51	0	7	18	0,5	2	40	16
LF 20	35	0	63		58	-0,2	9	22,5	0,5	2	45	20
LF 25	42	0 -0,016	71		65		9	26,5	0,5	3	52	25
LF 30	47	0,0.0	80	0	75		10	30	0,5	3	60	30
LF 40	64	0	100	-0,3	100		14	36	1,0/0,5	4	82	40
LF 50	80	-0,019	125		124		16	46,5	1,0	4	102	50


¹⁾ Zur Bestellbezeichnung siehe S. 522.

²⁾ Die Muttern sind für geringe Laufgeräusche mit synthetischen Kunststoffkäfigen ausgestattet. Käfige für den Betrieb bei Temparaturen über 80°C sind nicht erhältlich. Dichtungen werden auf Anfrage geliefert.

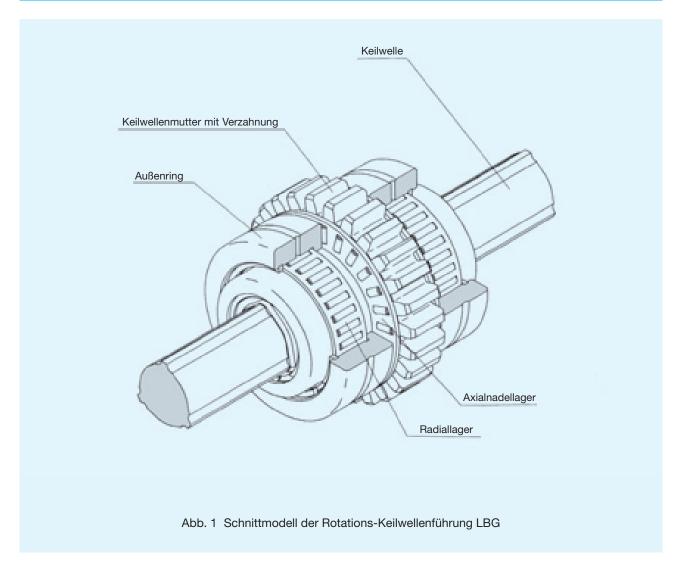
³⁾ M_{A.1} ist das zulässige statische Moment in Axialrichtung bei zwei auf einer Nutwelle eng zusammengesetzten Muttern (siehe Abb. rechts).


⁴⁾ M_{A.2} ist das zulässige statische Moment in Axialrichtung bei einer Mutter auf der Nutwelle (siehe Abb. rechts). Hinweis: Für eine hohe Genauigkeit sollte der Typ LF mit zwei eng aneinanderliegenden Muttern eingesetzt werden.


Einheit: mm

		Trag	jzahl	zul. Torsio	nsmoment	zul. stat.	Moment	Gewicht		
Anzahl der Kugelreihen	Senkbohrungen d ₁ ×d ₂ ×h	C [kN]	C ₀ [kN]	C _T [Nm]	C _{OT} [Nm]	M _{A.1} 3) [Nm]	M _{A.2} 4) [Nm]	Mutter [kg]	Welle [kg/m]	
4	3,4×6,5×3,3	1,18	2,16	0,98	1,96	36,3	4,9	0,035	0,23	
4	3,4×6,5×3,3	1,47	2,55	1,96	2,94	44,1	5,9	0,037	0,40	
4	4,5×8×4,4	2,84	4,90	3,92	7,84	98	15,7	0,090	0,62	
4	4,5×8×4,4	3,53	5,78	5,88	10,8	138	19,6	0,110	1,1	
6	4,5×8×4,4	7,06	12,6	31,4	34,3	393	67,6	0,230	1,6	
6	5,5×9,5×5,4	10,2	17,8	56,9	55,9	700	118	0,330	2,5	
6	5,5×9,5×5,4	15,2	25,8	105	103	1140	210	0,455	3,9	
6	6,6×11×6,5	20,5	34,0	171	148	1710	290	0,565	5,6	
6	9×14×8,6	37,8	60,5	419	377	3760	687	1,460	9,9	
6	11×17,5×11	60,9	94,5	842	769	7350	1340	2,760	15,5	

Empfohlene Zapfenformen für Endenbearbeitungen


Einheit: mm

Baugröße	D	Toleranz	L	М	ℓ_1	S×t
LT 6	5	0	12	M5 × 0,8	7	M2,5 × 4
LT 8	6	-0,012	14	$M6 \times 1,0$	8	M3 × 5
LT 10	8	0	18	$M8 \times 1,0$	11	$M4 \times 6$
LT 13	10	-0,015	23	M10 × 1,25	14	$M5 \times 8$
LT 16	14	0	30	$M14 \times 1,5$	18	M6 × 10
LT 20	16	-0,018	38	$M16 \times 1,5$	22	M8 × 15
LT 25	22	0	50	$M22 \times 1,5$	28	M10 × 18
LT 30	27	-0,021	60	$M27 \times 2,0$	34	M14 × 25
LT 40	36	0	80	$M36 \times 3.0$	45	M18 × 30
LT 50	45	-0,025	100	$M45 \times 4,5$	58	M22 × 40

Rotations-Keilwellenführung LBG/LBGT

Aufbau und Merkmale

Die feingeschliffenen Laufrillen der Keilwelle befinden sich beidseitig an den um 120° versetzten Keilen längs der Welle. Dabei ermöglicht die Anordnung der Laufrillen ein Abrollen der sechs in der Mutter integrierten Kugelreihen mit einer definierten Vorspannung.

Die Kugelreihen werden durch einen Spezialkunststoffkäfig innen an der Mutter geführt und umgelenkt. So wird eine ruhige und stabile Laufcharakteristik der Mutter erzielt. Ein weiterer Vorteil des Käfigs besteht darin, daß die Kugeln beim Herunterziehen der Mutter von der Welle nicht herausfallen können.

Bei den Typen LBG bzw. LBGT besteht die Mutter aus einem außenverzahnten Geradstirnrad. Zusätzlich sind Außenringe mit kompakten Radial- und Axiallagern auf der Mutter gelagert.

Kompakt und leicht

Aufgrund der integrierten Konstruktion mit Radial- und Axialnadellager hat die Mutter eine kompakte Baugröße.

Winkelspielfrei

Durch Aufbringen einer Vorspannung kann das Winkelspiel (Spiel in Drehrichtung) auf ein Minimum reduziert bzw. sogar eliminiert werden und so die Steifigkeit erhöht werden.

Ausgezeichnete Steifigkeit

Durch den großen Kontaktwinkel und die Vorspannung der Kugeln sind die Keilwellenführungen sehr steif gegenüber Torsionsbelastungen und Momenten.

Übertragung von Drehmomenten über die Mutter

Die Nadellager sorgen für eine steife Lagerung der Mutter in einer Konstruktion. Daher können Drehmomente über die Keilwellenführung sehr gut übertragen werden.

Typenauswahl

Keilwellen-Querschnitt

Genauigkeitsklassen

Siehe S. 537.

Siehe S. 478.

Spiel in Drehrichtung

Das Spiel in Drehrichtung hat einen großen Einfluß auf die Genauigkeit und Steifigkeit der Mutter. Daher muß eine geeignete Vorspannung für die geplante Anwendung ausgewählt werden. Im allgemeinen werden vorgespannte Kugelkeilwellen eingesetzt.

