

Gesamtkatalog

Herzlich Will iwis

© Copyright iwis antriebssysteme GmbH & Co. KG, München, Deutschland 2009

Der Inhalt dieses Katalogs ist urheberrechtlich durch den Herausgeber geschützt. Jede gesamtheitliche oder auszugsweise Verwertung des Inhalts ist ohne Zustimmung des Herausgebers unzulässig und strafbar. Bei der Erstellung des Katalogs wurde äußerste Sorgfalt angewandt, nichtsdestotrotz übernimmt der Herausgeber keine Haftung für eventuell auftretende Fehler und Auslassungen insbesondere im technischen Bereich.

Printed: EB D 04/2009 3.000

kommen bei antriebssysteme!

Der direkte Weg zu Ihrer Bestellung!

Unser Customer Service Team erreichen Sie werktags durchgehend von 8:00–18:00 Uhr. Telefon:

+49 89 76909-1500

Oder nutzen Sie unser Fax. Bitte verwenden Sie hierzu unser Faxanfrageblatt am Ende dieses Kataloges. Fax:

+49 89 76909-1122

Anfragen und Bestellungen werden vom Customer Service Team umgehend bearbeitet. sales-muenchen @iwis.com

Weitere Informationen zu unseren Produkten finden Sie auch auf unserer Unternehmens-Website:

www.iwis.com

Inhaltsverzeichnis iwis

Das Unternehmen

- 1 Herzlich Willkommen
- 2 Inhaltsverzeichnis
- 4 iwis antriebssysteme
- 6 Twis Die Marke für höchste Präzision
- 8 Highlights, Anwendungen und Kundennutzen
- 10 Unser Serviceangebot

Produktprogramm

- 12 Swis Rollenketten
- 14 nach DIN 8187-1
- 16 nach DIN 8188-1
- 16 Langgliederketten (nach DIN 8181)
- 18 **TWIS** Förderketten
- 20 mit Mitnehmerlaschen
- 22 mit Winkellaschen
- 27 mit verlängerten Bolzen
- 28 Mehrfachsteckglieder
- 29 mit U-Bügeln
- 30 Swis MEGAlife wartungsfreie Ketten
- 34 MEGAlife I Rollenketten
- 35 Förderketten mit Mitnehmerlaschen
- 36 Förderketten mit Winkellaschen
- 37 Förderketten mit verlängerten Bolzen
- 38 MEGAlife II Rollenketten

Gesamtkatalog

Produktprogramm

- 40 Swis CR Ketten korrosionsbeständige Ketten
- 44 **TWIS** Stauförderketten
- 46 Neue Stauförderketten
- 48 Seitenbogen-Stauförderketten
- 49 Klassische Stauförderketten
- 50 MEGAlife SFK & SFS
- 52 Zubehör
- 56 Spezialförderketten
- 58 Plattenketten
- 59 Transferketten
- 61 Gripketten
- 62 Palettentransportketten
- 63 Seitenbogenketten
- 64 Rückensteife Ketten
- 64 Hohlbolzenketten
- 65 Tubentransportketten
- 66 Dosentransportketten
- 67 Flyerketten

Zubehör

- 68 **Swis** Kettenräder und Kettenradscheiben
- 72 Werkzeuge
- 84 Syvis Automatische Spanner

Ketten-Ratgeber

- 98 Effiziente Schmierung
- 101 Perfekte Wartung
- 102 Ketten-Leitfaden
- 104 Fragebogen für Kettentriebe

iwis

Joh. Winklhofer Beteiligungs GmbH & Co. KG

Unternehmenszentrale, Dachgesellschaft der selbstständigen Tochterunternehmen, Organisationsmanagement des international operierenden Unternehmens

iwis motorsysteme GmbH & Co. KG

Tochtergesellschaft für Automobilanwendungen wie Steuertriebs-, Massenausgleichssysteme sowie Ölpumpenantriebe und Getriebeketten

3Wis

München (D) Landsberg (D) Tipton (UK) Shanghai (CN) São Paulo (BRA) Seoul (KR)

iwis antriebssysteme GmbH & Co. KG

Tochtergesellschaft für Industrieanwendungen, Hochleistungsketten und Antriebssysteme für eine breite Anwendungspalette

München (D)
Strakonice (CZ)
Meyzieu (F)
Tipton (UK)
Othmarsingen (CH)
Indianapolis (USA)
Langley (CA)
São Paulo (BR)
Shanghai (CN)

iwis antriebssysteme GmbH

Handels-, Service- und Dienstleistungsgesellschaft der industriellen Antriebstechnik

ELITE FLEXON

ecoplus®

Wilnsdorf (D)
Meyzieu (F)
Tipton (UK)
Indianapolis (USA)
Othmarsingen (CH)
Langley (CA)
São Paulo (BR)
Shanghai (CN)

iwis agrisystems (Div.)

Kompetenzzentrum für Landmaschinenketten

Sontra (D)
Meyzieu (F)
Tipton (UK)
Indianapolis (USA)
Othmarsingen (CH)
Langley (CA)
São Paulo (BR)
Shanghai (CN)

Ein Unternehmen, das auf eine 90-jährige Entwicklung zurückblickt, hat eine Geschichte. Die Unternehmer-Familie Winklhofer steuert seit Jahrzehnten die Geschicke der Firma iwis und baute sie zu einer Unternehmensgruppe aus, die sich der Tradition, Präzision und der Innovation verpflichtet fühlt. Die Unternehmensgruppe produziert Rollenketten und -systeme im Hochleistungsbereich für die Automobilindustrie, den Maschinen- und Anlagenbau, die Verpackungs-, Druck- und Lebensmittelindustrie, die Landwirtschaft und für industrielle Anwendungen im Bereich Fördertechnik. Mehr als 1000 Mitarbeiter an den Standorten München, Landsberg am Lech, Wilnsdorf, Sontra und Strakonice (CZ) haben sich einem Qualitätsstandard auf höchstem Niveau verpflichtet.

Konsequente Kundenorientierung in allen Bereichen führt zu einer engen Zusammenarbeit mit unseren Kunden und Lieferanten bis hin zu gemeinsamen Entwicklungen – denn unser Ziel ist es, unseren Kunden stets eine Problemlösung von höchster Qualität und Nachhaltigkeit anbieten zu können. Forschung und Entwicklung sind dabei elementare Bestandteile unserer Unternehmensphilosophie: Neue Trends aufzuspüren, die Entwicklung neuer Werkstoffe und Fertigungstechnologien erfordern eine Innovationskraft und Motivation, auf die wir stolz sind und die unsere Spitzenposition am Markt rechtfertigt. So ist iwis antriebssysteme GmbH & Co. KG weltweit Antriebskraft für den allgemeinen Maschinenbau und liefert Präzisionsketten-Systeme, die rund um die Welt bewegen.

Technische Perfektion in höchster Qualität für einen maximalen Anwendernutzen – das ist unser Anspruch. Unser Leistungsstandard ist 100%ige Wiederholgenauigkeit bei mehr als 30 Mio. Einzelteilen pro Tag in der Fertigung – ein Qualitätsbenchmark, für den bei iwis ein einziger Ausdruck steht: höchste Präzision. Hierauf sind wir stolz, und zahlreiche Zertifizierungen und Auszeichnungen im Qualitätsbereich zeigen uns, dass wir den richtigen Weg gehen!

Präzision für Ihren Erfolg

Technische Perfektion

- Verwendung von hochwertigen Vergütungs- und Einsatzstählen
- Hohe Fertigungspräzision durch SPC (statistische Prozesskontrolle)
- Qualitätssicherung durch ISO 9001
- Optimierung der Qualitätsmerkmale durch spezielle Wärmebehandlung
- Ständige Kontrolle der Ketten auf Maßhaltigkeit und Gelenkigkeit
- Oberflächenbeschichtungen
- Sonderschmierungen
- Spezielle Werkstoffe (z.B. korrosionsbeständig)

Höchste Qualität

- Überdurchschnittliche Lebensdauer
- Hervorragende Verschleißfestigkeit
- Eingeschränkte Längentoleranzen bis 1/6 der DIN-Toleranz
- Eindeutig höhere Bruchkraft als die Norm
- Hohe Dauerfestigkeit
- Alle iwis Ketten sind vorgereckt
- Hochwirksame Erstschmierung

Anwendernutzen

- Längere Wartungsintervalle
- Wartungsfreundlich, leichtes und schnelles Zerlegen
- Weniger Stillstandzeiten
- Exakter Parallel- und Synchronlauf
- Größerer Spielraum bei der Dimensionierung
- Hochpräzise Positionierung
- Hohe Laufruhe
- Sicherheitsreserven bei Belastungsspitzen
- Verringerte Einlauflängung, kleinere Spannwege

Einige Anwendungsgebiete

- Druckmaschinen
- Papierherstellungs- und Bearbeitungsmaschinen
- Kopiergeräte
- Keramik- und Glasindustrie
- Verpackungsmaschinen
- Medizintechnik

- Textilmaschinen
- Werkzeugmaschinen
- Kunststoffverarbeitungsmaschinen
- Allgemeiner Maschinen- und Anlagenbau
- Holzbearbeitungsmaschinen
- Landmaschinen

- Büromaschinen
- Baustoffmaschinen
- Baumaschinen
- Fördermitteltechnik
- Chemie- und Verfahrenstechnik
- Tuben-Dosen-Industrie

Der perfekte Partner für Ihre Technik

Ein wissenschaftlich orientiertes Unternehmen

iwis verfügt mit mehr als 60 Entwicklungsingenieuren über die größte Forschung und Entwicklungs-Abteilung für Kettentriebsysteme in Europa. Neben Grundlagenentwicklung und Entwicklung von innovativen kundenspezifischen Lösungen, sind Berechnungen über Konstruktion von Versuch bis hin zu Verschleiß und Dauerfestigkeitsuntersuchungen Hauptbestandteile der Entwicklungsabteilung bei iwis.

- Fundiertes Spezialwissen in Lärmemmissionsanalysen und Schwingungstechnik
- Möglichkeiten im Labor u.a. der Mikroskopie, Metallographie, Erm. mechanischer Eigenschaften, chem. Zusammensetzungen und Sonderanalytik
- Dynamische Schwingungs- und Belastungsanalysen von Kettentrieben

- Festigkeitsberechnungen mittels FEM und anderer Tools
- Auswertung von iwis- bzw. Kundenmessungen am Prüfständen zur Verifikation der Simulationsmodelle
- Ermittelung von Kennwerten auch bei unterschiedlichen Temperaturen in Klimakammern

Bruchkraftermittlung und Dehnungsaufnahmen bis 1000kN

Dauerfestigkeits- und Zeitfestigkeitsüberprüfungen durch mehr als 15 Pulsatoren nach unterschiedlichen Prüfungsverfahren

Untersuchung des Verschleißverhaltens auf mehr als 20 Prüfständen

Jedes Kundenproblem ist für uns eine Herausforderung. Ob Sie eine spezielle Förderkette benötigen oder etwa eine eigene Kettenkonfiguration mit Integration von Kettenrädern und Führungen in bestehende Module:

Problemlösung

Als Systemhersteller bieten Ihnen unsere Spezialisten individuelle Lösungen an, die weit über die Kette hinaus auf die gesamte Anwendung fokussieren und Ihr Problem ganzheitlich lösen.

Unser Unternehmensbereich Forschung und Entwicklung steht für Kreativität und Innovation, aber auch partnerschaftliche Zusammenarbeit. In enger Kooperation mit unseren Lieferanten und Kunden werden ganzheitliche Lösungen entwickelt, geprüft und gefertigt. Sprechen Sie uns an, wenn Sie ein spezielles Problem haben!

Flexibilität bis zum Äußersten

Lösungen anzubieten auch für individuelle Kundenprobleme ist unsere Spezialität und Teil unserer Unternehmensphilosophie. Durch Machbarkeitsstudien im Dialog mit Kunden, die Konstruktion von Bauelementen und die Durchführung von Verformungs- und Spannungsanalysen können bestehende Konstruktionen den individuellen Kundenwünschen angepasst oder neue Kettentriebe entwickelt werden. Mit Schwingungs- und Spannungsanalysen der Komponenten werden dann die physikalischen Eigenschaften der Kettenkonstruktion überprüft. Auf Prüfständen, die die Kettentriebe extremen Belastungen weit über die realen Anforderungen hinaus aussetzen, werden die Prototypen erprobt und auf Haltbarkeit und Lebensdauer überprüft. Unsere Kunden können und müssen sicher sein, dass sie ein Produkt höchster Qualität erhalten – das ist unser Anspruch.

iwis -<u>Ihr starker</u> Partner auch

Die iwis Gruppe ist weltweit aktiv. Mit eigenen Tochtergesellschaften in England und der Schweiz sowie Standorten in Brasilien, China, Frankreich und USA operiert die iwis Gruppe international. In mehr als 30 Ländern und auf allen Kontinenten wird iwis über Handelspartner vertrieben.

außerhalb von Deutschland

iwis hat die Chancen der Globalisierung frühzeitig erkannt und durch gezielte Positionierung eine Handelsstruktur etabliert, die eine weltweite Versorgung garantiert. So werden nicht nur neue Märkte erschlossen, sondern unsere Kunden können auch bei ihren Auslandsaktivitäten vor Ort auf einen bekannten und zuverlässigen Partner zurückgreifen.

Sie sind uns wichtig, und deshalb unterstützen wir Sie gerne mit Rat und Tat. Lassen Sie sich durch unsere kompetenten Spezialisten im technischen Service Team und unseren engagierten Außendienst beraten. Gerne führen wir für Sie Berechnungen und Kettenauslegungen durch und beraten Sie bei der Wahl der richtigen Ketten für Ihre Anwendungen. Unser Customer Service Team ist jederzeit werktags von 08:00 bis 18:00 Uhr erreichbar.

Übrigens: Wir betreuen Sie gerne auch während der Kettenlaufzeit als verlässlicher Partner in allen Fragen rund um die iwis Kette.

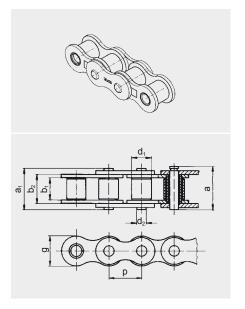
Service für unsere Kunden

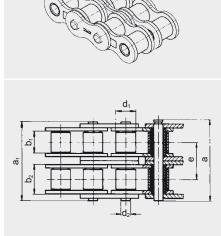


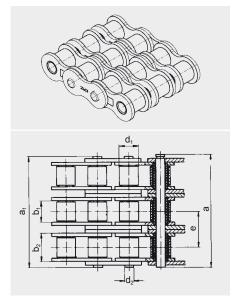
Notice Rollenketten

verfügen über eine überdurchschnittliche Lebensdauer durch hervorragende Verschleißfestigkeit, hohe Gleichmäßigkeit, beispiellose Präzision und eindeutig höhere Bruchkraft und Dauerfestigkeit als die Norm. Alle iwis Ketten sind vorgereckt und mit einer hochwirksamen Erstschmierung versehen.

iwis Ketten der SL-Baureihe (Super Longlife) haben Bolzen mit extrem hoher Oberflächenhärte. Diese besondere Ausführung ermöglicht hervorragende Eigenschaften: höchste Resistenz gegen Verschleiß, eine längere Lebensdauer, unverändert hohe Bruchkraft und Dauerfestigkeit, eine geringere Empfindlichkeit bei Mangelschmierung durch Notlaufeigenschaften und geringere Anfälligkeit gegen Korrosion und Passungsrostbildung in den Kettengelenken.