Bei Einsatz mit ruckweisen Drehbewegungen oder hohen Hubfrequenzen wirken Stöße und Vibrationen auf die Mutter. Unter diesen Bedingungen verbessert die Vorspannung die Genauigkeit und letztendlich die Lebensdauer.

Tab. 1 Auswahl der Vorspannungsklasse

			Anwendungsbedingungen	Anwendungsbeispiele
0	2	СМ	 Betrieb mit Vibrationen und Stoßbelastungen. Hohe Steifigkeit erforderlich. Mutter ist Verdrehbelastungen ausgesetzt. 	Lenkwellen für Baufahrzeuge, Wellen von Punkt- schweißmaschinen, Schaltspindeln für Werkzeughalter von Drehmaschinen.
Vorspanningsklasse	spanial gona	CL	 Betrieb mit Überhang- oder Verdrehbelastungen. Hohe Wiederholgenauigkeit erforderlich. Betrieb unter Wechselbelastungen. 	Arme für Industrieroboter, automatische Ladevorrichtungen, Führungswellen für Lackierautomaten, Hauptspindeln für Funkenerosionsmaschinen, Wellen für Führungsgestelle, Hauptspindeln von Bohrmaschinen.
STON.		Normal	 Für gleichmäßigen Betrieb mit geringer Antriebskraft. Betrieb mit stets gleichgerichtetem Drehmoment. 	Messinstrumente, automatische Zeichenmaschinen, Dynanometer, Drahtwickelmaschinen, Schweißautomaten, Verpackungsmaschinen.

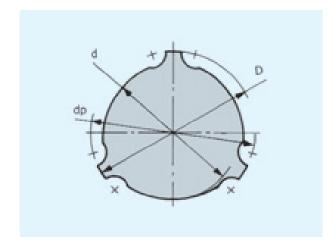
Tab. 2 Spiel der Typen LBG und LBGT in Drehrichtung

Einheit: µm

Symbol	Normal	leichte Vorspannung	mittlere Vorspannung
Baugröße	kein Symbol	CL	CM
20			
25	- 4∼+2	-12∼-4	-20~-12
30			
40			
50	- 6∼+3	-18∼-6	-30∼-18
60			
70	-8~+4	-24~-8	-40~-24
85	-0/-74	-240	-40'24

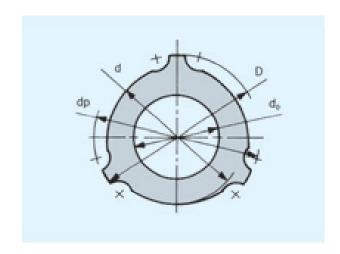
Anm.: Bei Normalspiel wird kein Kennzeichen verwendet. Die Kennzeichen für mittlere Vorspannung CM und leichte Vorspannung CL sind bei der Bestellung mit anzugeben. Siehe S. 498 zum Aufbau der Bestellbezeichnung. Das Spiel in Drehrichtung ist auf den Kugelmittenkreis dp bezogen.

Einbautoleranzen


Siehe S. 479.

Keilwellen

Wie auf S. 484 dargestellt, gibt es drei verschiedene Typen von Keilwellen: Massive Präzisionswellen, hohle Wellen und Wellen ohne Endenbearbeitung. Spezialgefertigte Wellen werden nach Vorgabe auf Bestellung gefertigt. Fügen Sie bitte dazu bei Anfrage oder Bestellung eine Skizze bei.


Keilwellen-Querschnitte

Die verschiedenen Querschnittsformen der Keilwellen gehen aus Tabelle 3 hervor. Sollen die Wellenenden bearbeitet werden, ist ein maximaler Durchmesser nicht größer als d zu wählen.

Bohrungsdurchmesser von hohlen Standardwellen

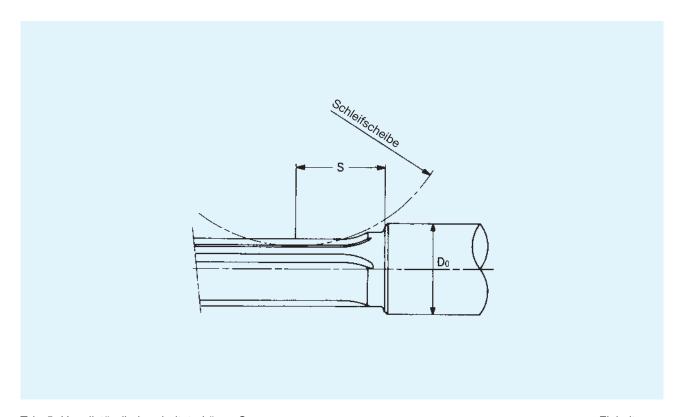
Tabelle 4 gibt die Abmessungen und Gewichte von hohlen Standardwellen an. Diese sind besonders geeignet zum Durchführen von Leitungen und Kabeln sowie zur Belüftung.

Tab.4 Bohrungsdurchmesser von hohlen Standardwellen

Baugröße	Bohrungsdurch- messer d ₀ [mm]	Gewicht [kg/m]
20	6	1,58
25	8	2,3
30	12	2,9
40	18	4,9
50	24	7,0
60	30	10,0
70	35	13,7
85	45	19,5

Tab. 3 Abmessungen der Wellenquerschnitte

Baugröße	20	25	30	40	50	60	70	85
Kerndurchmesser d	15,3	19,5	22,5	31,0	39,0	46,5	54,5	67,0
Außendurchmesser D	19,7	24,5	29,6	39,8	49,5	60,0	70,0	84,0
Kugelmittenkreis dp	20	25	30	40	50	60	70	85



Schleifscheibenauslauf bei der Fertigung von spezialgefertigten Keilwellen

Bei spezialgefertigten Keilwellen mit einem Zapfen bzw. einem Flansch am Ende oder in der Mitte der Welle, dessen Durchmesser größer als der Kerndurchmesser d ist, können die Laufrillen aus fertigungstechnischen Gründen nicht vollständig ausgeführt werden.

Tabelle 5 zeigt die nicht zu bearbeitende Länge S unter Berücksichtigung des gewünschten Schaftdurchmessers D_0 . Die hier angegebenen Längen gelten nicht bei Wellenlängen über 1.500 mm.

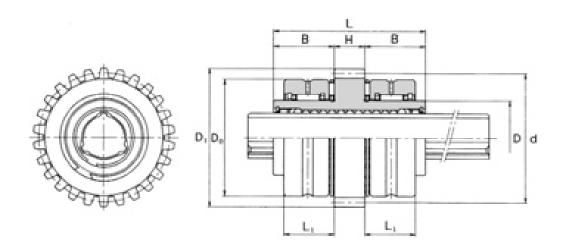
Fragen Sie bitte in diesem Fall THK

Tab. 5 Unvollständig bearbeitete Länge S

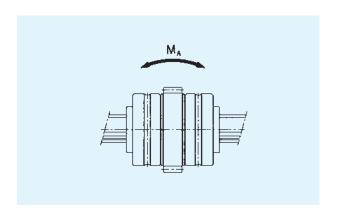
Schaftdurchmesser D ₀	20	25	30	35	40	50	60	80	100	120	140
20	25	36	43	48	53	_	-	-	-	_	_
25	-	32	46	55	62	73	-	_	_	_	-
30	-	_	35	48	56	69	78	-	-	_	-
40	-	_	_	-	38	59	71	88	-	_	-
50	_	_	_	_	-	42	61	82	96	_	-
60	_	_	_	-	-	_	45	74	91	102	-
70	-	_	_	-	-	-	-	64	85	98	108
85	_	_	_	_	_	_	_	34	72	90	102

LBG

				А	bmessunç	gen Mutter	2)			
Baugröße 1)	Durchmesser		Länge		Außendu	rchmesser	Bre	eite		
	D	Toleranz	L	Toleranz	D ₀	Toleranz	L ₁	Toleranz	Н	В
LBG 20	30	0 -0,009	60		47	0 -0,011	20	0 -0,16	12	24
LBG 25	40	0	70	0 -0,2	60	0 -0,013	23	0	14	28
LBG 30	45	-0,011	80	0,2	65		27	-0,19	16	32
LBG 40	60	0	100		85		31		18	41
LBG 50	75	-0,013	112		100	0 -0,015	32	1	20	46
LBG 60	90	0	127	0	120	0,010	38	0 -0,25	22	52,5
LBG 85	120	0 -0,015	155	-0,3	150	0 -0,025	40	3,20	26	64,5


¹⁾ Zur Bestellbezeichnung siehe S. 522.

²⁾ Die Muttern der Baugrößen LBG20 bis LBG60 sind für geringe Laufgeräusche mit synthetischen Kunststoffkäfigen ausgestattet.

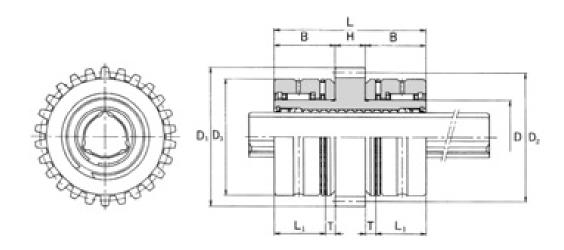

³⁾ Die in der Tabelle angegebenen Abmessungen zum Zahnkranz beziehen sich auf den größten Modul. Sonderverzahnungen, wie z.B. Schräg- oder Schneckenverzahnungen, sind auf Wunsch möglich.

⁴⁾ M_A ist das zulässige statische Moment in Axialrichtung bei einer Mutter auf der Keilwelle (siehe Abb. rechts).

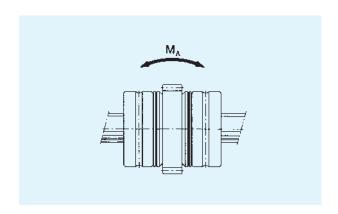
Ab	messung Z	ahnkranz ³⁾		zul. Torsio	nsmoment	Trag	zahl	zul. stat. Moment	Gew	vicht
Kopfkreis D ₁	Teilkreis d	Modul m	Anzahl der Zähne z	C _T [Nm]	C _{OT} [Nm]	C [kN]	C ₀ [kN]	M _A ⁴⁾ [Nm]	Mutter [kg]	Welle [kg/m]
56	52	2,0	26	90,2	213	9,4	20,1	103	0,61	1,8
70	65	2,5	26	176	381	14,9	28,7	171	1,4	2,7
75	70	2,5	28	312	657	22,5	41,4	295	2,1	3,8
96	90	3,0	30	696	1420	37,1	66,9	586	3,0	6,8
111	105	3,0	35	1290	2500	55,1	94,1	941	4,1	10,6
133	126	3,5	36	1870	3830	66,2	121	1300	6,3	15,6
168	160	4,0	40	4740	9550	119	213	3180	11,8	32,0

LBGT

				А	bmessunç	gen Mutter	2)			
Baugröße 1)	Durchr	messer	Länge		Außendu	rchmesser	Bre	eite	Distanzring	
	D	Toleranz	L	Toleranz	D ₃	Toleranz	L ₁	Toleranz	Т	Н
LBGT 20	30	0 -0,009	60		47	0 -0,011	20	0 -0,16	4	12
LBGT 25	40	0	70	0 -0,2	60	0	23	0	5	14
LBGT 30	45	-0,011	80	0,2	65	-0,013	27	-0,19	5	16
LBGT 40	60	0	100		85		31		8	18
LBGT 50	75	-0,013	112		100	0 -0,015	32		10	20
LBGT 60	90	0	127	0	120	0,010	38	0 -0,25	12	22
LBGT 85	120	0 -0,015	155	-0,3	150	0 -0,025	40	3,20	16	26


¹⁾ Zur Bestellbezeichnung siehe S. 522.

²⁾ Die Muttern der Baugrößen LBGT20 bis LBGT60 sind für geringe Laufgeräusche mit synthetischen Kunststoffkäfigen ausgestattet.


³⁾ Die in der Tabelle angegebenen Abmessungen zum Zahnkranz beziehen sich auf den größten Modul. Sonderverzahnungen, wie z.B. Schräg- oder Schneckenverzahnungen, sind auf Wunsch möglich.

⁴⁾ M_A ist das zulässige statische Moment in Axialrichtung bei einer Mutter auf der Keilwelle (siehe Abb. rechts).

	A	bmessung	Zahnkranz	3)	zul. Torsio	zul. Torsionsmoment Tragz			zul. stat. Moment	Gew	vicht
В	Kopfkreis D ₁	Teilkreis D ₂	Modul m	Anzahl der Zähne z	C _T [Nm]	C _{OT} [Nm]	C [kN]	C ₀ [kN]	M _A ⁴⁾ [Nm]	Mutter [kg]	Welle [kg/m]
24	56	52	2,0	26	90,2	213	9,4	20,1	103	0,67	1,8
28	70	65	2,5	26	176	381	14,9	28,7	171	1,5	2,7
32	75	70	2,5	28	312	657	22,5	41,4	295	2,2	3,8
41	96	90	3,0	30	696	1420	37,1	66,9	586	3,3	6,8
46	111	105	3,0	35	1290	2500	55,1	94,1	941	4,8	10,6
52,5	133	126	3,5	36	1870	3830	66,2	121	1300	7,2	15,6
64,5	168	160	4,0	40	4740	9550	119	213	3180	13,4	32,0

Rotations-Nutwellenführung LTR

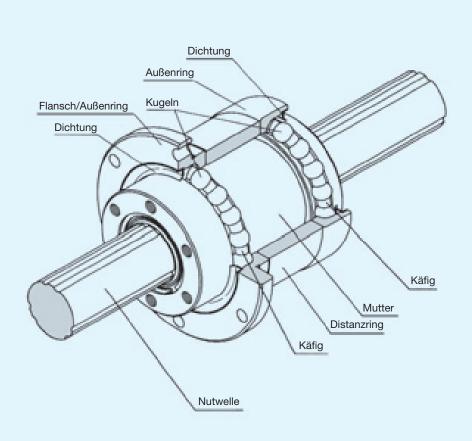


Abb. 1 Schnittmodell der Rotations-Nutwellenführung LTR

Aufbau und technische Merkmale

In die Nutwelle der Rotations-Nutwellenführung LTR sind längsseits drei Laufrillenpaare eingeschliffen, auf denen die sechs Kugelreihen der Mutter laufen. Auf der Außenhülse der Mutter sind Laufrillen für das Stützlager eingeschliffen. Dies ermöglicht eine kompakte und leichte Bauweise. Zum Schutz gegen Fremdpartikel sind die Stützlager standardmäßig mit Spezialdichtungen ausgestattet.