TWIS Rollenketten


nach DIN 8187-1, ISO 606: 2004 und Werksnorm


OWISO.	iwis Bezeich.	Handelsbergh	is so the second	ivis No mit.	Bruchk	/	Cowicht;	Einzelleile und N.; Sinding M.;	b, (m _{m)}	/	nnenglie	/	Auße (William)	englied And And And And And And And And And An	Bolzen of fine
Einfach			/												
04	G 42	6 x 2,8 mm	6,00	3.200	3.000	0,07	0,12	2, 3, 7, 8	2,80	4,10	5,00	6,70	7,60	4,00	1,85
05 B-1	G 52	8 mm x 1/8"	8,00	6.000	5.000	0,11	0,18	2, 3, 7, 8	3,16	4,85	7,10	8,10	9,20	5,00	2,31
_	G 53 HZ ^{1) 3)}	8 mm x 3/16"	8,00	8.500	-	0,25	0,34	2, 8	4,76	7,90	7,60	11,70	-	5,00	3,15
_	G 62 1/2 ¹⁾	3/8 x 5/32"	9,525	11.000	_	0,22	0,34	2, 3, 7, 8	3,94	6,63	8,20	11,00	12,20	6,35	3,31
06 B-1	G 67 ¹⁾	3/8 x 7/32"	9,525	10.500	9.000	0,28	0,41	2, 3, 6, 7, 8	5,72	8,53	8,20	12,90	14,10	6,35	3,31
_	P 83 V	1/2 x 3/16"	12,70	15.500	-	0,29	0,44	2, 3, 6, 7, 8	4,88	7,97	10,20	13,20	14,10	7,75	3,68
-	S 84 V	1/2 x 1/4"	12,70	18.000	-	0,38	0,58	2, 3, 6, 7, 8	6,40	9,65	12,00	15,00	16,00	7,75	3,97
08 B-1	L 85 SL*	1/2 x 5/16"	12,70	22.000	18.000	0,50	0,70	2, 3, 6, 7, 8	7,75	11,30	11,80	16,90	18,50	8,51	4,45
10 B-1	M 106 SL*	5/8 x 3/8"	15,875	27.000	22.400	0,67	0,95	2, 3, 6, 7, 8	9,65	13,28	14,40	19,50	20,90	10,16	5,08
12 B-1	M 127 SL*	3/4 x 7/16"	19,05	34.000	29.000	0,89	1,25	2, 3, 4, 6, 7, 8	11,75	15,62	16,40	22,70	23,60	12,07	5,72
16 B-1	M 1611*	1" x 17mm	25,40	75.000	60.000	2,10	2,70	2, 3, 6, 7, 8	17,02	25,45	21,10	36,10	36,90	15,88	8,28
20 B-1	M 2012	1 1/4 x 3/4"	31,75	120.000	95.000	2,92	3,72	2, 4, 6, 8	19,56	29,01	25,40	40,50	46,30	19,05	10,19
24 B-1	M 2416	1 1/2 x 1"	38,10	211.000	160.000	5,50	7,05	2, 4, 6, 8	25,40	37,92	33,50	53,10	60,00	25,40	14,63
28 B-1	M 2819	1 3/4 x 31mm	44,45	250.000	200.000	7,35	8,96	2, 4, 6, 8	30,95	46,58	37,00	63,60	69,90	27,94	15,90
32 B-1	M 3219	2" x 31mm	50,80	315.000	250.000	8,05	10,00	2, 4, 6, 8	30,95	45,57	42,30	65,10	70,10	29,21	17,81

 $^{^{1)}}$ Laschenform gerade $^{-2)}$ bei gekröpften Gliedern abweichende Maße $^{-3)}$ Hülsenkette

Der Zusatz SL (super longlife) kennzeichnet Ketten mit besonders verschleißfesten Bolzen. Bei Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20% vermindern kann.

^{*} Rollenketten mit Ansatzbolzen "easy break" – leichte Zerlegbarkeit der Ketten

TWIS Rollenketten

nach DIN 8187-1, ISO 606: 2004 und Werksnorm

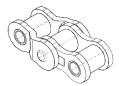
N/OS/M/O	iwis Bezei	Tehung Handesbeseich	Sur Jan Summer	iwis Mys.	Bruchk		Gewicht	Selfin Dom Finzelleile Verbielle und N.; Sindunge	Sellieder Sellieder	/	Innengli		Auße Auße Auße Auße Auße Auße Auße Auße	englied	80/2en	Sourmy) Max.
Zweifa																
05 B-2	D 52	8mm x 1/8"	8,00	9.100	7.800	0,22	0,36	2, 3, 8	3,16	4,85	7,10	13,90	15,00	5,00	2,31	5,64
06 B-2	D 67 1) *	3/8 x 7/32"	9,525	20.000	16.900	0,56	0,78	2, 3, 6, 7, 8	5,72	8,53	8,20	23,40	24,60	6,35	3,31	10,24
08 B-2	D 85 SL*	1/2 x 5/16"	12,70	40.000	32.000	1,00	1,35	2, 3, 6, 7, 8	7,75	11,30	12,20	30,80	32,40	8,51	4,45	13,92
10 B-2	D 106 SL*	5/8 x 3/8"	15,875	56.000	44.500	1,34	1,85	2, 3, 6, 7, 8	9,65	13,28	14,40	36,00	37,50	10,16	5,08	16,59
12 B-2	D 127*	3/4 x 7/16"	19,05	68.000	57.800	1,78	2,50	2, 3, 6, 7, 8	11,75	15,62	16,40	42,10	43,00	12,07	5,72	19,46
16 B-2	D 1611*	1" x 17mm	25,40	150.000	106.000	4,21	5,40	2, 3, 6, 7, 8	17,02	25,45	21,10	68,00	68,80	15,88	8,28	31,88
20 B-2	D 2012	1 1/4 x 3/4"	31,75	210.000	170.000	5,84	7,36	2, 4, 6, 8	19,56	29,01	25,40	79,70	82,90	19,05	10,19	36,45
24 B-2	D 2416	1 1/2 x 1"	38,10	370.000	280.000	11,00	13,85	2, 4, 6, 8	25,40	37,92	33,50	101,80	106,50	25,40	14,63	48,36
28 B-2	D 2819	1 3/4 x 31mm	44,45	500.000	360.000	14,70	18,80	2, 4, 6, 8	30,95	46,58	37,00	124,70	129,20	27,94	15,90	59,56
32 B-2	D 3219	2" x 31mm	50,80	530.000	450.000	16,10	19,80	2, 4, 6, 8	30,95	45,57	42,30	126,00	128,30	29,21	17,81	58,55
Dreifac	L															
08 B-3	Tr 85*	1/2 v E/1/2	12.70	58.000	47.500	1.50	2.00	2 2 7 9	7 75	11 20	12.20	44.70	46.20	0.51	A 4E	12.02
10 B-3	Tr 106*	1/2 x 5/16" 5/8 x 3/8"	12,70 15,875	80.000	66.700	1,50 2,02	2,00	2, 3, 7, 8	7,75 9,65	11,30 13,28	12,20 14,40	44,70 52,50	46,30 54,00	8,51	4,45 5,08	13,92 16,59
10 B-3	Tr 127*	3/4 x 7/16"	19,05	100.000	86.700	-		2, 3, 7, 8			•	61,50	62,50	10,16		
16 B-3	Tr 1611*	1" x 17mm	25,40	220.000	160.000	2,68 6,32	3,80 8,00	2, 3, 7, 8	11,75 17,02	15,62	16,40	99,20	100,70	12,07	5,72	19,46 31,88
20 B-3	Tr 2012	1 1/4 x 3/4"	31,75	315.000	250.000	8,76	11,00	2, 3, 6, 7, 8	19,56	25,45	21,10	116,10	119,40	15,88 19,05	8,28 10,19	36,45
24 B-3	Tr 2416	1 1/4 x 5/4 1 1/2 x 1"	38,10	560.000	425.000	16,50	20,31		25,40	37,92	33,50	150,20	155,40	25,40	14,63	48,36
24 B-3 28 B-3	Tr 2819	1 3/4" x 31mm	44,45	750.000	530.000	22,05	28,00	2, 4, 6, 8	30,95	46,58	37,00	184,60	188,90	27,94	15,90	59,56
32 B-3	Tr 3219	2" x 31mm	50,80	795.000	670.000	24,15	29,60	2, 4, 6, 8	30,95	45,57	42,30	184,50	186,50	29,21	17,81	58,55
- JZ U-)	11 7217	2 7 71111111	50,00	793.000	070.000	24,13	29,00	2, 4, 0, 0	50,55	+3,5/	42,50	104,50	100,50	27,21	17,01	70,77

¹⁾ Laschenform gerade 2) bei gekröpften Gliedern abweichende Maße

Der Zusatz SL (super longlife) kennzeichnet Ketten mit besonders verschleißfesten Bolzen. Bei Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20% vermindern kann.

EINZELTEILE UND VERBINDUNGSGLIEDER

Nr. 2 Innenglied Normbezeichnung B


Nr. 3 Steckglied mit Federverschluss Normbezeichnung E

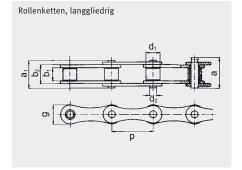
Nr. 4 Steckglied mit Splintverschluss Normbezeichnung S

Nr. 6 Gekröpftes Glied mit Splintverschluss Normbezeichnung L

Nr. 7 Gekröpftes Doppelglied Normbezeichnung C

Nr. 8 Außenglied Normbezeichnung A

TVIS Rollenketten


nach DIN 8188-1, amerikanische Bauart, ISO 606: 2004

"OS _{MO}	imis Bezeich.	MS/86.	reichnung Tell.	1030 COU)	imis Mys Mys	/	kraft F _B	Gewicht	Single Industry	b (m.	/	Innengl		Aut (* Yeur () e	Senglied	/	Soumelle Soumelle
Einfach																	
08 A-1	L 85 A	ANSI 40	1/2"	12,70	18.000	14.100	0,44	0,60	2, 3, 6, 7, 8	7,94	11,15	12,00	16,60	17,50	7,95	3,96	_
10 A-1	M 106 A	ANSI 50	5/8"	15,875	29.000	22.200	0,70	1,00	2, 3, 6, 7, 8	9,53	13,84	14,40	20,40	21,70	10,16	5,08	_
12 A-1	M 128 A SL 1)	ANSI 60	3/4"	19,05	42.000	31.800	1,06	1,47	2, 3, 4, 6, 7, 8	12,70	17,75	18,00	25,30	26,70	11,91	5,96	_
16 A-1	M 1610 A	ANSI 80	1"	25,40	68.000	56.700	1,79	2,57	2, 3, 4, 6, 7, 8	15,88	22,60	22,80	32,10	34,00	15,88	7,92	-
Zweifac	h																
08 A-2	D 85 A	ANSI 40-2	1/2"	12,70	36.000	28.200	0,88	1,19	2, 3, 4, 6, 7, 8	7,94	11,15	12,00	31,00	31,90	7,95	3,96	14,38
10 A-2	D 106 A	ANSI 50-2	5/8"	15,875	56.000	44.400	1,40	1,92	2, 3, 6, 7, 8	9,53	13,84	14,40	38,60	39,90	10,16	5,08	18,11
12 A-2	D 128 A 1)	ANSI 60-2	3/4"	19,05	84.000	63.600	2,12	2,90	2, 3, 4, 6, 7, 8	12,70	17,75	18,00	48,10	49,50	11,91	5,96	22,78
16 A-2	D 1610 A	ANSI 80-2	1"	25,40	145.000	113.400	3,58	5,01	2, 3, 4, 6, 7, 8	15,88	22,60	22,80	61,40	63,30	15,88	7,92	29,29
Dreifac	1																
08 A-3	Tr 85 A	ANSI 40-3	1/2"	12,70	50.000	42.300	1,32	1,78	2, 3, 6, 7, 8	7,94	11,15	12,00	45,40	46,30	7,95	3,96	14,38
10 A-3	Tr 106 A	ANSI 50-3	5/8"	15,875	80.000	66.600	2,10	2,89	2, 3, 6, 7, 8	9,53	13,84	14,40	56,70	58,00	10,16	5,08	18,11
12 A-3	Tr 128 A	ANSI 60-3	3/4"	19,05	125.000	95.400	3,18	4,28	2, 3, 4, 6, 7, 8	12,70	17,75	18,00	71,00	72,30	11,91	5,96	22,78
16 A-3	Tr 1610 A	ANSI 80-3	1"	25,40	210.000	170.100	5,37	7,47	2, 3, 4, 6, 7, 8	15,88	22,60	22,80	90,70	92,70	15,88	7,92	29,29

TWIS Rollenketten, langgliedrig

nach DIN 8181 und ISO 1275: 1995

208 B	LR 165 SL	-	1"	25,40	22.000	18.000	0,50	0,52	2, 4, 6, 8	7,75	11,30	11,80	16,90	18,60	8,51	4,45	-
210 B	LR 206 SL	-	1 1/4"	31,75	28.000	22.400	0,67	0,63	2, 4, 6, 8	9,65	13,28	15,10	19,50	20,80	10,16	5,08	-
212 B	LR 247 SL	-	1 1/2"	38,10	34.000	29.000	0,89	0,85	2, 4, 6, 8	11,75	15,62	16,10	22,70	24,10	12,07	5,72	-
216 B	LR 3211	-	2"	50,80	75.000	60.000	2,10	2,10	2, 4, 6, 8	17,02	25,45	20,60	36,10	38,10	15,88	8,28	_

 $^{1)}$ auch mit gerader Laschenform lieferbar $^{-2)}$ bei gekröpften Gliedern abweichende Maße

Bei Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20% vermindern kann.

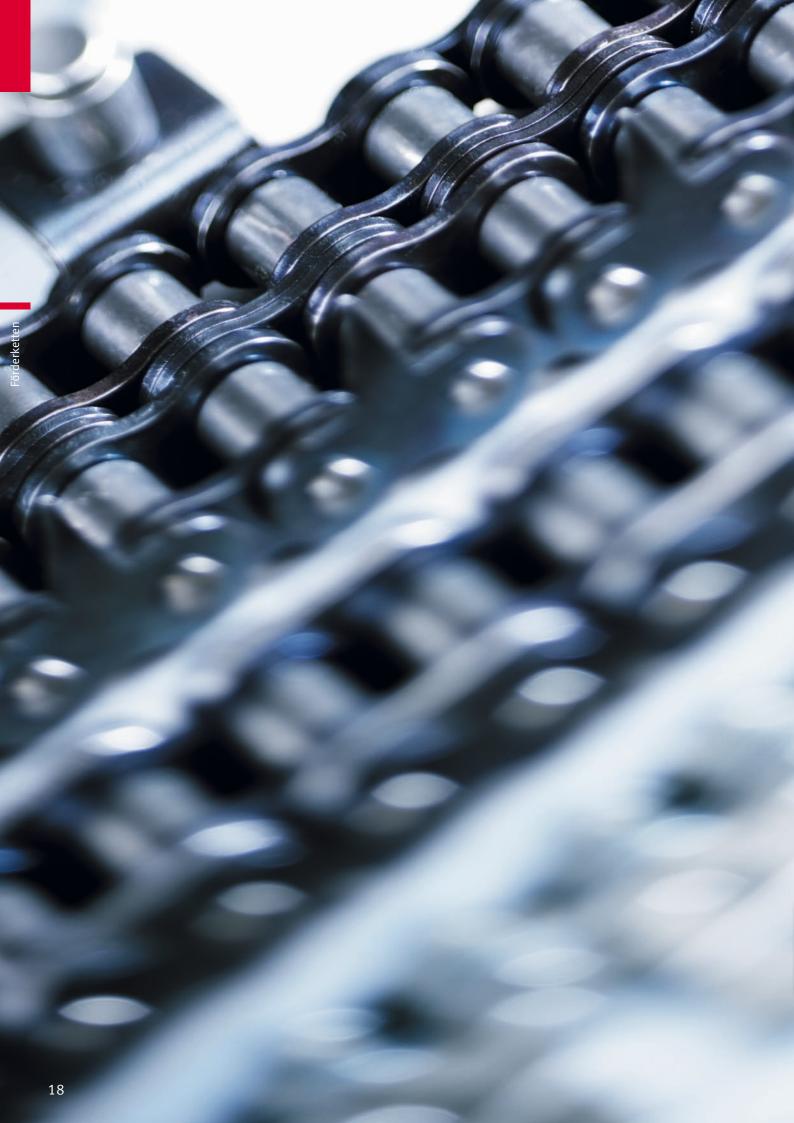
Der Zusatz SL (super longlife) kennzeichnet Ketten mit besonders verschleißfesten Bolzen.

TWIS Hochleistungsketten

Qualitätsprodukte von Weltruf

DER WEG ZUR HOHEN QUALITÄT - JEDES EINZELTEIL TECHNISCH PERFEKT

- Verwendung von ausschließlich hochwertigen Vergütungs- und Einsatzstählen mit Sondervorschriften für Werkstoffanalyse, Toleranzen und Oberflächengüte
- Jedes Kettenteil wird täglich millionenfach mit gleicher Präzision gefertigt und durch SPC (Statistische Prozess Kontrolle) überwacht
- Alle Kettenteile sind wärmebehandelt, teilweise mit speziellen Verfahren zur Optimierung der Qualitätsmerkmale


- Gleichmäßige Geometrie und hohe Oberflächengüte durch Einsatz moderner Fertigungstechnologien
- Kontrolle der Ketten auf Maßhaltigkeit, Längengenauigkeit und Gelenkigkeit, Überprüfung der Presssitze der Fügestellen Bolzen – Außenlaschen und Hülse – Innenlasche
- Der hohe Standard der Qualitätssicherung erfüllt die Anforderungen der ISO 9001:2006

- Für spezielle Anwendungen
 - Oberflächenbeschichtungen
 - Sonderschmierungen
 - spezielle Werkstoffe(z.B. korrosionsbeständig)

iwis Hülse mit absolut zylindrischer Form, je nach Anwendung nahtlos oder gewickelt, als geschlossener Zylinder gefertigt mit extrem niedriger Oberflächenrauheit

Förderketten

iwis Förderketten können speziell auf Ihre Bedürfnisse angepasst werden um die Anforderungen Ihrer Anwendung zu erfüllen. iwis hat nicht nur ein breites Sortiment von speziellen Mitnehmer- und Winkellaschen, sondern wir unterstützen unsere Kunden auch bei der Entwicklung von Sonderanfertigungen.

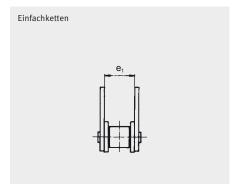
iwis Förderketten bieten dem Anwender die einwandfreie Funktion parallel bzw. synchron laufender Ketten, können die hochpräzise Positionierung unterstützen, bieten Leichtgängigkeit, eine hohe Laufruhe und eine eindeutig höhere Bruchkraft als die Norm. Weitere Ausführungen sind Förderketten mit verlängerten Bolzen, U-Bügel und Mehrfach-Steckgliedern.

TWIS Förderketten mit Mitnehmerlaschen

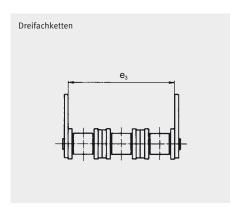
aufbauend auf iwis Rollenketten nach DIN 8187, 8188 und 8181

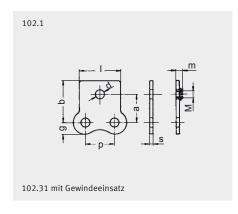
JW SO.	inis Bezeich.	(Moz) _Q	Teilun		6 (mm)	(mm)	Einfacher	Weifachkor	Dreifachker	8 (m _m)	(mu)	((u))	s (mm)	Man	Gewinde- einsatz
Form 1	02.1														
-	P 83 V	1/2	12,7	13,0	19,0	4,2	8,1	-	-	4,5	-	18,0	1,5	-	_
-	S 84 V	1/2	12,7	13,0	19,0	4,2	9,8	-	-	4,5	-	18,0	1,5	-	_
08 B-1	L 85 SL 1)	1/2	12,7	13,0	19,0	4,2	11,6	25,5	39,4	5,4	-	18,0	1,5	4	5,2
10 B-1	M 106 SL 1)	5/8	15,875	16,3	24,3	5,2	13,6	30,1	46,6	6,8	-	24,0	1,6	5	5,3
12 B-1	M 127 SL 1)	3/4	19,05	19,1	29,1	6,2	15,9	35,3	54,7	7,4	-	28,0	1,8	5	5,5
16 B-1	M 1611 1)	1	25,4	24,6	36,6	8,2	25,9	57,8	89,7	10,4	-	36,2	3,0	6	8,2
08 A-1 ANSI 40	L 85 A 1)	1/2	12,7	13,0	19,0	4,2	11,4	25,8	40,2	4,5	-	18,0	1,5	-	-
10 A-1 ANSI 50	M 106 A 1)	5/8	15,875	16,3	24,3	5,2	14,1	32,3	50,4	6,8	-	24,0	1,6	-	-
12 A-1 ANSI 60	M 128 A SL 1)	3/4	19,05	19,1	29,1	6,2	18,1	40,8	63,6	7,4	-	28,0	2,4	-	_
16 A-1 ANSI 80	M 1610 A ¹⁾	1	25,4	24,6	36,6	8,2	23,0	52,2	81,5	10,4	-	36,2	3,0	-	_
Form 1	03.1 und 103.	2													
	P 83 V ²⁾	1/2	12,7	17,0	23,0	4,2	8,1	-	-	4,5	12,7	23,6	1,5	-	-
-	S 84 V	1/2	12,7	17,0	23,0	4,2	9,8	-	-	4,5	12,7	23,6	1,5	-	_
08 B-1	L 85 SL 1)	1/2	12,7	17,0	23,0	4,2	11,6	25,5	39,4	5,4	12,7	23,6	1,5	4	5,2
10 B-1	M 106 SL 1)	5/8	15,875	16,3	25,8	5,2	13,6	30,1	46,6	7,5	15,8	31,0	1,6	5	5,3
12 B-1	M 127 SL ¹⁾	3/4	19,05	18,3	29,0	6,2	15,9	35,3	54,7	9,0	19,0	37,2	1,8	5	5,5
16 B-1	M 1611 ¹⁾	1	25,4	28,45	41,55	8,2	25,9	57,8	89,7	10,35	25,4	47,2	3,0	6	8,2
08 A-1 ANSI 40	L 85 A 1)	1/2	12,7	17,0	23,0	4,2	11,4	25,8	40,2	4,5	12,7	23,6	1,5	-	_
10 A-1 ANSI 50	M 106 A 1)	5/8	15,875	16,3	25,8	5,2	14,1	32,3	50,4	7,5	15,8	31,0	1,6	-	_
12 A-1 ANSI 60	M 128 A SL 1)	3/4	19,05	18,3	29,0	6,2	18,1	40,8	63,6	9,0	19,0	37,2	2,4	-	_
16 A-1 ANSI 80	M 1610 A ¹⁾	1	25,4	28,45	41,55	8,2	23,0	52,2	81,5	10,35	25,4	47,2	3,0	-	-
Form 1	01.1 und 101.	2													
208 B	LR 165 SL	1	25,4	14,3	20,5	4,2	11,6	-	-	6,5	14,0	24,2	1,5	-	-
210 B	LR 206 SL	1 1/4	31,75	16,3	25,8	5,2	13,8	-	-	7,5	18,0	30,2	1,6	-	-
212 B	LR 247 S	1 1/2	38,1	19,2	29,5	6,2	15,9	-	-	9,0	20,0	36,2	1,7	-	-
216 B	LR 3211	2	50,8	28,5	40,6	8,2	25,9	-	-	10,2	28,0	48,2	3,0	-	-

 $^{^{1)}}$ auch für die entsprechenden Zweifach- und Dreifachketten $^{-2)}$ Nennteilung

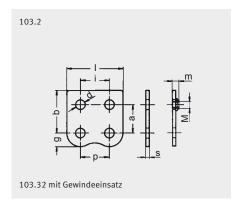


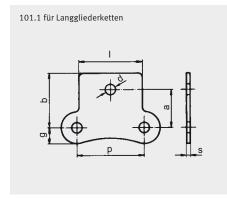

TWIS Förderketten mit Mitnehmerlaschen

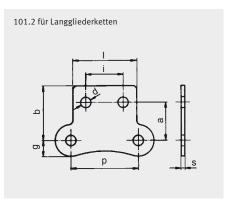

aufbauend auf iwis Rollenketten nach DIN 8187, 8188 und 8181


MITNEHMERLASCHEN

Die abgebildeten Typen sind auch als Steckglieder und Außenglieder ein- und beidseitig verfügbar. Mitnehmerlaschen mit abweichenden Gewindeeinsätzen auf Anfrage.







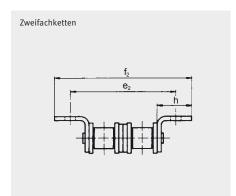
TWIS Förderketten mit Winkellaschen

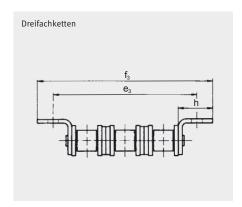
aufbauend auf iwis Rollenketten nach DIN 8187, 8188 und 8181

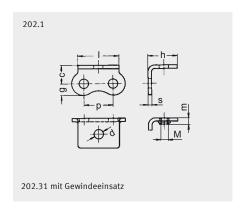
"OS/MO	Wimmer Iwis Beeigh	Sumu.	/ /	eilung		(wild) o		hketten	/		Dreifac		4 (mm)	i (mm)	(mm)	SIMM	a. A. W.	Gew ein
Form 2	02.1																	
-	P 83 V	1/2	12,7	8,0	4,2	24,1	36,1	-	-	-	-	4,5	14,0	-	18,1	1,5	-	-
-	S 84 V	1/2	12,7	8,0	4,2	25,8	37,8	-	-	-	-	4,5	14,0	-	18,1	1,5	-	_
08 B-1	L 85 SL 1)	1/2	12,7	8,0	4,2	27,6	39,6	41,5	53,5	55,4	67,4	5,4	14,0	-	18,1	1,5	4	5,2
10 B-1	M 106 SL 1)	5/8	15,875	9,0	5,2	33,6	49,6	50,1	66,1	66,6	82,6	6,8	18,0	-	24,0	1,6	5	5,3
12 B-1	M 127 SL 1)	3/4	19,05	10,0	6,2	41,1	61,1	60,5	80,5	79,9	99,9	7,4	22,6	-	28,0	1,8	5	5,5
16 B-1	M 1611 1) 2)	1	25,4	16,0	8,2	53,9	77,9	85,8	109,8	117,7	141,7	10,4	26,0	-	36,2	3,0	6	8,2
08 A-1 ANSI 40	L 85 A 1)	1/2	12,7	8,0	4,2	27,4	39,4	41,8	53,8	56,2	68,2	4,5	14,0	_	18,1	1,5	_	_
10 A-1 ANSI 50	M 106 A 1)	5/8	15,875	9,0	5,2	34,1	50,1	52,3	68,3	70,4	86,4	6,8	18,0	-	24,0	1,6	-	-
12 A-1 ANSI 60	M 128 A SL 1)	3/4	19,05	13,0	6,2	38,9	58,9	61,6	81,6	84,4	104,4	7,4	20,4	_	28,0	2,4	-	-
16 A-1 ANSI 80	M 1610 A 1) 2)	1	25,4	16,0	8,2	51,0	75,0	80,2	104,2	109,5	133,5	10,4	26,0	-	36,2	3,0	-	-
Form 2	03.1 und 203	3.2																
-	P 83 V ²⁾	1/2	12,7	9,5	4,2	29,1	41,1	-	-	-	-	4,5	16,5	12,7	23,6	1,5	-	-
-	S 84 V ²⁾	1/2	12,7	9,5	4,2	30,8	42,8	-	-	-	-	4,5	16,5	12,7	23,6	1,5	-	-
08 B-1	L 85 SL 1) 2)	1/2	12,7	9,5	4,2	32,6	44,6	46,5	58,5	60,4	72,4	5,4	16,5	12,7	23,6	1,5	4	5,2
10 B-1	M 106 SL 1) 2)	5/8	15,875	11,0	5,2	30,6	49,6	47,1	66,1	63,6	82,6	7,5	18,0	15,8	31,0	1,6	5	5,3
12 B-1	M 127 SL 1) 2)	3/4	19,05	12,0	6,2	35,5	56,9	54,9	76,3	74,3	95,7	9,0	20,5	19,0	37,2	1,8	5	5,5
16 B-1	M 1611 1) 2)	1	25,4	18,0	8,2	57,7	83,9	89,6	115,8	121,5	147,8	10,4	29,0	25,4	47,2	3,0	6	8,2
08 A-1 ANSI 40	L 85 A 1) 2)	1/2	12,7	9,5	4,2	32,4	44,4	46,8	58,8	61,2	73,2	4,5	16,5	12,7	23,6	1,5	-	_
10 A-1 ANSI 50	M 106 A 1) 2)	5/8	15,875	11,0	5,2	31,1	50,1	49,3	68,3	67,3	86,4	7,5	18,0	15,8	31,0	1,6	-	-
12 A-1 ANSI 60	M 128 A SL ^{1) 2)}	3/4	19,05	13,0	6,2	37,3	58,7	60,0	81,4	82,8	104,2	9,0	20,3	19,0	37,2	2,4	-	_
16 A-1 ANSI 80	M 1610 A ^{1) 2)}	1	25,4	18,0	8,2	54,8	81,0	84,0	110,2	113,3	139,5	10,4	29,0	25,4	47,2	3,0	-	-
Form 2	01.1 und 201	1.2																
208 B	LR 165 SL ²⁾	1	25,4	10,0	4,2	26,2	38,6	-	-	-	-	6,5	13,5	14,0	24,2	1,5	-	-
210 B	LR 206 SL ²⁾	1 1/4	31,75	11,0	5,2	30,6	49,6	-	_	_	-	7,5	18,0	18,0	30,2	1,6	-	-
	LR 247 SL ²⁾	1 1/2	38,1	13,0	6,2	34,9	55,5	_	_	_	_	9,0	19,8	20,0	36,2	1,7	_	
212 B	LK 247 JL	11/2	50,1	15,0	0,2	54,5	,,,		_	_	_	2,0	19,0	20,0	50,2	1,/	-	_

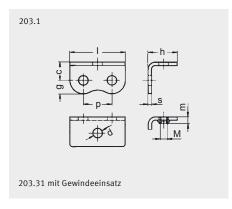
¹⁾ auch für die entsprechenden Zweifach- und Dreifachketten 2) Montage der Winkellaschen auch über die Kette nach innen möglich

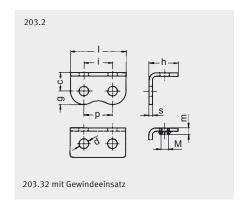
TWIS Förderketten mit Winkellaschen

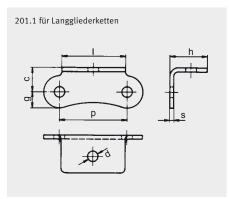

aufbauend auf iwis Rollenketten nach DIN 8187, 8188 und 8181

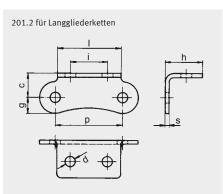

WINKELLASCHEN

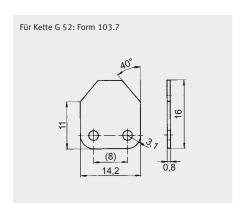

Die abgebildeten Typen sind auch als Steckglieder und Außenglieder ein- und beidseitig verfügbar. Winkellaschen mit Gewindeeinsatz können nicht über die Kette nach innen montiert werden.

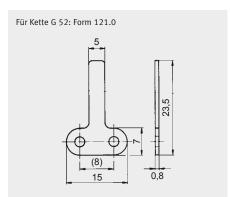

Abweichende Gewindemaße auf Anfrage.