Ein Käfig aus besonderem Kunststoff garantiert einen optimalen und geräuscharmen Umlauf der Kugeln in der Mutter. Dazu bewahrt er die Kugeln beim Abziehen der Mutter von der Welle vor dem Herausfallen.

Kompakt und leicht

Durch das zur Mutter zugehörige Stützlager ergibt sich ein äußerst präzises und kompaktes Bauelement. Dazu ist durch das geringe Massenträgheitsmoment die Mutter sehr leichtgängig.

Winkelspielfrei

Die einzelnen Paare der Kugelreihen stehen in einem Winkel von 20° zueinander. Dadurch können die Kugeln vorgespannt werden, um das Winkelspiel in Drehrichtung zu beseitigen und die Steifigkeit zu erhöhen.

Anwendungsgebiete

- Z-Achse von Scara-Robotern
- Wickelmaschinen
- Werkzeugwechsler von Werkzeugmaschinen
- Montageroboter

Hohe Steifigkeit

Die Nutwellenführungen sind entsprechend des großen Kontaktwinkels der vorgespannten Kugeln sehr steif gegenüber Torsionsbelastungen und Momenten.

Auch die Stützlager sind mit einem Kontaktwinkel von 30° sehr steif. Dazu können sie hohe Momente aufnehmen.

Einfache Montage

Der Kugelkäfig ermöglicht ein Abziehen der Mutter von der Welle, ohne daß die Kugeln herausfallen. Die Mutter selbst wird einfach am Flansch mittels Schrauben befestigt.

Die Rotations-Nutwellenführung LTR baut mit dem in der Mutter integrierten Stützlager sehr kompakt.

Nutwellendurchmesser

Genauigkeitsklassen

Siehe S. 462.

Siehe S. 478.

Spiel in Drehrichtung

Das Spiel in Drehrichtung hat einen großen Einfluß auf die Genauigkeit und Steifigkeit der Mutter. Daher muß eine geeignete Vorspannung für die geplante Anwendung ausgesucht werden. Im allgemeinen werden vorgespannte Nutwellenführungen eingesetzt.

Bei Einsatz mit ruckweisen Drehbewegungen oder hohen Hubfrequenzen wirken Stöße und Vibrationen auf die Mutter. Unter diesen Bedingungen verbessert die Vorspannung die Genauigkeit und letztendlich die Lebensdauer.

Zur Auswahl der optimalen Vorspannung fragen Sie bitte \Box HK. In Tabelle 2 ist das jeweilige Spiel für LTR angegeben.

Tab. 1 Auswahl der Vorspannungsklasse

			Anwendungsbedingungen	Anwendungsbeispiele
90,00	2	СМ	 Betrieb mit Vibrationen und Stoßbelastungen. Hohe Steifigkeit erforderlich. Mutter ist Verdrehbelastungen ausgesetzt. 	Lenkwellen für Baufahrzeuge, Wellen von Punkt- schweißmaschinen, Schaltspindeln für Werkzeughalter von Drehmaschinen.
Vorspanningsklasse		CL	 Betrieb mit Überhang- oder Verdrehbelastungen. Hohe Wiederholgenauigkeit erforderlich. Betrieb unter Wechselbelastungen. 	Arme für Industrieroboter, automatische Ladevorrichtungen, Führungswellen für Lackierautomaten, Hauptspindeln für Funkenerosionsmaschinen, Wellen für Führungsgestelle, Hauptspindeln von Bohrmaschinen.
Vors		Normal	 Für gleichmäßigen Betrieb mit geringer Antriebskraft. Betrieb mit stets gleichgerichtetem Drehmoment. 	Messinstrumente, automatische Zeichenmaschinen, Dynanometer, Drahtwickelmaschinen, Schweißautomaten, Verpackungsmaschinen.

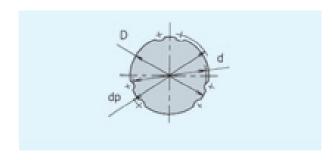
Tab. 2 Spiel des Typs LTR in Drehrichtung

Einheit: μm

Symbol	Normal	leichte Vorspannung	mittlere Vorspannung	
Baugröße	kein Symbol	CL	CM	
16	- 2∼+1	-6~-2	-9~-5	
20	-2~+1	-0~-2	-95	
25	-3~+2	-10~-4	-14~-8	
32	-5/9+2	-10/	-14~-0	
40	- 4∼+2	-16~-8	-22~-14	
50	-4 ,~+2	-10~-0	-22~-14	
60	- 5∼+2	-22~-12	-30~-20	

Anm.: Bei Normalspiel wird kein Kennzeichen verwendet. Die Kennzeichen für mittlere Vorspannung CM und leichte Vorspannung CL sind bei der Bestellung mit anzugeben. Siehe S. 522 zum Aufbau der Bestellbezeichnung. Das Spiel in Drehrichtung ist auf den Kugelmittenkreis dp bezogen.

Einbautoleranzen


Siehe S. 479.

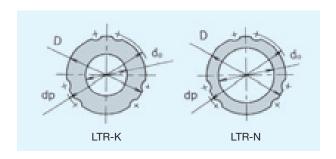
Nutwellen

Querschnittsabmessungen

Entsprechend den Kundenanforderungen können Nutwellen mit verschiedenen Wellenenden hergestellt werden. Fügen Sie daher bitte Ihrer Anfrage oder Bestellung eine Skizze zu Ihrer gewünschten Ausführung der Nutwelle bei.

Tabelle 3 gibt den Kern- und Außendurchmesser sowie die Toleranz des Außendurchmessers an.

Tab. 3 Abmessungen der Wellenquerschnitte


Einheit: mm

Baugröße	Kerndurch- messer d	Außendurch- messer D	Außen- durchmesser Toleranz
16	14,5	16	0 -0,018
20	18,5	20	0
25	23,0	25	0 -0,021
32	30,0	32	0,021
40	37,5	40	0
50	46,5	50	-0,025
60	56,5	60	0 -0,030

Querschnittsabmessungen von Hohlwellen

Bei Hohlwellen können hydraulische oder pneumatische Leitungen durchgeführt werden. Bei der Gewichtsreduzierung einer Gesamtkonstruktion werden auch Hohlwellen eingesetzt.

Tabelle 4 gibt dazu die Querschnittsabmessungen von Standardhohlwellen an.

Tab. 4 Bohrungsdurchmesser von hohlen Standard-Nutwellen

Einheit: mm

Bau- größe	Außen- durchm	Typ K		Тур	yp N	
grobe	esser D	Bohrung d ₀	Gewicht [kg/m]	Bohrung d ₀	Gewicht [kg/m]	
16	16	7	1,3	11	0,8	
20	20	10	1,8	14	1,3	
25	25	12	3,0	18	1,9	
32	32	18	4,3	23	3,1	
40	40	22	6,9	29	4,7	
50	50	25	11,6	36	7,4	
60	60	32	16,0	_	_	

Anm.: Die Typen K und N sind Standard-Nutwellen. Bei Bestellung geben Sie bitte in der Bestellbezeichnung ein K oder N an.