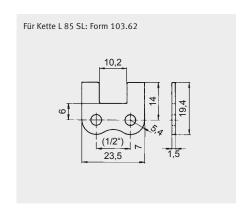


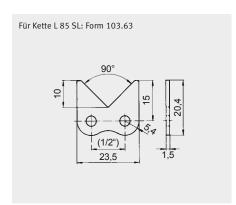


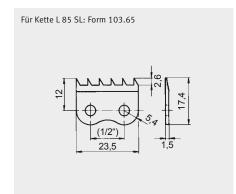


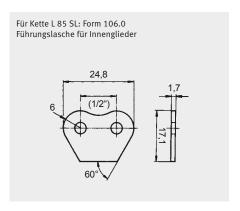


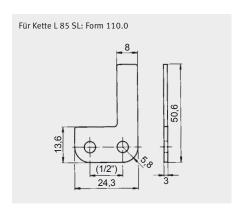


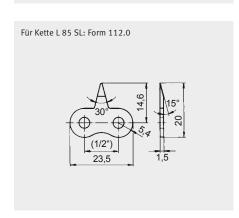


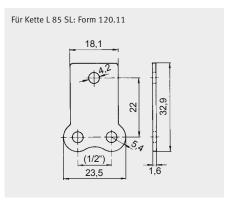

TWIS Förderketten

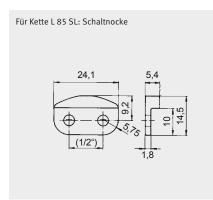

Sondermitnehmerlaschen – Beispiele

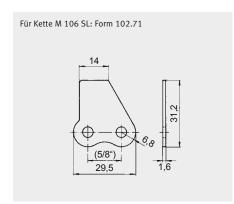


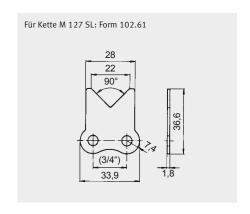


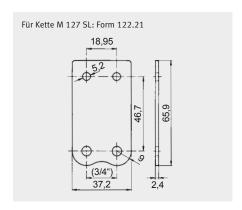


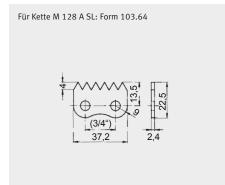


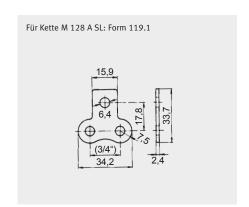




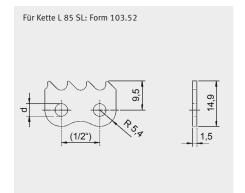


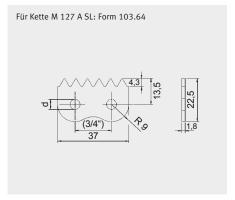


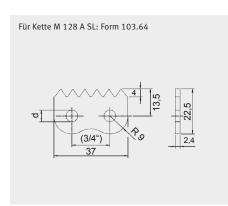


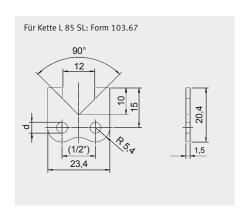


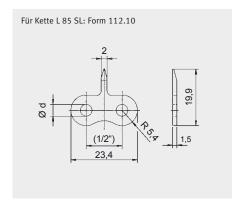
TWIS Förderketten

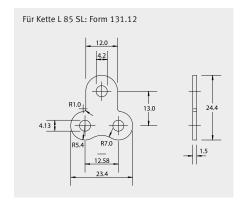

Sondermitnehmerlaschen – Beispiele

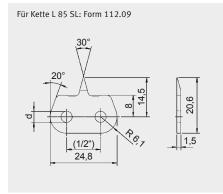


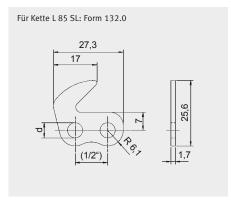


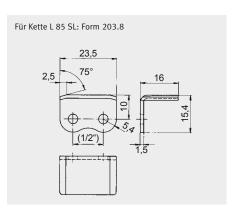


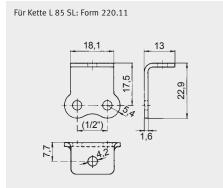


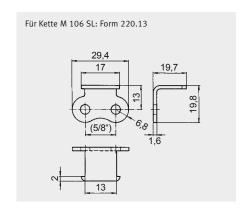


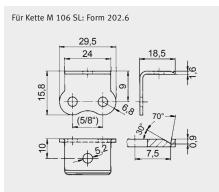


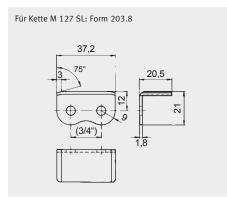


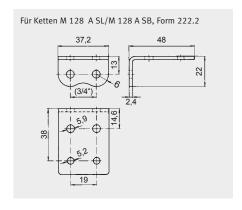


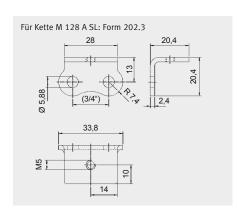


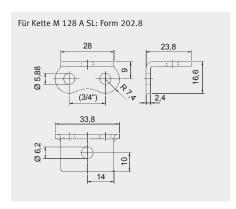


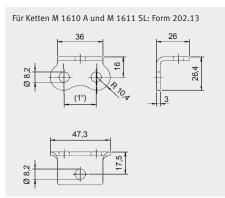

TVIS Förderketten

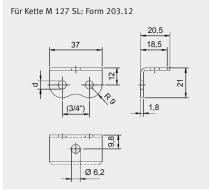

Sonderwinkellaschen – Beispiele

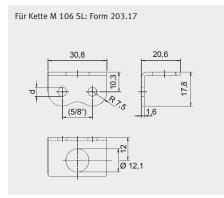


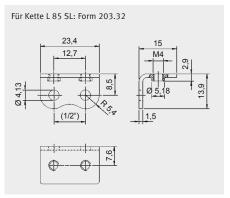






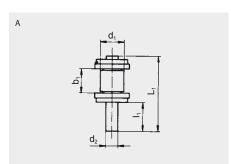


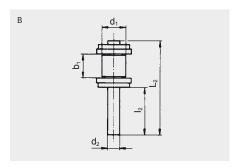


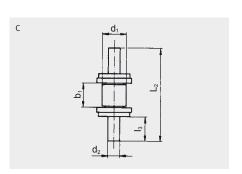


Ähnliche Laschenformen für andere Kettentypen sowie andere Laschenformen auf Anfrage. Mindestabnahmemengen bei einigen Sonderlaschen auf Anfrage.

TWIS Förderketten mit verlängerten Bolzen

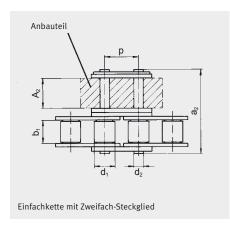

aufbauend auf iwis Rollenketten nach DIN 8187, 8188 und 8181


"OS/MO	inis Bezeith.	, ms	Teilung	Belie 5 (lieimen 2 (mm)en	Pollesquehnes	Botem Urching	, (mm)	Ausführung	g A	Ausführu	ng B und C
Bolzenf	orm A, B, C										
05 B-1	G 52	_	8,0	3,16	5,0	2,31	17,5	10,0	27,5	20,0	10,5
06 B-1	G 67	3/8	9,525	5,72	6,35	3,31	22,0	10,0	34,0	22,0	11,5
-	P 83 V	1/2	12,7	4,88	7,75	3,68	22,0	10,0	37,0	25,0	13,0
08 B-1	L 85 SL	1/2	12,7	7,75	8,51	4,45	25,5	10,0	40,5	25,0	13,0
10 B-1	M 106 SL	5/8	15,875	9,65	10,16	5,08	30,0	12,0	48,0	30,0	15,5
12 B-1	M 127 SL	3/4	19,05	11,75	12,07	5,72	36,0	15,0	51,0	30,0	15,5
16 B-1	M 1611	1	25,4	17,02	15,88	8,28	53,5	20,0	68,5	35,0	18,0
08 A-1 ANSI 40	L 85 A	1/2	12,7	7,94	7,95	3,96	25,5	10,0	45,3	30,0	15,5
10 A-1 ANSI 50	M 106 A	5/8	15,875	9,53	10,16	5,08	31,5	12,0	48,0	29,0	15,0
12 A-1 ANSI 60	M 128 A SL	3/4	19,05	12,70	11,91	5,96	38,0	14,0	48,0	24,0	12,5
16 A-1 ANSI 80	M 1610 A	1	25,4	15,88	15,88	7,92	49,5	19,0	61,3	31,0	16,0
208 B	LR 165 SL	1	25,4	7,75	8,51	4,45	25,5	10,0	40,5	25,0	13,0
210 B	LR 206 SL	1 1/4	31,75	9,65	10,16	5,08	30,0	12,0	48,0	30,0	15,5
212 B	LR 247 SL	1 1/2	38,1	11,75	12,07	5,72	36,0	15,0	51,0	30,0	15,5
216 B	LR 3211	2	50,8	17,02	15,88	8,28	53,5	20,0	68,5	35,0	18,0

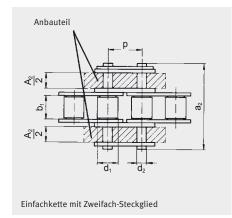

¹⁾ Für Mehrfachketten auf Anfrage. Andere Bolzenlängen und Formen auf Anfrage.

VERLÄNGERTE BOLZEN

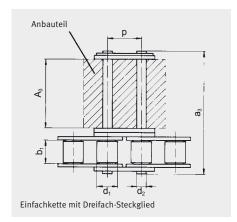
Die abgebildeten Typen sind auch als Steck- und Außenglieder für Endmontage und Reparatur erhältlich (C nur als Außenglied).


Mehrfachsteckglieder

zur Befestigung von Anbauteilen 1)


, 08/MO	ivis Bezeich,	Moza o sulla	Teilung	Breite b, (mm) en	Rollengwehmess	Solvenourchmes		Breite außen	A max mm	Blockbreite
Zweifa	ch									
05B-1	G 52	8 mm	7,94	3,16	5,0	2,31	14,9	-	4,0	-
06B-1	G 67	3/8	9,42	5,72	6,35	3,31	24,5	34,6	7,0	17,5
Zweifa	ch / Dreifach									
08B-1	L 85 SL	1/2	12,58	7,75	8,51	4,45	32,3	46,2	11,3	25,2
10B-1	M 106 SL	5/8	15,76	9,65	10,16	5,08	37,4	53,9	13,3	29,9
12B-1	M 127 SL	3/4	18,95	11,75	12,07	5,72	42,9	62,4	15,6	35,1
16B-1	M 1611	1	25,3	17,02	15,88	8,28	68,7	100,6	25,5	57,4
08 A-1 ANSI 40	L 85 A	1/2	12,58	7,94	7,95	3,96	31,8	46,2	11,2	25,5
10 A-1 ANSI 50	M 106 A	5/8	15,76	9,53	10,16	5,08	39,8	57,9	13,8	32,0
12 A-1 ANSI 60	M 128 A SL	3/4	18,95	12,70	11,91	5,96	49,4	72,2	17,8	40,6
16 A-1 ANSI 80	M 1610 A	1	25,3	15,88	15,88	7,92	63,2	92,6	22,6	51,9

¹⁾ Wichtig: Bei der Herstellung eines Anbauteils ist das genaue Teilungsmaß »p« zu berücksichtigen.


BEISPIELE

Mehrfachsteckglieder ermöglichen eine elegante und einfache Befestigung von Bauteilen an bestimmten Stellen in den Ketten.

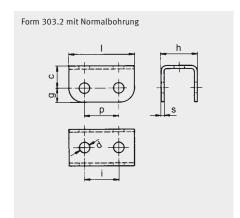
Die einfachste Variante bietet Mehrfachsteckglieder in Einfachketten wie in obigen Skizzen dargestellt.

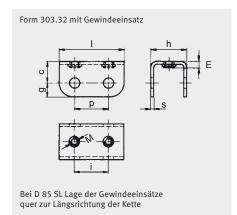
Mehrfachsteckglieder können mit normalen Laschen oder als Fördersteckglieder mit Mitnehmer-und Winkellaschen, ein- oder beidseitig bestückt, geliefert werden.

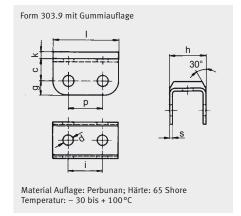
उ Förderketten mit U-Bügel

aufbauend auf iwis Rollenketten nach DIN 8187 und 8188

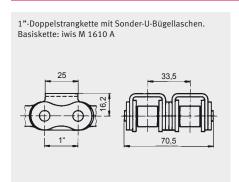
W _Q	Iwis Bezei	D (mm)	Teilung (Wuy)	8 (mm)	o (mm) o	c (mm)	o'(mm)	s (min)	h (mm)	indin)	Kinny	(MILLIO)	s(m _m)	M (mm)	Gewinde- einsatz
U-Büge	elform 303.	.2 / 303.3	2 / 303.9												
08B-1	L 85 SL	12,7	17,8	19,8	21,5	9,5	4,1	6,3	14,6	12,6	3,0	24,2	1,5	4	5,2
08B-2	D 85 SL	12,7	31,8	33,9	35,5	9,5	4,1	6,3	28,5	13,9	3,0	24,2	1,5	4	5,2
10B-1	M 106 SL	15,875	20,0	22,0	24,0	12,0	7,1	7,5	16,6	15,8	3,0	31,0	1,5	5	5,2
16 A-1 ANSI 80	M 1610 A	25,4	33,7	36,5	38,4	16,2	8,7	10,5	27,3	25,3	5,0	49,2	2,1	6	7,3

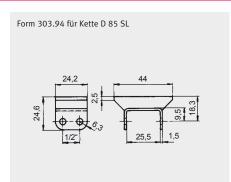

 $^{^{\}mbox{\tiny 1)}}$ Weitere Durchmesser: für L 85 SL: 5,8 mm / für M 106 L: 4,7 mm

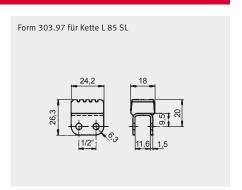



Kettenbreite:

U-Bügel werden zwischen Innen- und Außenlaschen montiert. Die Kettenbreite vergrößert sich gegenüber der Normkette.


a = Bolzenlänge beim Steckglied





SONDERFORMEN

MEGAlife MEGALIFE

MEGAlife wartungsfreie Rollen- und Förderketten können überall dort eingesetzt werden, wo eine Nachschmierung nicht oder nur bedingt möglich ist. Dazu gehören trockene Umgebungsbedingungen und Anwendungen mit erschwerten Zugang für Wartungsarbeiten. MEGAlife Ketten sind durch vernickelte Einzelteile korrosionsgeschützt und in einem Temperaturbereich von –40° bis +160°C einsetzbar. Je nach Anwendung werden die wartungsfreien Ketten trocken oder mit zusätzlicher Spezialschmierung geliefert.

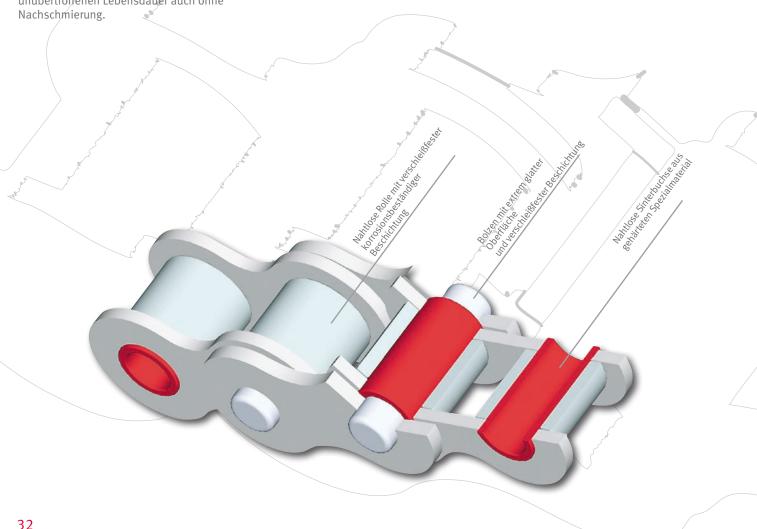
TWIS MEGAlife I und MEGAlife II

Die wartungsfreien iwis Ketten

PROBLEM/AUSGANGSLAGE

- Nachschmierung nicht oder nur bedingt möglich
- reine und trockene Umgebungsbedingungen
- erschwerter Zugang für Wartungsarbeiten
- Verschmutzung der Anlage und des Fördergutes durch Kettenschmierstoff.

UNSERE LÖSUNG


Wartungsfreie iwis Hochleistungsketten mit spezieller Gelenkausführung. Innovative technische Details führen zu einer bisher unübertroffenen Lebensdauer auch ohne Nachschmierung.

KUNDENNUTZEN

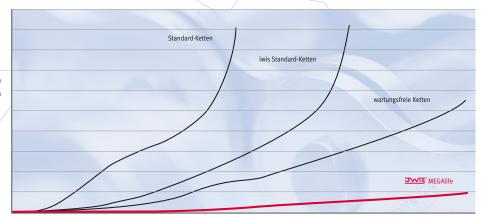
- optimiertes Verschleißverhalten auch bei hohen Geschwindigkeiten und dort, wo sich selbst herkömmliche wartungsfreie Ketten längen
- Dauer- und Bruchfestigkeit entsprechen dem hohen iwis Standard
- korrosionsgeschützt
- Temperaturbereich von 40°C bis + 160°C
- sehr leicht zerlegbar
- reduzierte Wartungskosten
- weniger Stillstandszeiten der Anlagen
- umweltfreundlich durch Entfall der Schmierung

TECHNISCHE MERKMALE

- je nach Anwendung trocken oder mit zusätzlicher Spezialschmierung lieferbar
- korrosionsgeschützt
- Temperaturbereich von -40 °C bis +160 °C
- lieferbar als Rollenketten nach DIN 8187 / ISO 606 und DIN 8188 für Antriebszwecke oder als Förderkette mit Anbauteilen

HIGHLIGHTS MEGALIFE I

- hervorragendes Verschleißverhalten auch bei hohen Geschwindigkeiten dort, wo sich selbst herkömmliche wartungsfreie Ketten längen
- unter bestimmten Bedingungen dauerhaft wartungsfrei
- extrem hohe Dauer- und Bruchfestigkeit
- hochwertiger Korrosionsschutz
- sehr leicht zerlegbar
- reduzierte Wartungskosten
- weniger Stillstandzeiten der Anlagen
- umweltfreundlich durch Entfall der Schmierung


HIGHLIGHTS MEGALIFE II

- deutlich längere Lebensdauer durch:
- verbesserte Verschleißfestigkeit aufgrund chemothermischer Behandlung der Bolzen hauptsächlich bei schnelllaufenden Kettentrieben v > 3 m/s

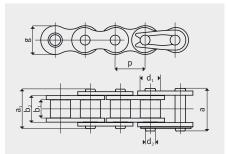
ANWENDUNGSBRANCHEN

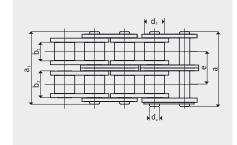
- Verpackungs- und Lebensmittelindustrie
- Druckindustrie
- Förderanlagen
- Textilmaschinen und Bekleidungsindustrie
- Papierverarbeitung und Buchbindereien
- Elektronikindustrie und Leiterplattenfertigung
- Holz-, Glas- und Keramikverarbeitung
- Medizintechnik
- ... und überall dort, wo eine Nachschmierung nur bedingt oder nicht möglich ist.

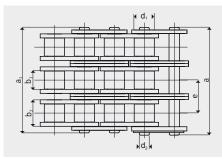
Versuchsläufe ohne Nachschmierung bei hohen Geschwindigkeiten. Grafische Darstellung entspricht iwis Testergebnis

wartungsfreie Ketten Lebensdauer **AEGAlife II**

Kettentyp

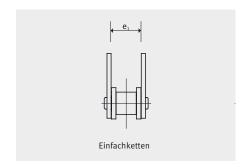


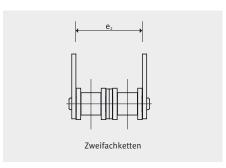

MEGAlife I Rollenketten

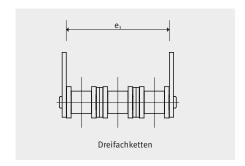

nach DIN 8187-1, ISO 606: 2004 und nach DIN 8188

	<i>b</i>	&	/ ,	/_ /	Bruchk		/ ,	/ ,	/	nnenglie	/	/ ~	englied	/ ,	/	/ /
,	I'Wis Beseich.		(E) Q	iwis Mys Mys	<i>Joy</i> /	Selenkriji.	Gewicht D.	, *** (mm) , b	s (mm) s	8 (mm).	i (mm)	a (mm)	Rolle 90/6	80/201 90/201 90/201	J. Max.	, <u>**</u>
S/MO	iwis Be	Tollung	reilun.	SWINS SWINS	Nom (No.)		Sewig 9 (Red			S (mm) &	g (m)	i dimin	400 P	108 P. C.	(WW) o	Bessell.M.
Einfach						/										
06 B-1	G 67 ML*	3/8"	9,525	11.000	9.000	0,28	0,41	5,72	8,53	8,20	12,90	16,70	6,35	3,31	-	50033917
08 B-1	L 85 ML	1/2"	12,70	22.000	18.000	0,50	0,70	7,75	11,30	12,20	16,90	18,50	8,51	4,45	-	50026256
08 A-1 ANSI 40	L 85 AML	1/2"	12,70	17.500	14.100	0,44	0,60	7,94	11,15	12,00	16,60	17,50	7,95	3,96	-	50036841
10 B-1	M 106 ML	5/8"	15,875	25.000	22.400	0,67	0,95	9,65	13,28	14,40	19,50	20,90	10,16	5,08	-	50026257
12 B-1	M 127 ML	3/4"	19,05	30.000	29.000	0,89	1,25	11,75	15,62	16,20	22,70	23,60	12,07	5,72	-	50026258
12 A-1 ANSI 60	M 128 AML	3/4"	19,05	41.000	31.800	1,06	1,47	12,70	17,75	18,00	25,30	26,70	11,91	5,96	-	50038464
16 B-1	M 1611 ML	1"	25,4	75.000	60.000	2,10	2,70	17,02	25,45	21,10	36,10	36,90	15,88	8,28	-	50028923
Zweifa	ch															
06 B-2	D 67 ML	3/8"	9,525	19.000	16.900	0,56	0,78	5,72	8,53	8,20	23,40	24,60	6,35	3,31	10,24	50033832
08 B-2	D 85 ML	1/2"	12,70	40.000	32.000	1,00	1,35	7,75	11,30	12,20	30,80	32,40	8,51	4,45	13,92	50027439
10 B-2	D 106 ML	5/8"	15,875	50.000	44.500	1,34	1,85	9,65	13,28	14,40	36,00	37,50	10,16	5,08	16,59	50027509
12 B-2	D 127 ML	3/4"	19,05	60.000	57.800	1,78	2,50	11,75	15,62	16,40	42,10	43,00	12,07	5,72	19,46	50027457
16 B-2	D 1611 ML	1"	25,40	150.000	106.000	4,21	5,40	17,02	29,45	21,10	68,00	68,80	15,85	8,28	31,88	50033161
20 B-2	D 2012 ML	1 1/4"	31,75	210.000	170.000	5,84	7,36	19,56	29,01	25,40	79,70	82,90	19,05	10,19	36,45	50033771
Dreifac	.h															
08 B-3	TR 85 ML	1/2"	12,70	58.000	47.500	1,50	2,00	7,75	11,30	12,20	44,70	46,30	8,51	4,45	13,92	50027510
10 B-3	TR 106 ML	5/8"	15,875	75.000	66.700	2,02	2,80	9,65	13,28	14,40	52,50	54,00	10,16	5,08	16,59	50027511
12 B-3	TR 127 ML	3/4"	19,05	89.000	86.700	2,68	3,80	11,75	15,62	16,40	61,50	62,50	12,07	5,72	19,46	50027512
16 B-3	TR 1611 ML	1"	25,40	219.000	160.000	6,32	8,00	17,02	25,45	21,10	99,20	100,70	15,88	8,28	31,88	50033628
Einfach	ı/Zweifach - M	EGAlife_E	Rollenke	tten mit ø	eraden La	schen_										
10 B-1	M 106 ML-GL	5/8"	15,875	24.000	22.400	0,67	0,95	9,65	13,28	13,90	19,50	20,90	10,16	5,08		50035304
10 B-2	D 106 ML-GL	5/8"	15,875	47.500	44.500	1,34	1,85	9,65	13,28	13,90	36,00	37,50	10,16	5,08	16,59	50034083
12 B-1	M 127 ML-GL	3/4"	19,05	30.000	29.000	0,89	1,30	11,75	15,62	16,10	22,70	23,60	12,07	5,72	-	50037351
12 B-2	D 127 ML-GL	3/4"	19,05	63.000	57.800	1,78	2,50	11,75	15,62	16,10	42,10	43,00	12,07	5,72	19,46	50034084

^{*} auch in 10 m lieferbar (Art. 50035181) ¹⁾ bei gekröpften Gliedern abweichende Maße Beim Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20 % vermindern kann.

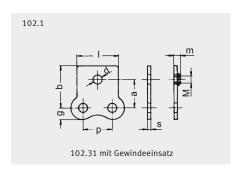


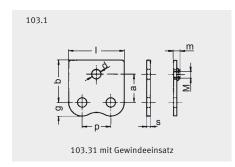

TWIS MEGAlife I Förderketten mit Mitnehmerlaschen

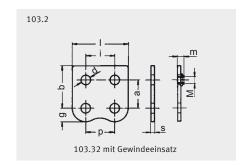

aufbauend auf iwis Rollenketten nach DIN 8187

"OS/Ma	I'Wis Sectionary	, s. , , , , , , , , , , , , , , , , , ,		ung 2)	6 (mm)	O(mm)	Einfact.	westen g (mm)	Oreifact.	(mm) metten e se (mm)	i (mm)	(س)	s (mm)	M (mm)	Gewinde- einsatz
Form 10	02.1														
08 B-1	L 85 ML 1)	1/2	12,7	13,0	19,0	4,2	11,6	25,5	39,4	5,4	-	18,0	1,5	4	5,2
10 B-1	M 106 ML ¹⁾	5/8	15,875	16,3	24,3	5,2	13,6	30,1	46,6	6,8	-	24,0	1,6	5	5,3
12 B-1	M 127 ML ¹⁾	3/4	19,05	19,1	29,1	6,2	15,9	35,3	54,7	7,4	_	28,0	1,8	5	5,5
16 B-1	M 1611 ML	1	25,4	24,6	36,6	8,2	25,9	57,8	89,7	10,4	-	36,2	3,0	6	8,2
Form 10	03.1 und 103.2														
08 B-1	L 85 ML 1)	1/2	12,7	17,0	23,0	4,2	11,6	25,5	39,4	5,4	12,7	23,6	1,5	4	5,2
10 B-1	M 106 ML ¹⁾	5/8	15,875	16,3	25,8	5,2	13,6	30,1	46,6	7,5	15,8	31,0	1,6	5	5,3
12 B-1	M 127 ML ¹⁾	3/4	19,05	18,3	29,0	6,2	15,9	35,3	54,7	9,0	19,0	37,2	1,8	5	5,5
16 B-1	M 1611 ML	1	25,4	28,45	41,55	8,2	25,9	57,8	89,7	10,35	25,4	47,2	3,0	6	8,2

 $^{^{1)}}$ auch für die entsprechenden Zweifach- und Dreifachketten $^{2)}$ Nennteilung

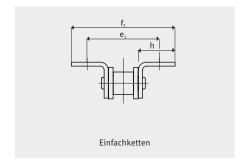


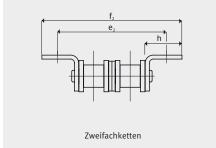


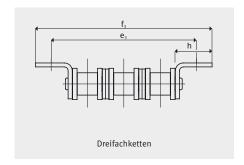


MITNEHMERLASCHEN

Die abgebildeten Typen sind auch als Steck- und Außenglieder für Endmontage und Reparatur erhältlich. Bestückung mit Mitnehmerlaschen einund beidseitig an jedem Außenglied oder in größeren Abständen möglich. Weitere Förderketten und Gewindeeinsätze auf Anfrage.

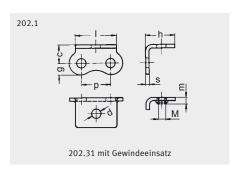


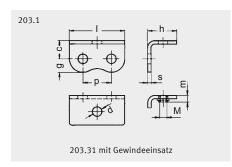

TWIS MEGAlife I Förderketten mit Winkellaschen

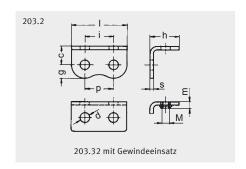

aufbauend auf iwis Rollenketten nach DIN 8187

, OS/MO	Tummer iws Seecinum	* ("Ö) q	/ /	lung 3)			/ k	nfach- etten	/ k	eifach- etten	/ k	eifach- etten	a. ("Muy") 4	G. Tuly,	(mu),	Shim		Gewinde einsatz
Form 2	02.1																	
08 B-1	L 85 ML ¹⁾	1/2	12,7	8,0	4,2	27,6	39,6	41,5	53,5	55,4	67,4	5,4	14,0	-	18,1	1,5	4	5,2
10 B-1	M 106 ML 1)	5/8	15,875	9,0	5,2	33,6	49,6	50,1	66,1	66,6	82,6	6,8	18,0	-	24,0	1,6	5	5,3
12 B-1	M 127 ML 1)	3/4	19,05	10,0	6,2	41,1	61,1	60,5	80,5	79,9	99,9	7,4	22,6	-	28,0	1,8	5	5,5
16 B-1	M 1611 ML	1	25,4	16,0	8,2	53,9	77,9	85,8	109,8	117,7	141,7	10,4	26,0	-	36,2	3,0	6	8,2
Form 2	03.1 und 203.2																	
08 B-1	L 85 ML 1) 2)	1/2	12,7	9,5	4,2	32,6	44,6	46,5	58,5	60,4	72,4	5,4	16,5	12,7	23,6	1,5	4	5,2
10 B-1	M 106 ML ^{1) 2)}	5/8	15,875	11,0	5,2	30,6	49,6	47,1	66,1	63,6	82,6	7,5	18,0	15,8	31,0	1,6	5	5,3
12 B-1	M 127 ML ^{1) 2)}	3/4	19,05	12,0	6,2	35,5	56,9	54,9	76,3	74,3	95,7	9,0	20,5	19,0	37,2	1,8	5	5,5
16 B-1	M 1611 ML	1	25,4	18,0	8,2	57,7	83,9	89,6	115,8	121,5	147,8	10,4	29,0	25,4	47,2	3,0	6	8,2

Förderkette D 1611 ML und TR 1611 ML auf Anfrage ¹⁾ auch für die entsprechenden Zweifach- und Dreifachketten ²⁾ Montage der Winkellaschen auch über die Kette nach innen möglich, <u>außer</u> bei beidseitiger Montage an D 85, D 106 und D 127 ³⁾ Nennteilung



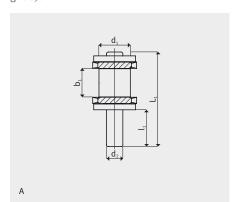


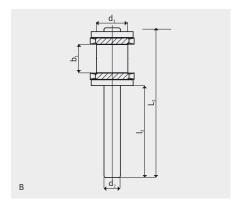

WINKELLASCHEN

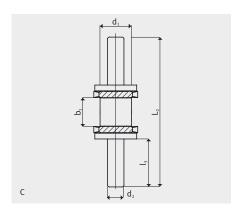
Die abgebildeten Typen sind auch als Steck- und Außenglieder für Endmontage und Reparatur erhältlich. Montage der Winkellaschen mit Gewindeeinsatz über die Kette nach innen nicht möglich. Bestückung mit Winkellaschen ein- und

beidseitig an jedem Außenglied oder in größeren Abständen möglich. Weitere Förderketten und Gewindeeinsätze auf Anfrage.

<u> স্থার</u> MEGAlife I Förderketten mit verlängerten Bolzen


aufbauend auf iwis Rollenketten nach DIN 8187


OM/SOM.	iwis seelenu.	, s, , , , , , , , , , , , , , , , , ,	Teilung	Breite inne,	Rollendurchme.	Seer Solvendurchm	, (mm)	Ausführun	ng A	Ausführun	g B und C
Bolzenfor	m A, B, C										
08 B-1	L 85 ML ¹⁾	1/2	12,7	7,75	8,51	4,45	25,5	10,0	40,5	25,0	13,0
10 B-1	M 106 ML ¹⁾	5/8	15,875	9,65	10,16	5,08	30,0	12,0	48,0	30,0	15,5
12 B-1	M 127 ML ¹⁾	3/4	19,05	11,75	12,07	5,72	36,0	15,0	51,0	30,0	15,5
16 B-1	M 1611 ML	1	25,4	17,02	15,88	8,28	53,8	20,0	68,5	35,0	18,0


¹⁾ für Mehrfachketten auf Anfrage 2) Nennteilung Andere Bolzenlängen und Formen auf Anfrage

VERLÄNGERTE BOLZEN

Die abgebildeten Typen sind auch als Steck- und Außenglieder für Endmontage und Reparatur erhältlich (C nur als Außenglied).

WEITERE MEGAlife-AUSFÜHRUNGEN

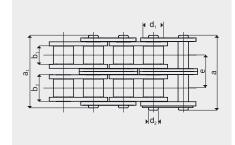
MEGAlife Ketten sind auch als iwis Sonderketten verfügbar:

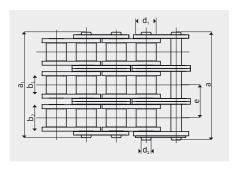
Zum Beispiel

- als Transferkette mit aufgeclipsten Tragbügeln oder
- als Stauförderkette.

Sprechen Sie mit uns, wir beraten Sie gerne!