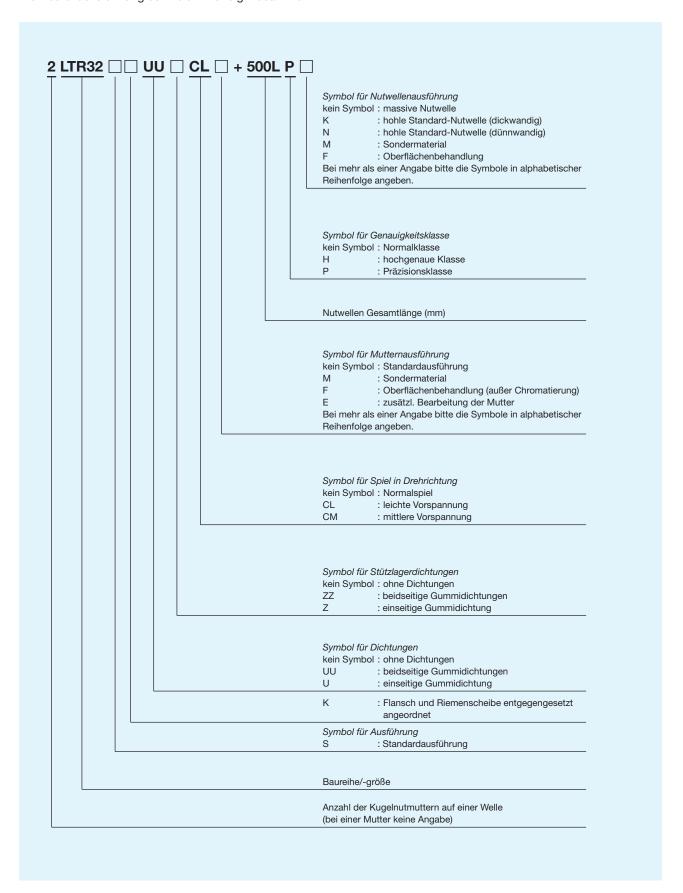
Tab. 5 Kugelmittenkreis dp bei Nutwellen

Baugröße	16	20	25	32	40	50	60
dp	17,8	22,1	27,6	33,2	44,2	55,2	66,3

Schleifscheibenauslauf bei der Fertigung von spezialgefertigten Nutwellen

Bei spezialgefertigten Nutwellen mit einem Zapfen bzw. einem Flansch am Ende oder in der Mitte der Welle, dessen Durchmesser größer als der Kerndurchmesser d ist, können die Laufrillen aus fertigungstechnischen Gründen nicht vollständig ausgeführt werden.

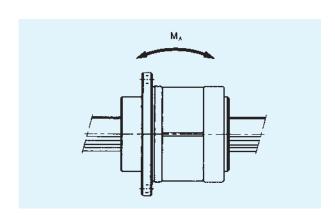
Tabelle 6 zeigt die nicht zu bearbeitende Länge S unter Berücksichtigung des Schaftdurchmessers D_0 . Die hier angegebenen Längen gelten nicht bei Wellenlängen über 1.500 mm. Fragen Sie bitte in diesem Fall \Box


Tab. 6 Unvollständig bearbeitete Länge S

Schaftdurchmesser D ₀	16	20	25	30	40	50	60	80	100	120	140
16	21	36	46	54	-	_	-	_	_	_	-
20	-	21	38	48	62	_	-	-	_	_	-
25	-	-	23	39	56	67	-	-	_	_	-
32	_	ı	-	24	49	62	72	_	ı	ı	-
40	-	-	-	-	27	50	63	81	-	-	-
50	-	-	_	-	-	29	51	74	89	_	-
60	_	ı	-	_	_	1	28	56	71	82	_

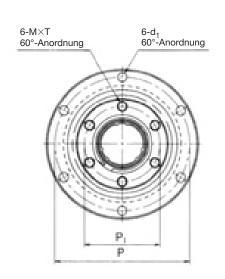
Aufbau der Bestellbezeichnung

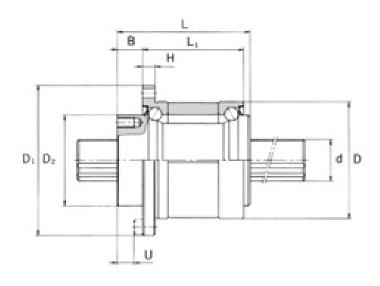
Die Bestellbezeichnung setzt sich wie folgt zusammen:


LTR

	Abmessungen Nutwellenmutter 2)										
Baugröße 1)	Außendu	rchmesser	Länge	Flansch	D _{2h7}	Н	L ₁	В	Р	P ₁	$M \times T$
	D	D Toleranz		D ₁							
LTR 16	52		50	68	39,5	5	37	10	60	32	M 5× 8
LTR 20	56	0	63	72	43,5	6	48	12	64	36	M 5× 8
LTR 25	62	-0,007	71	78	53	6	55	13	70	45	M 6× 8
LTR 32	80		80	105	65,5	9	60	17	91	55	M 6×10
LTR 40	100	0	100	130	79,5	11	74	23	113	68	M 6×10
LTR 50	120	-0,008	125	156	99,5	12	97	25	136	85	M10×15
LTR 60	134	0 -0,009	140	170	115	12	112	25	150	100	M10×15

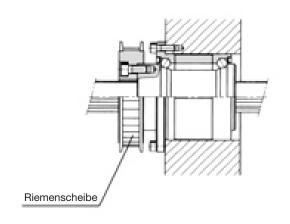
¹⁾ Zur Bestellbezeichnung siehe S. 549.

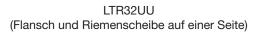

⁴⁾ M_A ist das zulässige statische Moment in Axialrichtung bei einer Mutter auf der Welle (siehe Abb. unten).

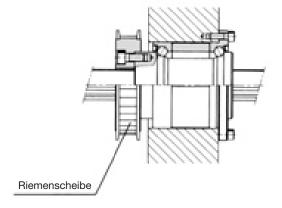


²⁾ Dichtungen werden auf Anfrage geliefert.

³⁾ Das Maß U wird vom Kopf einer Befestigungsschraube bis zur Stirnseite der Mutter gemessen.

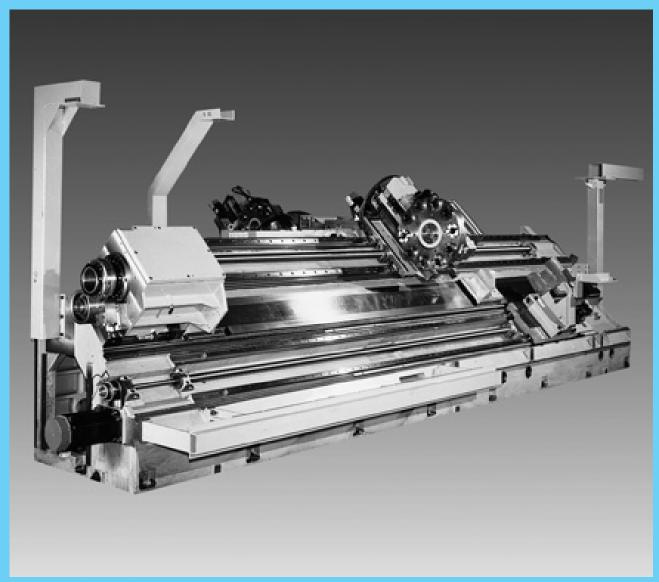






Einheit: mm

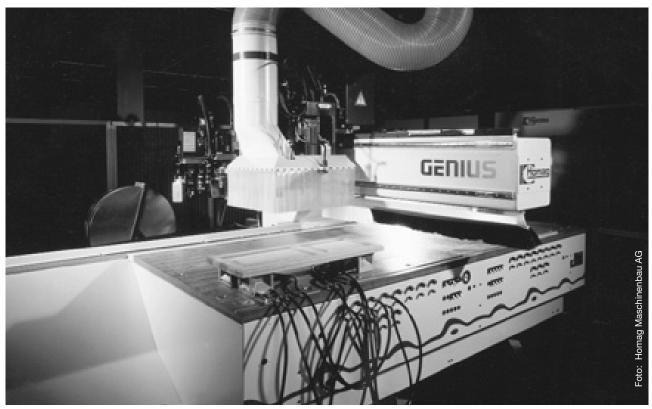
				Trag	ızahl	zul. Torsionsmoment zul. stat. Moment Stützlager Tragzahl Gewicht						vicht
d ₁	U ³⁾	d ^{h7}	Anzahl der Kugel- reihen	C [kN]	C ₀ [kN]	C _T [Nm]	C _{OT} [Nm]	M _A ⁴⁾ [Nm]	C [kN]	C ₀ [kN]	Mutter [kg]	Welle [kg/m]
4,5	5	16	6	7,06	12,6	31,4	34,3	67,6	12,7	11,8	0,51	1,6
4,5	7	20	6	10,2	17,8	56,9	55,9	118	16,3	15,5	0,7	2,5
4,5	8	25	6	15,2	25,8	105	103	210	17,6	18,0	0,93	3,9
6,6	10	32	6	20,5	34,0	180	157	290	20,1	24,0	1,8	5,6
9	13	40	6	37,8	60,5	419	377	687	37,2	42,5	3,9	9,9
11	13	50	6	60,9	94,5	842	769	1340	41,7	54,1	6,7	15,5
11	13	60	6	73,5	111,7	1220	1040	1600	53,1	68,4	8,8	22,3



LTR32KUU (Flansch und Riemenscheibe entgegengesetzt)

Anwendungsbeispiele

CNC-Drehmaschine

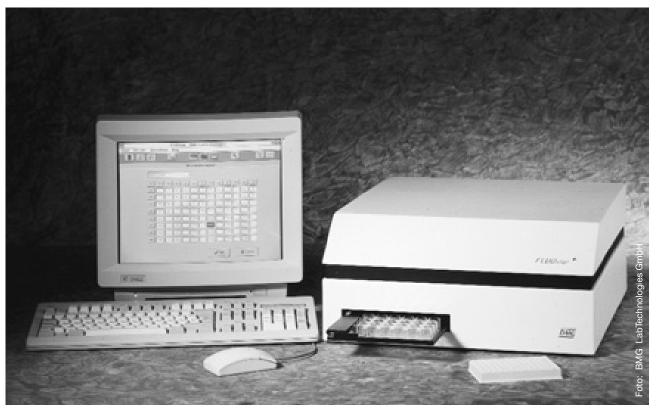


Anwendungsbeispiele

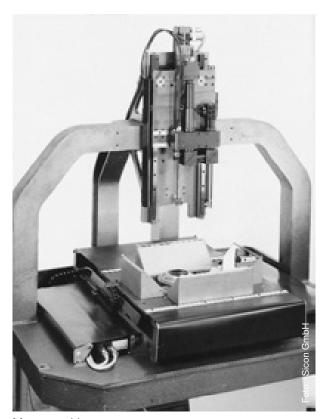
Für die freundliche Genehmigung der hier aufgeführten Anwendungsbeispiele möchte sich THK recht herzlich bedanken.



Sprüh- und Entnahmeroboter



Holz-Bearbeitungszentrum



Drehbühne für Filmproduktion

Analysegerät

THK

Messmaschine

Formsprühanlage

Kurbelwellen-Auswuchtmaschine

THK auf einen Blick

THK-Werk in Yamaguchi, Japan

THK-Werk in Ensisheim, Frankreich

THK European Headquarters Niederlassung Düsseldorf in Ratingen

Hauptsitz in Tokyo

THK-Niederlassung Stuttgart in Korntal-Münchingen

Weitere Produktionsstätten sind in Kofu, Yamaguchi, Yamagata, Mie, Gifu, Niigata, Shizuoka, Miyagi (alle Japan) sowie in Dublin (Irland), Ohio (USA) und Wuxi (China).

THK in Mitteleuropa

- Niederlassung
- Vertriebspartner

Direktvertrieb

Deutschland

THK GmbH European Headquarters

Hubert-Wollenberg-Str. 15 40878 Ratingen Tel. (0 21 02) 74 25-0 Fax (0 21 02) 74 25-2 99 www.thk.de info.dus@thk.de

Niederlassung Stuttgart

Heinrich-Lanz-Str. 3 70825 Korntal-Münchingen Tel. (0 71 50) 91 99-0 Fax (0 71 50) 91 99-8 88 info.str@thk.de

Niederlassung München

Max-Planck-Straße 13 85716 Unterschleißheim Tel. (089) 37 06 16-0 Fax (089) 37 06 16-26 info.muc@thk.de

Österreich

THK Austria

Edelmüllerstraße 2 4061 Pasching Tel. (0 72 29) 5 14 00-0 Fax (0 72 29) 5 14 00-79 info.lnz@thk.at

Vertriebspartner

Deutschland

SNR WÄLZLAGER GMBH

Friedrich-Hagemann Str. 66 33719 Bielefeld Tel. (05 21) 9 24 00-0 Fax (05 21) 9 24 00 90 www.snr.de

Indunorm

Bewegungstechnik GmbH

Keniastr. 12 47269 Duisburg Tel. (02 03) 76 91-0 Fax (02 03) 76 91-2 91 www.indunorm.de bt@indunorm.de

Timken Deutschland GmbH

Tränkestr. 7 70597 Stuttgart Tel. (07 11) 7 20 63-0 Fax (07 11) 7 20 63-25 www.nadella.de info@nadella.de

Schweiz

Bachofen-AG

Ackerstraße 42 8610 Uster Tel. (01) 9 44 11 11 Fax (01) 9 44 12 33 www.bachofen.ch info@bachofen.ch

THK in Europa

- Niederlassung
- Vertriebspartner

Niederlassungen

Frankreich

THK France

Parc des Bruyères 58, Chemin de la Bruyère 69570 Dardilly Tel. (04) 37 49 14 00 Fax (04) 37 49 14 01 info-lys@thk.fr

Großbritannien

THK U.K.