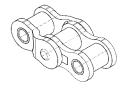
שיים MEGAlife II – Rollenketten


nach DIN 8187-1, ISO 606: 2004 und nach DIN 8188


JWISON,	iwis Beerg.	Telling	SD(m)	SP (Mm) Wis MV mis	Bruchk		Gewichter	\$ (mm),	/	Innenglie in	/	Auße Auße	englied "You of the second of	80/2en	mox.	Varianten
Einfach	1															
06 B-1	G 67 ML-2*	3/8"	9,525	11.000	9.000	0,28	0,41	5,72	8,53	8,20	12,90	14,10	6,35	3,31	-	50030791
08 B-1	L 85 ML-2	1/2"	12,70	22.000	18.000	0,50	0,70	7,75	11,30	12,20	16,90	18,50	8,51	4,45	-	50030461
10 B-1	M 106 ML-2	5/8"	15,875	27.500	22.400	0,67	0,95	9,65	13,28	14,40	19,50	20,90	10,16	5,08	-	50030462
12 B-1	M 127 ML-2	3/4"	19,05	34.000	29.000	0,89	1,25	11,75	15,62	16,40	22,70	23,60	12,07	5,72	-	50030463
16 B-1	M 1611 ML-2	1"	25,40	75.000	60.000	2,10	2,70	17,02	25,45	21,10	36,10	36,90	15,88	8,28	-	50030464
20 B-1	M 2012 ML-2	1 1/4"	31,75	120.000	95.000	5,84	7,36	19,56	29,10	26,60	77,00	79,70	19,05	10,17	36,45	50033036
Zweifa	ch															
06 B-2	D 67 ML-2	3/8"	9,525	19.000	16.900	0,56	0,78	5,72	8,53	8,20	23,40	24,60	6,35	3,31	10,24	50031074
08 B-2	D 85 ML-2	1/2"	12,70	40.000	32.000	1,00	1,35	7,75	11,30	12,20	30,80	32,40	8,51	4,45	13,92	50030465
10 B-2	D 106 ML-2	5/8"	15,875	49.000	44.500	1,34	1,85	9,65	13,28	14,40	36,00	37,50	10,16	5,08	16,59	50030466
12 B-2	D 127 ML-2	3/4"	19,05	61.000	57.800	1,78	2,50	11,75	15,62	16,40	42,10	43,00	12,07	5,72	19,46	50030467
Dreifac	h-Ketten in Ml	. II Ausfü	hrung: a	uf Anfrag	ge .											
F: 6-1						100 (0)										
Einfach 08 A-1	ı-Ketten nach [<u> </u>		· ·											
ANSI 40 12 A-1	L 85 AML-2	1/2"	12,70	17.500	14.100	0,44	0,60	7,94	11,15	12,00	16,60	17,50	7,95	3,96	-	50033770
ANSI 60	M 128 AML-2	3/4"	19,05	41.000	31.800	1,06	1,47	12,70	17,75	18,00	25,30	26,70	11,91	5,96	-	50031073
16 A-1 ANSI 80	M 1610 AML-2	1"	25,40	68.000	56.700	1,79	2,57	15,88	22,40	22,80	32,00	33,90	15,88	7,94	-	50032667

Förderketten in ML II Ausführung auf Anfrage

¹⁾ Bei gekröpften Gliedern bestehen abweichende Maße. Bei Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20% vermindern kann. * gerade Laschenform

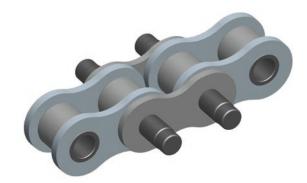

EINZELTEILE UND VERBINDUNGSGLIEDER

Nr. 2 Innenglied Normbezeichnung B

Nr. 3 Steckglied mit Federverschluss Normbezeichnung E

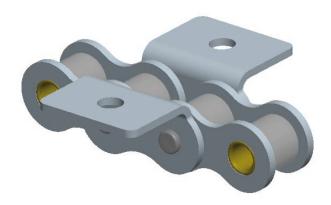
Nr. 7 Gekröpftes Doppelglied Normbezeichnung C

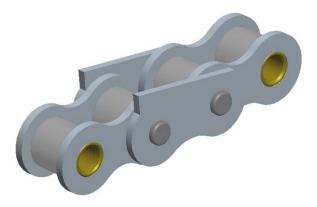
Nr. 8 Außenglied Normbezeichnung A


TWIS MEGAlife Förderketten

Beispiele einiger Sonderausführungen

MEGAlife Förderkette mit Mitnehmerlaschen


MEGAlife Förderketten mit verlängerten Bolzen



MEGAlife Förderkette mit Winkellaschen

MEGAlife Förderkette mit Sonderlasche

State CR Ketten

iwis korrosionsbeständige Ketten bestehen aus gehärteten, hochlegierten Stählen mit guter Korrosionsbeständigkeit und wesentlich höheren Dauer- und Bruchfestigkeiten als bei rostfreien Ketten. CR Ketten können überall dort eingesetzt werden, wo Ketten trotz erschwerten Bedingungen durch Korrosion gelenkig bleiben müssen und aus hygienischen und optischen Gründen nicht rosten dürfen. Eine Schmierung der CR Ketten wird empfohlen.

ろV/で CR-Ketten

Korrosionsbeständige Rollen- und Förderketten

PROBLEM/AUSGANGSLAGE

Ketten in korrosiven Medien müssen hohe Dauer- und Verschleißfestigkeiten aufweisen. Ketten aus normalen Stählen korrodieren schnell, während rostfreie Ketten aus V2-A-Stahl nur eingeschränkte Dauer- und Verschleißfestigkeitseigenschaften aufweisen. Vernickelte oder verzinkte Ketten bieten nur einen begrenzten Korrosionsschutz, da die Beschichtung durch Abrieb zerstört wird.

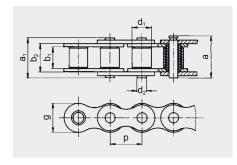
UNSERE LÖSUNG

iwis Hochleistungsketten aus gehärteten hochlegierten Stählen mit guter Korrosionsbeständigkeit und wesentlich höheren Festigkeiten als bei rostfreien Ketten.

HIGHLIGHTS

- hohe Verschleißfestigkeit bei regelmäßiger Nachschmierung
- gute und dauerhafte Korrosionsbeständigkeit – im Vergleich zu oberflächenbeschichteten Ketten
- wesentlich höhere Dauerfestigkeitsund Bruchkraftwerte als Edelstahlketten
 → kleinere Dimensionierung möglich

TECHNISCHE MERKMALE


	iwis CR	iwis Standard	rostfreie Kette
Einzelteile	gehärtet	gehärtet	nicht gehärtet
Kette vorgereckt	ja	ja	nicht üblich
Dauerfestigkeit	80%	100%	50%
Verschleißfestigkeit	95%	100%	30%

KORROSIONSBESTÄNDIGKEIT

Alle CR-Ketten werden mit einer hochwirksamen Erstschmierung geliefert.

Korrosionsbeständigkeit ist nur gegeben bei hinreichender Nachschmierung.

, WOS/MO	imis Bezeirt	Handelsbeer	of (mm)		e außen		messer (%)	Phopson State	Coleman	Gewicht G
08 B-1	L 85 CR	1/2 x 5/16"	16,9	18,5	8,51	4,45	12,2	15.000	0,50	0,70
10 B-1	M 106 CR	5/8 x 3/8"	19,5	20,9	10,16	5,08	14,4	18.000	0,67	0,95
12 B-1	M 127 CR	3/4 x 7/16"	22,7	23,6	12,07	5,72	16,4	22.000	0,89	1,25

ANWENDUNGSBRANCHEN

- in der Nahrungs- und Genussmittelverarbeitung
- in der Getränkeherstellung
- in Verpackungsmaschinen
- in der Käserei- und Molkereitechnik
- in Bereichen mit feuchten oder aggressiven Bedingungen
- bei Reinigungsanlagen
- im (chemischen) Apparatebau
- ... und überall dort, wo Ketten trotz erschwerten Bedingungen durch Korrosion gelenkig bleiben müssen und aus hygienischen oder optischen Gründen nicht rosten dürfen.

ROST- UND SÄUREBESTÄNDIGKEIT

Abhängig von:

- Dauer
- Konzentration
- Temperatur
- Mischungsvarianten der einzelnen Medien

Zur Prüfung der Betriebstauglichkeit empfehlen wir Feldversuche.

KETTENRÄDER

Je nach Umfeld können Kettenräder aus

- rostfreiem Material
- geeigneten Kunststoffen
- · oder aus Stahl verwendet werden.

sales-muenchen@iwis.com www.iwis.com

Korrosionseinflussgrößen

Technische Kurzdarstellung: Welches sind die Hauptfaktoren der Korrosion?

DIE HAUPTPRARMETER DER KORROSION

Man unterscheidet vier Hauptfaktoren, die die Korrosion beeinflussen:

- das Medium, in der sich die Kette bewegt
- · verwendeter Kettenwerkstoff
- Konstruktion der Anlage
- die Dauer und Art der Verwendung (kontinuierlich, zyklisch, kampagnenmäßig)

KORROSIONSFAKTOREN

Alle CR-Ketten werden mit einer hochwirksamen Erstschmierung geliefert. Korrosionsbeständigkeit ist nur gegeben bei hinreichender Nachschmierung.

KONSTRUKTION

- Oberflächenzustand
- Nähe anderer Werkstoffe
- Zusammenbau (Schweißung und Nietungen)
- Mechanische Beanspruchung
- Gestalt
- Schutzmaßnahmen
- Kontakt mit dem Medium (partielle oder totale Tauchung)

WERKSTOFF

- Stahlerzeugung
- Legierungszusätze
- Metallurgischer Zustand (Wärmebehandlung und mechanische Bearbeitung)
- Unreinheiten
- Zusammensetzung

MEDIUM

- Bewegung des Mediums
- Chemische Beschaffenheit
- Viskosität
- Unreinheiten
- pH-Wert (Säuregrad)
- Temperatur
- Druck
- Konzentration
- Feststoffablagerungen

ZEITEINFLUSS

- Wartungsfrequenzen
- Nachschmierungsintervall
- Nachschmiermedium
- Alterungsverhalten der Struktur
- Spannungsentwicklung
- Veränderung der Passivschicht?
- Temperaturwechsel

Alle Korrosionsfaktoren sind als gleichwertig zur Korrosionsbeständigkeit zu betrachten. Bitte wenden Sie sich für eine kompetente Beratung an unser Technisches Service Team.

Die neue Stauförderkettengeneration L88SF und M120SF von iwis bietet eine optimierte Lastverteilung und sorgt durch versetzt angeordnete Förderrollen für eine bessere Auflage und ruhigeren Lauf des Fördergutes. Zusätzlich hierzu reduzieren versetzt angeordnete Staurollen die Belastung auf Kunststoff-Führungen um 50 %. Dadurch können Kunststoff-Führungen bis zu einer doppelten Gewichtsbelastung eingesetzt werden.

iwis Stauförderketten gewährleisten das problemlose Positionieren des Transportgutes durch einfache Haltepunkte und vermeiden ein ruckartiges Anfahren und Stoppen der Kette. Die normale Geschwindigkeit der Ketten beträgt 0,1 bis 0,5 m/s. Mittels einer einfachen Beschleunigungsschiene ist eine doppelte Transportgeschwindigkeit bei gleich bleibender Kettengeschwindigkeit an Stellen, bei denen nicht gestaut wird, möglich.

Die Ketten sind durch eine spezielle Wachsschmierung in den Gelenkstellen wartungsarm und sauber. Dieses Schmiermittel wird vor der Kettenmontage gezielt auf die Einzelteile aufgetragen, wodurch die Staurollen, auf denen das Fördergut transportiert wird, fettfrei bleiben. Für Sonderanwendungen ist eine Spezialerstschmierung möglich. Die Förderrollen sind in gehärtetem Stahl oder Kunststoff (auch antistatisch) erhältlich.

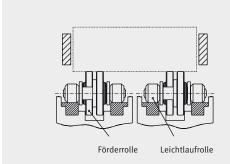
ᠫ⋙is Stauförderketten

PROBLEM/AUSGANGSLAGE

- einfacher und zuverlässiger Transport unterschiedlichster Werkstücke und Werkstückträger
- kontinuierliches Fördern, Stauen, Vereinzeln und Beschleunigen

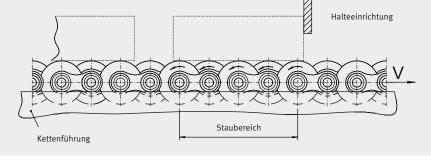
UNSERE LÖSUNG

Hochleistungsstauförderketten entsprechend dem hohen iwis Standard in unterschiedlichsten Ausführungen.

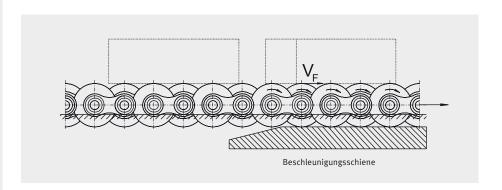

• L 88 SF und M 120 SF, die exklusive neue iwis Stauförderkettengeneration von iwis.

++ EXKLUSIV ++

• Alle 3/4" iwis Stauförderketten sind ab sofort mit **Leichtlaufrollen** ausgestattet.


HIGHLIGHTS

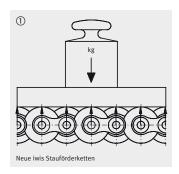
- schonender Transport und optimale Auflage des Fördergutes
- auch im Staubetrieb nur Rollreibung (siehe Bild unten)
- stark verminderte Antriebsleistung aufgrund der neu entwickelten Leichtlaufrolle
- → siehe Reibkraftdiagramm auf Seite 50



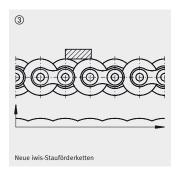
 problemloses Positionieren des Transportgutes durch einfache Haltepunkte

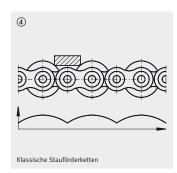
- ruckweises Anfahren und Stoppen der Kette entfällt
- mittels einfacher Beschleunigungsschiene ist eine doppelte Transportgeschwindigkeit möglich (siehe Bild unten)

- Förderrollen wahlweise aus gehärtetem Stahl oder Kunststoff (auch antistatisch)
- Kette äußerlich sauber, da nur die Gelenkstellen gezielt geschmiert sind
- voll kompatibel mit vorhandenen Führungen, Umlenkeinheiten und Kettenrädern
- wartungsarm durch spezielle Wachsschmierung (Standard)
- spezielle Erstschmierung für Sonderanwendungen auf Anfrage

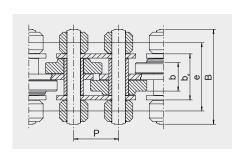





Zusätzliche Vorteile der neuen Stauförderketten


ZUSÄTZLICHE VORTEILE L 88 SF / M 120 SF

- optimale Lastverteilung, da jeder Bolzen trägt → Bild 1 und 2
- bessere Auflage und dadurch ruhigerer Lauf des Fördergutes durch versetzt angeordnete Förderrollen → Bild 3 und 4

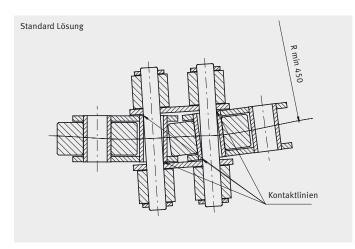


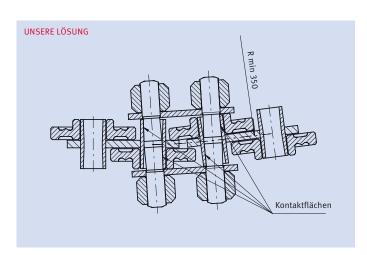
Abmessungen – neue Stauförderketten

iwis Beechming	Tellun.	B(mm)	6 (mm)		enbreite	Förder	rrolle	Sewicht Ketz
L 88 SFK	12,70	27	9,2	14,50	18,70	16,00 ¹)	6	0,85
L 88 SFS	12,70	27	9,2	14,50	18,70	16,00	8	1,40
M 120 SFK	19,05	40	11,70	19,55	29,0	24,0 1) / 26,0 / 27,0 1) / 28,0	10	1,8
M 120 SFK	19,05	45	11,70	19,55	31,5	24,0 / 26,0 / 27,0 / 28,0	10	1,8
M 120 SFS	19,05	40	11,70	19,55	29,0	24,0 ¹⁾ / 26,0 / 27,0 ¹⁾ / 28,0	15	2,8
M 120 SFS	19,05	45	11,70	19,55	31,5	24,0 / 26,0 / 27,0 / 28,0	15	2,8

 ${\sf SFK-mit}\ {\sf F\"{o}rderrollen}\ {\sf aus}\ {\sf Kunststoff}\ \ {\sf SFS-mit}\ {\sf F\"{o}rderrollen}\ {\sf aus}\ {\sf geh\"{a}rtetem}\ {\sf Stahl}$

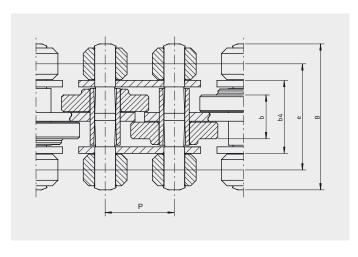
¹⁾ Lagerhaltig

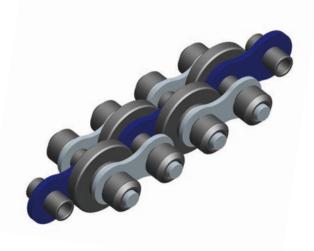

Seitenbogen-Stauförderketten


UNSERE LÖSUNG

Typ L 88 SF-SB und M 120 SF-SB neue Ausführung – **Die Lösung** für modulare Umlenkung bei Fördersystemen

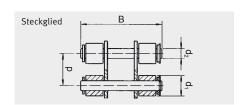
HIGHLIGHTS

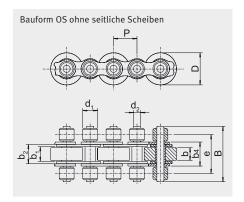

- Extrem kleiner Kurven-Mindestradius 300 mm L 88 SF-SB 350 mm M 120 SF-SB
- im Kurvenbereich flächige Anlage im Kettengelenk

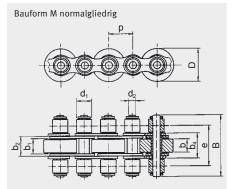


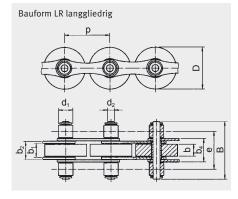
Second Second	Cellung Commi	8 mm	Kette	enbreite	s (mm)	Ft. (1111) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orderrolle	18 (8) (8) (8) (8) (8) (8) (8) (8) (8) (8
L 88 SFS-SB	12,70	27	9,2	15,0	18,70	16,00	8	1,40
M 120 SFK-SB	19,05	40	11,70	20,10	29,0	24,0 / 26,0 / 27,0 / 28,0	10	1,8
M 120 SFS-SB	19,05	40	11,70	20,10	29,0	24,0 / 26,0 / 27,0 / 28,0	15	2,8