1 Harrison Close Knowlhill Milton Keynes MK5 8PA Tel. (01908) 303050 Fax. (01908) 303070 www.thk.co.uk info-mks@thk.co.uk

Italien

THK Italy

Via Buonarroti, 182 20052 Monza (MI) Tel. (0 39) 2 84 20 79 Fax (0 39) 2 84 25 27 info-mil@thk-italia.it

THK Bologna

Via della Salute 16/2 40132 Bologna Tel. (0 51) 6 41 22 11 Fax (0 51) 6 41 22 30 info-blq@thk-italia.it

Schweden

THK Sweden

Saldovägen 2 17562 Järfälla Tel. (8) 44 57 63 0 Fax (8) 44 57 63 9 info-sto@thk.se

Spanien

THK Spain

C/Andorra 19 A
Sant boi de llobregat
08830 Barcelona
Tel. (93) 6 52 57 40
Fax (93) 6 52 57 46
info-bcn@thk.es

Vertriebspartner

Belgien

S.A. Vermeire-Belting N.V.

Rue de la Filature 41 4800 Ensival Tel. (0 87) 32 23 60 Fax (0 87) 31 50 71 www.vermeire.com vermeire.belting@vermeire.com

Dänemark

Bondy A/S

Industrieparken 16-18 2750 Ballerup Tel. 70 15 14 14 Fax 44 64 14 16 www.bondy.dk info@bondy.dk

Finnland

SKS-tekniikka Oy

Martinkyläntle 50 01720 Vantaa Tel. (90) 8 52 66 1 Fax (90) 8 52 68 20 www.sks.fi etunimi.sukunimi@sks.fi

Griechenland

PID Michaniki Ltd.

108 Filadelfias Str. 14342 N. Filadelfia Athen Tel. (02 10) 2 72 34 70 Fax (02 10) 2 72 34 75 pideng@hol.gr

Niederlande

LM Systems B.V.

Kruisboog 21 A 3905 TE Veenendaal Tel. (03 18) 55 46 15 Fax (03 18) 55 08 42 thk@wxs.nl

Norwegen

Aratron AS

Flöisbonnveien 5 Postboks 92 1412 Sofiemyr Tel. 66 / 80 34 42 Fax 66 / 80 47 26

Polen

Hennlich Sp. z o.o.

PI. Teatralny 10 41-800 Zabrze Tel. (32) 3 70 14 80 Fax (32) 3 70 14 82 hennlich@hennlich.pl

Schweden

Aratron AB

Kratsbodavägen 50 16102 Bromma Tel. (08) 4 04 16 00 Fax (08) 98 42 81 www.aratron.se info@aratron.se

Slowakei

Hennlich Industrietechnik s. r. o. Kosická 52, 82108 Bratislava Tel. (07) 50 23 03 08 Fax (07) 50 23 03 30

Spanien

Rodamientos USA

Platforma D - 152 Pab. 1 Poligono Industrial Erletxe 48960 Galdácano (Vizaya) Tel. (94) 4 57 94 00 Fax (94) 4 57 94 20

Tschechien

Hennlich Industrietechnik spol. s. r. o. post. schranka 121 41201 Litoměřice
Tel. (04 16) 71 1-1 11 Fax (04 16) 71 1-9 99 www.hennlich.cz hennlich@hennlich.cz

Türkei

HAT I'THALAT I'HRACAT TIC. LTD.S

ti Fethiye Caddes No: 8/2 41040 Kocaeli Tel. (02 62) 3 51 25 10 Fax (02 62) 3 51 24 66 info@hatlubrekip.com www.hatlubrekip.com

Ungarn

Yeruham Múvek Kft.

Visegrádi strt. 114. 1133 Budapest XIII. district. Tel. (1) 3 20-63 27 Fax (1) 3 20-64 18 yeruham@yeruham.hu

THK in Amerika

- Niederlassung
- Vertriebspartner

Niederlassungen

Brasilien

THK Brasil Ltda.

Av. Corifeu de Azevedo Marques, 4077 Cep 05339-002 - Butantă (Próximo a USP) São Paulo - SP Tel. (011) 37 67-01 00 Fax (0 11) 37 67-01 00 www.thk.com.br thk@thk.com.br

Kanada

THK Canada

130 Matheson Blvd. E., Unit 1 Mississauga, Ontario Canada L4Z 1Y6 Tel. (09 05) 7 12-29 22 Fax (09 05) 7 12-29 25 canada@thk.com

USA

THK Atlanta

6135-E Northbelt Drive Norcross, GA. 30071 Atlanta Tel. (04 04) 8 40-79 90 Fax (04 04) 8 40-78 97 atlanta@thk.com

THK Boston

480 Neponset St. #10B Canton, MA. 02021 Tel. (7 81) 5 75-11 51 Fax (7 81) 5 75-92 95 boston@thk.com

THK Chicago

200 East Commerce Drive Schaumburg, IL. 60173 Tel. (0 01) 8 47 / 3 10-11 11 Fax (00 1) 8 47 / 31 0-11 82 www.thk.com chicago@thk.com

THK Detroit

4190 Telegraph Rd. Suite 2500 Bloomfield Hill, Ml. 48302 Tel. (2 48) 5 94-75 52 Fax (2 48) 5 94-75 58

THK Los Angeles

6000 Phyllis Drive Cypress, CA. 90630 Tel. (7 14) 8 91-67 52 Fax (7 14) 8 94-93 15 losangeles@thk.com

THK New Jersey

300 F, RT.17, South Mahwah, NJ. 07430 New Jersey Tel. (02 01) 5 29-19 50 Fax (02 01) 5 29-19 62 newjersey@thk.com

THK San Francisko

290 Lindbergh Avenue Livermore, CA. 94550 Tel. (9 25) 4 55-89 48 Fax (9 25) 4 55-89 65 sanfrancisco@thk.com

Niederlassung

Vertriebspartner

THK in Asien, Australien & Afrika

Head Office

Japan

THK Co., Ltd. 3-11-6 Nishi-Gotanda Shinagawa-Ku 141 Tokyo Tel. (03) 54 34-03 51 Fax (03) 54 34-03 53 www.thk.co.jp thk001@thk.co.jp

Niederlassungen

China

THK Beijing

Kunlun Hotel Room No. 526 2 Xin Yuan Lu Chaoyang District Beijing Tel. (10) 65 90-35 57 Fax (10) 65 90-35 57

THK (SHANGHAI) Co., Ltd.

2310 Ciro's Plaza 388 Nanjing West Road Shanghai 200003 Tel. (21) 63 34-51 31 Fax (21) 63 34-51 37

Hongkong

THK Shouzan Co., Ltd. 4/FI., Hanyee Bldg., Flat C 19-21 Hankow Road Tsimshatsui, Kowloon Tel. (0 08 52) 3 76 10 91 Fax (0 08 52) 3 76 07 49

Indien

THK India

1050, 11th Main R.P.C. Layout Bangalore 560040 Tel. (0 80) 3 30 15 24 Fax (0 80) 3 30 15 24 thk@satyam.net.in

Malaysia

THK Malaysia

B-10-11 Block B (Level 12) Menara Uncang Emas 85 Jalan Lake Yew Kuala Lumpur 55200 Tel. (03) 9 87-11 37 Fax (03) 9 87-80 71

Taiwan

THK Taiwan

C611 SHIH, 6F, No. 7 Wu-Chuan 1 Rd. Wu-Ku Kung Yeh Chu Hsi Chuang City Taipei Hsien Tel. (02) 2 99-79 30 Fax (02) 2 97-81 49

Südkorea

THK Seoul

c/o Samick Bldg. 16-7, Yangjae-Dong Seocho-Gu 137-130 Seoul Tel. (2) 34 63-03 51 Fax (2) 30 17-03 51

Vertriebspartner

Australien

Linear Bearings PTY, Ltd. 2 Corporate Avenue Rowville Melbourne Victoria 3178

Tel. (03) 97 55 60 44 Fax (03) 97 55 60 88

Consolidated Bearing Company Australia PTY, Ltd.