Steckgliedmaße weichen ab




Abmessungen – klassische Stauförderketten (auch ohne seitliche Scheiben lieferbar)


¹ W _S Se ^{Se(s)} U _{US}	Telling S.	(mm) Kettenh	e (mm)	\$ (m _m)	\$ (mm)	(mm) *	Breife	(mun)	Durchings	örderrolle Š	Trage and the property of the	Laufiell		messer (Mul) (Mol) (
Bauform OS														
M 127 SFK	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	1,550
M 127 SFS	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	_	12,07	5,72	2,592
Bauform M														
M 127 SFK	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	1,742
M 127 SFK	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0 ¹)	28,0	10	12,07	5,72	1,646
M 127 SFK	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	1,920
M 127 SFS	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	2,688
M 127 SFS	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	2,688
M 127 SFS	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0 1)	26,0	28,0	15	12,07	5,72	2,880
M 1611 SFK ²⁾	25,4	65	44,9	17,02	25,45	32,0	16,5	38,5	_	_	25	15,88	8,28	4,104
M 1611 SFS ²⁾	25,4	65	44,9	17,02	25,45	32,0	16,5	38,5	_	_	30	15,88	8,28	6,552
Bauform LR														
LR 165 SFK ²⁾	25,4	30,7	20,0	7,75	11,30	14,65	7,5	24,0	-	-	6	8,52	4,45	0,792
LR 247 SFK	38,1	48	31,5	11,75	15,62	19,55	11,0	24,0	35	-	10	12,07	5,72	1,200
LR 247 SFS	38,1	48	31,5	11,75	15,62	19,55	11,0	24,0	35	_	15	12,07	5,72	2,016
LR 3211 SFK ²⁾	50,8	67,9	44,9	17,02	25,45	32,0	16,5	50,0	38,5	-	25	15,88	8,28	2,764
LR 3211 SFS ²⁾	50,8	67,9	44,9	17,02	25,45	32,0	16,5	50,0	38,5	-	30	15,88	8,28	5,236


¹⁾ Lagerhaltig 2) Ketten ohne Leichtlaufrollen

SFK – mit Förderrollen aus Kunststoff SFS – mit Förderrollen aus gehärtetem Stahl

™ MEGAlife SFK & SFS –

die wartungsfreien iwis Stauförderketten

PROBLEM/AUSGANGSLAGE

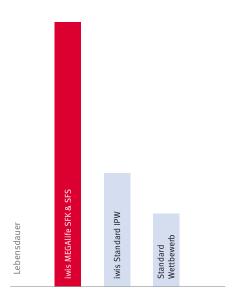
- Nachschmierung nicht oder nur bedingt möglich
- reine und trockene Umgebungsbedingungen
- erschwerter Zugang für Wartungsarbeiten
- Verschmutzung der Anlage und des Fördergutes durch Kettenschmierstoff.

UNSERE LÖSUNG

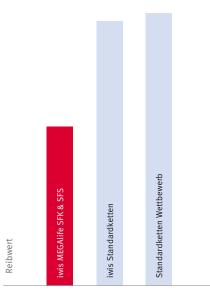
Wartungsfreie iwis Stauförderketten mit spezieller Gelenkausführung und aus Sintermetall hergestellten Tragrollen – eine technische Innovation –

die ersten echten wartungsfreien Stauförderketten mit Leichtlaufrollen.

HIGHLIGHTS


- hervorragendes Verschleißverhalten auch unter extremen Umgebungen
- sehr leicht zerlegbar
- reduzierte Wartungskosten
- weniger Stillstandzeiten der Anlagen
- umweltfreundlich, da Oberfläche schmiermittelfrei
- für Reinraumbedingungen geeignet

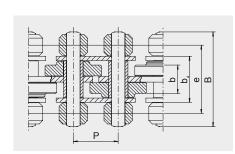
TECHNISCHE MERKMALE


- Kettenoberfläche und Staurollen trocken
- korrosionsgeschützt
- Staurollen wahlweise aus Kunststoff oder Stahl (V2A oder vernickelt)
- Temperaturbereich von –40 °C bis +160 °C (bei Staurollen aus Stahl)
- Stauförderketten lieferbar in neuer iwis oder klassischer Ausführung in den Größen 1/2" und 3/4"
- Tragrollen aus Sintermetall verringern den Reibwert. Dadurch reduziert sich die Antriebsleistung und die Belastung auf die Kette.

ANWENDUNGSBRANCHEN

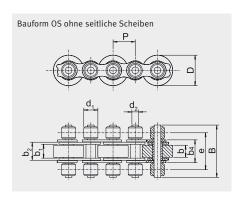
- Elektronikindustrie und Leiterplattenfertigung
- Verpackungs- und Lebensmittelindustrie
- Förderanlagen
- Holz-, Glas- und Keramikverarbeitung
- Medizintechnik
- ... und überall dort, wo eine Nachschmierung nur bedingt oder nicht möglich ist.

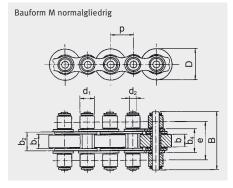
Lebensdauervergleich Stauförderketten ohne Nachschmierung

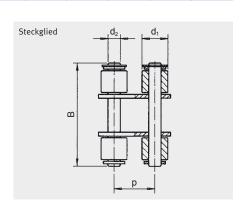

Reibwertvergleich Stauförderketten

೨₩፲ਫ਼[®] MEGAlife SFK & SFS

Abmessungen – neue Stauförderketten


inis Beechnus	88. Miles	B (mm)	(4)	/	nbreite	"Pesser	derrolle	Sewichter
L 88 SFK-ML	12,70	27	9,2	14,50	18,70	16,00	6	0,85
L 88 SFS-ML	12,70	27	9,2	14,50	18,70	16,00	8	1,40
M 120 SFK-ML	19,05	40	11,70	19,55	29,0	24,0 / 26,0 / 27,0 / 28,0	10	1,8
M 120 SFK-ML	19,05	45	11,70	19,55	31,5	24,0 / 26,0 / 27,0 / 28,0	10	1,8
M 120 SFS-ML	19,05	40	11,70	19,55	29,0	24,0 / 26,0 / 27,0 / 28,0	15	2,8
M 120 SFS-ML	19,05	45	11,70	19,55	31,5	24,0 / 26,0 / 27,0 / 28,0	15	2,8




SFK – mit Förderrollen aus Kunststoff SFS – mit Förderrollen aus gehärtetem Stahl

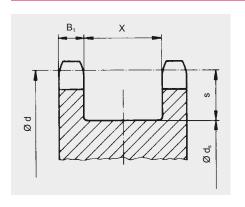
Abmessungen – klassische Stauförderketten

٠	, /	, ,	and	/ /	, ,	/ ,	/ /	/		Förde	rrolle		/	Durchi	messer
imis Bezeinnig	, Seilung ,	Kettenh.	e (mm)	, (mm)	of (mm) of	b (mm),	Breife h	(mm)	Durchmo	1885	/ LE	Dro Paliskeit Pro Polle (Rg)	Laufoll.	Bolzen	Gewicht (Astm)
Bauform OS															
M 127 SFK-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	-	12,07	5,72	2,3
M 127 SFS-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	-	15	12,07	5,72	3,1
Bauform M															
M 127 SFK-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	-	12,07	5,72	2,3
M 127 SFK-ML	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	-	12,07	5,72	2,3
M 127 SFK-ML	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	_	12,07	5,72	2,3
M 127 SFS-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	-	15	12,07	5,72	3,1
M 127 SFS-ML	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0	28,0	-	15	12,07	5,72	3,1
M 127 SFS-ML	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	-	15	12,07	5,72	3,1

Zubehör

REIBKRAFTVERGLEICH

Kette mit klassischen Laufrollen Kette mit Leichtlaufrollen

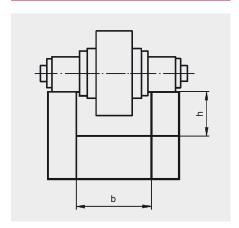

Aus der stark reduzierten Reibkraft ergibt sich eine wesentlich geringere Antriebsleistung der kompletten Anlage.

ANBAUTEILE

Führungslaschen und Füllstücke auf Anfrage.

Kettentyp

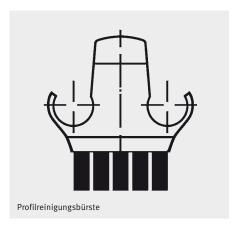
KETTENRÄDER FÜR STAUFÖRDERKETTEN


iwis Bezeichnung	Teilung p (mm)	B ₁ (mm)	X (mm)	s (mm)
L 88 SF	12,7	4	15,5	10
M 120 SF-B40	19,05	8,3	20,7	15,0
M 127 SF-B40/B43	19,05	8,3	20,7	15,0
M 120 SF-B45	19,05	10,8	20,7	15,0
M 127 SF-B48	19,05	10,8	20,7	15,0
M 1611 SF	25,4	11,6	33,3	20,5

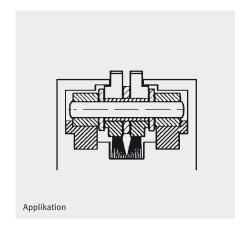
 $d_s = d - 2s$ $d = p : sin (180^\circ : z)$ Empfohlene Mindestzähnezahl z = 15

Zubehör

KETTENFÜHRUNG/BEISPIEL


iwis Kette	b (mm)	h (mm)
L 88 SF	15	10
L 88 SF SB	15,5	10
M 120 SF	20	15
M 120 SF SB	21	15
M 127 SF	20	15
M 1611 SF	33	20

WERKZEUG



Werkzeug zum Zerlegen von Stauförderketten M 120 SF und M 127 SF mit Teilung 3/4" (lagerhaltig)

PROFILREINIGUNGSBÜRSTE

Bürste zur Reinigung des Förderprofils. Vielseitig anwendbar, insbesondere bei stark beanspruchten Anlagen (zum Beispiel: Metallspäne, Schweißperlen, Staub usw.). Nur lieferbar für die neue Stauförderketten-generation der L 88 SF und M 120 SF.

ᠫ⋙is Stauförderketten

WARTUNGSHINWEISE FÜR STAUFÖRDERKETTEN

Wie bei jeder Rollenkette unterliegen auch die »Lagerstellen« der Stauförderkette einem natürlichen Verschleiß. Um diesen zu vermindern und damit die Lebensdauer der Kette zu erhöhen, sind richtige Spannung, gute Führung und wirksame Nachschmierung notwendig.

Bis zu 2% Verschleißlängung arbeitet eine Stauförderkette einwandfrei, unter der Voraussetzung, dass sie laufend nachgespannt wird. Als Richtwert für die Vorspannung können ca. 5% der tatsächlich auftretenden Kettenzugkraft angesetzt werden.

Stauförderketten sind werkseitig mit einer hochwertigen Erstschmierung versehen. Der Schmierstoff verbraucht sich im Laufe der Zeit und eine wirksame und regelmäßige Nachschmierung ist erforderlich. Dabei muss darauf geachtet werden, dass die Schmie-rung an den richtigen Stellen (»Lagerstellen«) erfolgt und das Schmiermittel kriechfähig ist.

HINWEISE ZUR AUSLEGUNG VON STAUFÖRDERKETTEN

Wichtige Kriterien bei der Auswahl einer Stauförderkette sind:

- Belastung der Förderrollen durch das Gewicht des aufliegenden Fördergutes. Die Tragfähigkeit je Rolle ist in den Tabellen angegeben. Bei Unebenheit der Auflageflächen des Fördergutes wird abgeschätzt, wie viele Förderrollen tatsächlich tragen.
- Belastung der Kette durch im Betrieb auftretende Zugkräfte. Die wichtigsten Einflussgrößen sind das Gewicht des Fördergutes und die Reibfaktoren. Folgende Zugkräfte treten bei Stauförderketten auf:
 - aus Reibwiderstand zwischen Laufrolle und Kettenbolzen
 - aus Reibwiderstand zwischen Förderrolle und Kettenhülse im Staubetrieb
 - aus Rollwiderstand beim Abrollen der Laufrollen auf den Kettenführungen und beim Abrollen des Fördergutes über die Förderrollen.

Überschlägige Ermittlung der Kettenzugkraft F je Kettenstrang:

$$F = \frac{\mu \cdot 9,81 \cdot Q \cdot 1,4}{n} [N]$$

 μ = Reibwert = 0,08-0,3 je nach:

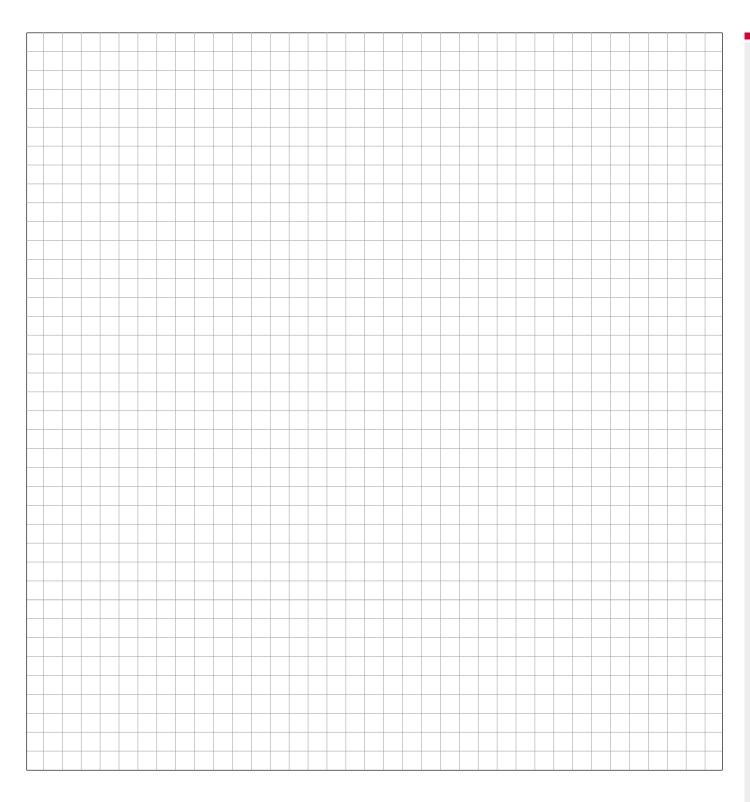
- Materialpaarung: Stahl/Stahl oder Kunststoff/Stahl
- Zustand der Reibflächen: trocken oder gefettet
- Verschmutzungsgrad der Reibflächen

Q = Gesamtfördergewicht [kg]

n = Anzahl der Kettenstränge

Die Formel gilt bei gleichmäßiger Verteilung der Gewichtsbelastung auf die Kettenstränge. Falls das Fördergut wegen Unebenheiten nicht vollständig aufliegt, wird abgeschätzt, wieviel Prozent der Auflagelänge tatsächlich wirksam ist. Entsprechend höher ist die Zugkraft je Kettenstrang.

EMPFOHLENE MAX. FÖRDERLÄNGE


Je nach Belastung 25–30 m. Auf parallele und exakte Führung ist zu achten.

EINSATZBEREICH STAUFÖRDERKETTEN

- in vielen Bereichen der Fördertechnik
- bei Verkettungen in Bearbeitungsund Montagestraßen
- in der Lagertechnik
- in unterschiedlichen Materialflusssystemen
- ... und überall dort, wo Werkstücke, Lagerteile, Paletten, Behälter, Kisten etc. auf einfache Art und Weise gefördert, gestaut, beschleunigt und separiert werden müssen.

Notizen

iwis bietet eine umfangreiche Palette von Spezialförderketten für unterschiedliche Industrieanwendungen und Anforderungen an. Während die iwis Plattenkette dort eingesetzt wird, wo es auf ruhiges und sicheres Fördern durch engste Kurven ankommt, werden die Transferketten für schonende Transporte eingesetzt. iwis Gripketten werden überall dort genutzt, wo platten- und bahnenförmige Materialien ein- und abgezogen, transportiert oder positioniert werden. Weitere Spezialförderketten des iwis Spezialförderketten-Programms: Dosen- und Tubenketten, Palettentransportketten, Flyerketten, Seitenbogenketten, rückensteife Ketten und Hohlbolzenketten.

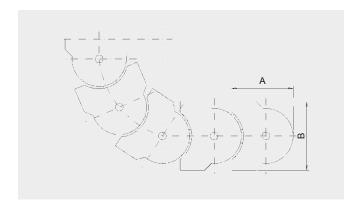
TWIS Plattenketten

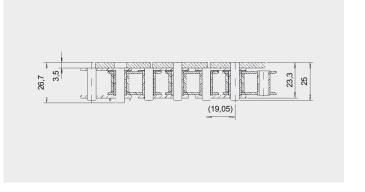
PROBLEM/AUSGANGSLAGE

Sicheres und ruhiges Transportieren und Speichern von Werkstücken und Werkstückträgern durch engste Kurvenbahnen.