The Crescent Kingsgrove 2208 Sydney Tel. (02) 5 02 18 33

Fax (02) 5 02 38 84

Hongkong

Grand Bearing Co., Ltd.

Flat A 31F, Cheong Wah Commercial Bldg. 900-904, Canton Road Mongkok, Kowloon Tel. 3 88 12 26 Fax 3 85 99 52

Indien

APEX Precision Agencies 101, Nagdevi Street

400 003 Bombay Tel. (0 22) 3 42 42 42 Fax (0 22) 4 09 43 53

Israel

Medital Ltd.

7 Leshem St. P.O. Box 7772 Petach Tikva Israel 49170 Tel. ++9 27 +3 923 33 23 Fax ++9 27 +3 923 16 66 medital@madital.co.il

Neuseeland

Saeco-A-D.I. LTK.

36 Hastie Avenue Auckland Tel. (09) 6 34 75 40 Fax (09) 6 34 75 52

Philippinen

Asian Bearing Supply 846 G. Masangkay Street

Manila Tel. (02) 26 02 33

Fax (02) 26 40 71

Singapor

Elite Machinery PTE. Ltd.

20, Beatty Road 0820 Singapore Tel. 2 98 76 00 Fax 2 98 19 33

Südafrika

THK U.K. South Africa

P.O.Box 1057 Oudtshoorn 6620 Tel. (0 44) 2 72 00 20 Fax (0 44) 2 72 00 20

Index

Abschmiermethoden	HSR-CB250
	HSR-HA
Abweichung der Breite W ₂	
Abweichung der Höhe M	HSR-HB250
Adressen	HSR-LA
AFA-Schmierfett91	HSR-LB
AFB-Schmierfett	HSR-LR
AFC-Schmierfett90	HSR-Mini252
AFE-Schmierfett91	HSR-R246
Antriebskraft88	HSR-YRthk.de
Anwendungsbeispiele	
· ·	JRthk.de
Anzugsdrehmoment	JRlink.de
äquivalente Belastung	
Äquivalenzfaktoren, Keilwellen	Keilwellen, Abmessungen
Äquivalenzfaktoren, Linearführungen53	Keilwellen, hohl
Äquivalenzfaktoren, Nutwellen471	Keilwellen492
Ausrundungsradius	Keilwellen, Sonderanfertigung
	Keilwellen, Standard492
Befestigungsmethoden	Kennzeichnung der Schienen
Belastungsfaktor f _W	Kompensationseffekt
Belastungsrichtung	Kontaktabstreifer
Bestellbezeichnung, Linearführungen Siehe Produkte	Kontaktfaktor f _C 44
Bestellbezeichnung, Keilwellenführung498	KR
Bestellbezeichnung, Nutwellenführung	Kreisbogenlaufrille
Biegemoment, Wellenführung	kritische Drehzahl
Blechabdeckungen	Kugelkette
blechabdeckungen	rugeikeile
CSR	LaCS
	Lamellen-Kontaktabstreifer
Durchbiegung, Wellenführung	Laufparallelität
	LBF
dynamische äquivalente Belastung63	
dynamische Tragzahl C	LBG540
	LBGT
Einsatzbedingung	LBH510
Endenbearbeitung, Nutwelle	LBR508
Endenbearbeitung, Wellenführungen	LBS
Endgenauigkeit108	LBS, Vollkeilwelle512
ERthk.de	LBST504
	Lebensdauer, Linearführungen39
Faltenbälge, Linearführungen Siehe Produkte	Lebensdauerberechnung
Faltenbälge, Wellenführungen	LF
S / S	
Flächenträgheitsmomente	LF, Standard526
	LT528
Genauigkeitsklassen, Linearführungen	LT, Standard524
Genauigkeitsklassen, Wellenführungen478	LTR550
GL446	
	14070
Gotische Laufrille3	MG7094
GP	MomenteSiehe Produkte
GSR-R	Montage der Welle484
GSR-T308	Montage, Wellenführungen
GSR-V308	Montageanleitung
GSH-V	
	Montageanordnung der Schienen24
Härtefaktor f _H 44	Montagefläche33
Hauptführungsseite	MX
HCR346	
Höhentoleranz	nominelle Lebensdauer, Wellenführung469
HR322	NR/NRS-A
HR-T322	NR/NRS-B278
HRW-CA	NR/NRS-LA
HRW-CR298	NR/NRS-LB278
HSR-A	NR/NRS-LR
HSR-B	NR/NRS-R
HSR-CA248	NSR-TBC

Index

Nutwellen, Abmessungen.520Oberflächenbehandlung.99Ölschmierung, Linearführung.95
Parallelitätstoleranz
Passung bei Mutternmontage
Produktauswahl, Linearführungen16
Produktauswahl, Wellenführungen457
QZ354
Radialspiel
RSH-M382
RSR
RSR-N
RSR-V
RSR-W
RSR-WN
RSR-WV
Schmieradapter
Schmiersystem QZ354
Schmierung, Linearführungen
Schmierung, Wellenführungen480
Schmierzubehör94
Schulterkanten
Schutzvorrichtungen
Schutzvorrichtungen, Wellenführungen481
SHS-C140
SHS-LC140
SHS-LR144
SHS-LV142
SHS-R144
SHS-V142
SHW-CA186
SHW-CAM186
SHW-CR188
SHW-CRM188
SHW-HRM188
SNR-C/LC
SNR-R/LR162
SNS-C/LC168
SNS-R/LR164
SR-SB
SR-TB
SR-V
SR-W
SRS-WM
SSR-XV
SSR-XW
statische Tragzahl C ₀
statischer Sicherheitsfaktor f _S
statisches Moment M ₀
Steifigkeit
Steifigkeit, Welle
Steifigkeit, Wellenführungen476
Steifigkeitswert
Temperaturfaktor f _T

Tragzahl, Linearführungen 40 Tribokorrosion 92 Verschiebewiderstand Siehe Produkte Verschlusskappe C 102 Vorsichtsmaßnahmen 103 Vorspannung, Linearführungen 75 Vorspannung, Wellenführungen 476 Vorspannungsfaktor K 78
Welle bei Biegemoment.463Welle bei Torsionsmoment.463Wellendurchmesser.462Widerstandsmoment.467
Zapfenformen für Endenlagerung513

www.thk.de

Technischer Support www.lmsystem.com

Online-Bestellung www.shop.thk.de

Deutschland

Düsseldorf (0 21 02) 74 25-0 Stuttgart (0 71 50) 91 99-0 München (0 89) 37 06 16-0

Österreich

(0 72 29) 5 14 00-0

Schweiz

(01) 9 44 11 11