UNSERE LÖSUNG

iwis Hochleistungs-Rollenkette 3/4 x 7/16" nach DIN 8187 mit aufgepresster Spezialplatte (siehe hierzu Zeichnung).


HIGHLIGHTS


- direkt auf Kettenbolzen aufgepresste Platten gewährleisten eine absolut ebene und stufenfreie Transportbahn
- gute Abdichtung des Funktionsbereichs der Kette
- glattflächige Auflage der Werkstücke durch ineinander greifende Form der Platten
- durch speziell gestaltete Form der Platten sind engste Kurvenradien möglich
- lange F\u00f6rderstrecken auf kleinstem Raum m\u00f6glich
- keine Verletzungsgefahr
- Verwendung von DIN Kettenrädern

ANWENDUNGSBRANCHEN

- Fördertechnik
- allgemeiner Maschinenbau
- Verpackungs- und Lebensmittelindustrie
- Medizintechnik und pharmazeutische Industrie
- Maschinenverkettungen und Automation
- Speicher- und Pufferanlagen
- ... und überall dort, wo es auf ruhiges und sicheres Fördern durch engste Kurven ankommt.

OW SOM	ime, iwis Bezeichm.	as (huy)	Sam	4 (mm)	B(m)	R ^{Min} . (m _{m.)}	, min.
12 B-1	M 127 Vers. 1	19,05	3,5	45	50	60	20
12 B-1	M 127 Vers. 2	19,05	3,5	59	80	150	30
16 B-1	M 1611	25,04	3,5	69,5	80	180	22

antriebssysteme
wir bewegen die welt

ゴいで Transferketten

Fördern, Transportieren, Takten von Behältern, Werkstückpaletten ...

PROBLEM/AUSGANGSLAGE

Offene Transportketten:

- anfällig gegen Fremdkörper und Kleinteile
- verursachen häufig Betriebsstörungen
- erhöhte Verletzungsgefahr
- Beschädigung des Fördergutes
- Anhaftung von Schmutz und Staub

UNSERE LÖSUNG

TF Ketten: iwis Hochleistungs-Rollenketten mit verschleißfesten und hochbeständigen Kunststofftragbügeln.

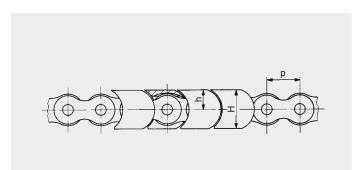
Exklusiv von iwis.

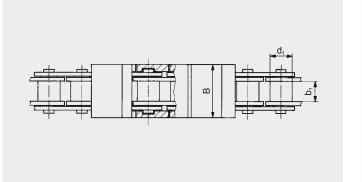
HIGHLIGHTS

- vollständige Abdichtung des Funktionsbereichs der Kette
- schonender Transport von empfindlichem Fördergut
- passgenaue Abdeckung verhindert Verletzungsgefahr und Betriebsstörungen
- Kette äußerlich vollkommen sauber; dadurch keine Staubbindung
- extrem haftfeste Erstschmierung der Grundkette – serienmäßig

TECHNISCHE MERKMALE

- Tragbügel: aus Polyacetalharz
 Temperatureinsatzbereich:


 40 °C bis +100 °C, kurzzeitig
 bis zu +140 °C
- hohe Verschleißfestigkeit bei glatter Oberfläche des Fördergutes
- gute chemische Beständigkeit
- Shore Härte: nach DIN 53505: 85
- antistatisch auf Anfrage


ANWENDUNGSBRANCHEN

- allgemeiner Maschinenbau
- Transport- und Lagertechnik
- Verpackungs- und Lebensmittelindustrie
- Elektronikindustrie und Leiterplattenfertigung
- Elektro- und Haushaltsgeräte
- Medizintechnik und pharmazeutische Industrie
- Holz-, Glas- und Keramikverarbeitung
- Chemie- und Verfahrenstechnik
- Druck- und Papierindustrie

... und überall dort, wo es auf schonenden Transport ankommt.

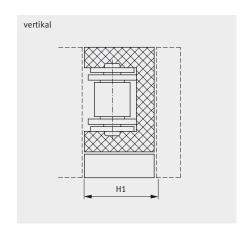
DW/SONUM Grund	iwis Bezei	Pellung D	Bruchkar.	zu, Gewichts.	Sewicht (Resident)	Breife B	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Tragbügel	Max, Belasting Dro Konsting bisey, 1556, 19	3/0, W),
08 B-1	L 85 TF	12,7	22.000	6250	0,82	19,8	15,2	8,0	12	
10 B-1	M 106 TF	15,875	27.500	8000	1,18	24,8	17,5	9,5	26	
 12 B-1	M 127 TF	19,05	34.000	9750	1,59	29,8	19,8	11,0	43	

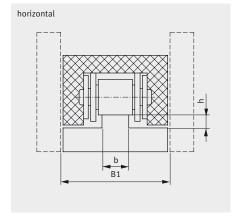
Transferketten

Fördern, Transportieren, Takten von Behältern, Werkstückpaletten ...

KETTENRÄDER

- für TF-Ketten können Standardkettenräder für Ketten nach DIN 8187 verwendet werden.
- bei Kettenrädern mit z > 18 Kette ist die TF-Kette auch im Umlenkbereich vollständig geschlossen
- Grundkette gegenüber dem Eindringen von Fremdkörpern geschützt


SONDERAUSFÜHRUNGEN


- vernickelt
- MEGAlife wartungsfrei
- CR korrosionsbeständig (nur Typen L 85 TF und M 106 TF)

VERBINDUNGSGLIED

Die Kettenenden werden mit einem Stiftbock 1 verbunden, auf den eine lose Stecklasche 2 aufgeschoben wird. Durch geeignetes Abknicken der Kette lassen sich die zwei Tragbügel 3 über die Kettenniete aufclipsen. Eine Verschlussfeder wird nicht benötigt. Um das Auffinden des Verbindungsgliedes zu erleichtern, sind die zwei betreffenden Tragbügel schwarz eingefärbt.

EINBAUVARIANTEN

Verbindungsglied: gleiche Abmessungen wie Kette

KETTENFÜHRUNG

iwis Bezeichnung	45~	9	4	***
L 85 TF	20	7,5	3,1	15,4
M 106 TF	25	9,5	3,1	17,7
M 127 TF	30	11,3	2,9	20,0

sales-muenchen@iwis.com www.iwis.com

Typis Gripketten

Greifen, Einziehen, Transportieren von Weichfolien

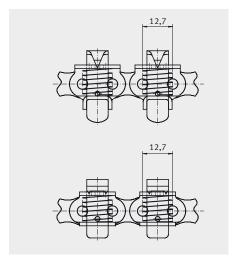
PROBLEM/AUSGANGSLAGE

Sicheres Zuführen, Transportieren und Positionieren von dünnwandigen großflächigen Materialien.

UNSERE LÖSUNG

iwis Hochleistungsketten mit verschleißfesten und korrosionsbeständigen Klemmelementen. Exklusiv von iwis. Für iwis patentiert.

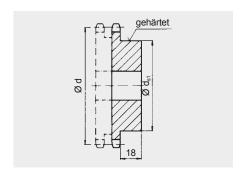
HIGHLIGHTS


- Optimales Zuführen des Transportgutes durch einzigartige Schwenktechnik des Greifers
- genaue Positionierung des Fördergutes durch sicheres Klemmen
- Kette und Klemmelement standardmäßig korrosionsgeschützt
- durch unterschiedliche Federkraft können verschiedenste Materialien schonend gegriffen werden
- serienmäßig mit lebensmittelechtem Erstschmierstoff

TECHNISCHE MERKMALE

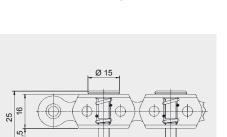
- Einfach- oder Zweifachkette 1/2 x 5/16" nach DIN 8187-1
- Greifer mit 1 oder 2 Spitzen, Sonderausführung auf Anfrage
- Haltekraft ist abhängig von Fördergut und Federausführung – unterschiedliche Anzahl von Windungen und Federdrahtdurchmesser erhältlich
- durch Auflaufen auf eine Steuerscheibe (z.B. Kettenradnabe) öffnet der Greifer und schwenkt dabei nach außen weg

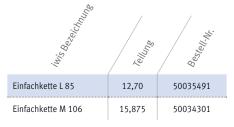
ANWENDUNGSBRANCHEN


- · Verpackungsindustrie mit Schwerpunkt Folienverpackung
- Elektronikindustrie und Leiterplattenfertigung
- Zuführung von dünnwandigen Blechen, Kunststoffen und anderen Hartmaterialien
- ... und überall dort, wo platten- und bahnenförmige Materialien ein- und abgezogen, transportiert oder positioniert werden, z.B. zum, Stanzen, Schweißen, Befüllen, Beschichten, Schneiden, Strecken, Formen, Verschließen etc..

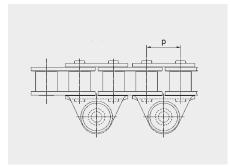
Maße x und y abhängig von eingesetzter Feder, auf Anfrage

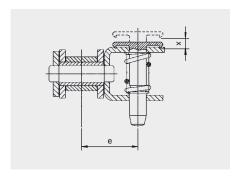
iwis Beecinung	Peiling D (mm)	66mich 9 (86m)
Einfachkette L 85 Grip	12,7	1,15
Zweifachkette D 85 Grip	12,7	1,80



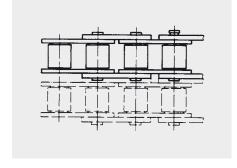

ᠫ₩ɪ͡s[®] Gripketten

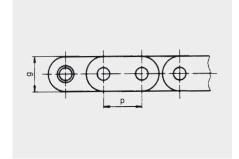
Greifen, Einziehen, Transportieren von Weichfolien


FOLIENTRANSPORTKETTE


• Sonderform mit Tellergreifer

Maße x abhängig von eingesetzter Feder, auf Anfrage

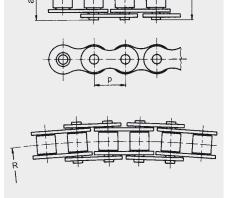

TWIS Palettentransportketten


HIGHLIGHTS

- durch gerade Laschenform durchgehende Auflage des Transportgutes.
- Rollenketten mit geraden Laschen zum Transportieren von unterschiedlichem Fördergut

iwis Bezeichius	Pelling Doming	S Grim	Brachkaft F Iwis Mittelf	Comicsis
Einfachkette M 128 AG	19,05	18,0	42.000	1,75
Zweifachkette D 128 AG	19,05	18,0	84.000	3,50

Nicht aufgeführte Maße und Werte entsprechen den iwis Ketten M 128 A SL bzw. D 128 A nach DIN 8188.



Seitenbogenketten

Transportieren, Fördern, Ziehen auf kurvenförmigen Bahnen

PROBLEM/AUSGANGSLAGE

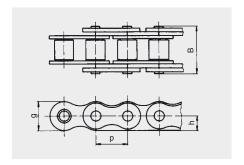
- Transportieren und F\u00f6rdern auf kurvenf\u00f6rmigen Bahnen
- Kettenverwindung bei Schrägstellung der Wellen zueinander
- Veränderung der Lage des Transportgutes z.B. von horizontal in vertikal

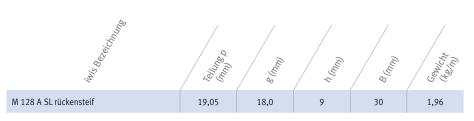
UNSERE LÖSUNG

iwis Hochleistungsketten mit speziell ausgeführtem Kettengelenk. **Exklusiv von iwis.**

HIGHLIGHTS

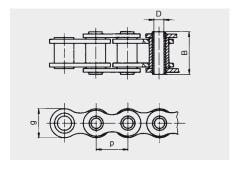
- statt Linienberührung flächige Anlage des Kettengelenkes im Kurvenbereich
- durch symmetrisch konische Bolzen sehr enge Kurvenradien möglich
- durch Verwendung von iwis Mitnehmerund Winkellaschen als Förderketten universell einsetzbar

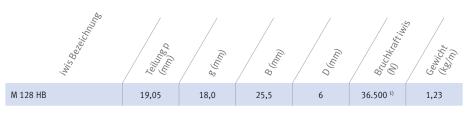

im's Bez eighung	reilings (m. 18p	9 (m) 7 (m) 9 (m) 1 (m)	/	reite	Bruchkap.	Osuce Wise		ulässige zugkraft	1.66.70
L 85 A-SB	12,7	16,8	17,8	425	10.000	600	1500	0,65	2, 4, 8
M 106 A-SB	15,875	21,0	22,3	500	18.000	900	2500	1,00	2, 4, 8
M 128 A-SB	19,05	26,3	27,7	750	26.000	1200	3700	1,50	2, 4, 8


Nicht aufgeführte Maße und Werte entsprechen den iwis Ketten L 85 A, M 106 A und M 128 A SL.

TWIS Rückensteife Ketten

Nur einseitig flexible Kette zum Schieben leichter Lasten und zum Überbrücken kurzer Abstände ohne Führung




Die Hauptabmessungen entsprechen der iwis Kette M 128 A SL nach DIN 8188. Kleinstes Kettenrad: 10 Zähne.

TWIS Hohlbolzenketten

Einfache Befestigung von Anbauteilen und Querstreben

Sonderhülsenkette gemäß Rollenkette $3/4 \times 1/2$ " nach DIN 8188-1. Anordnung der Hohlbolzen in beliebigen Abständen möglich.

 $^{^{\}mbox{\tiny 1)}}$ Bruchkraft ohne eingesteckte Stifte 34.500 N

Tubentransportketten

PROBLEM/AUSGANGSLAGE

Schonende Aufnahme und zuverlässiger Transport von dünnwandigen Hohlkörpern durch mehrere Bearbeitungsstationen (Reinigen, Lackieren, Trocknen...).

UNSERE LÖSUNG

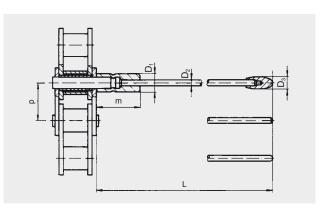
iwis Hochleistungsketten – Rollenketten mit rostbeständigen, leicht auswechselbaren Anbauteilen. **Exklusiv von iwis.**

HIGHLIGHTS

- problemloser Austausch der Transportstäbe in der Anlage mit speziellem iwis Werkzeug
- keine Demontage der Kette erforderlich
- Adapter und Stäbe aus hochlegierten rostbeständigen Stählen mit guten elastischen Eigenschaften
- im Vergleich zu Hohlbolzenketten hohe Lebensdauer durch Verwendung der iwis Standard Rollenkette
- großes Standardprogramm an Stablängen
- unterschiedliche Formgebung der Stabenden – auch Nippel aus Alu oder Kunststoff verfügbar
- Abstand zwischen Stäben frei wählbar
- 3/4"-Kette auch in Seitenbogenausführung (M 128 ASB)

TECHNISCHE MERKMALE

- die Stäbe sind mittels Adapter auf die verlängerten Bolzen der Grundkette aufgequetscht und durch Sicken gesichert.
- durch Aufbrechen des Adapters mit iwis Spezialwerkzeug (siehe Bild) ist im Reparaturfall der Stab schnell und einfach auswechselbar.


ANWENDUNGSBRANCHEN

 überall dort, wo Tuben und andere dünnwandige Hohlkörper (Dosen) transportiert, gereinigt, lackiert, getrocknet ... werden.

ON SONUM	In is seekely in its	reilungs p	^L mox, (m _m)	(mm) i	^{In} (m _{m)}	o (mm)	of (mm)
08B-1	L 85 SL	12,7	300	8,0	22,0	4,0	8,0
10B-1	M 106 SL	15,875	300	8,0	22,0	4,0	8,0
12B-1	M 127 SL	19,05	300	8,0	22,0	4,0	8,0
 12 A-1 ANSI 60	M 128 ASB	19,05	300	8,0	22,0	4,0	8,0

Bei Anfragen oder Bestellung bitte Länge L angeben.

Dosentransportketten

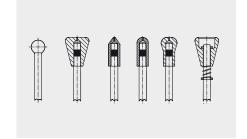
PROBLEM/AUSGANGSLAGE

Sicherer Transport von dünnwandigen Hohlkörpern bei hohen Geschwindigkeiten und unter wechselnden Temperatur- und Medieneinflüssen.

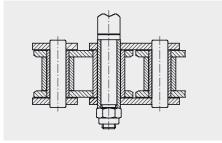
UNSERE LÖSUNG

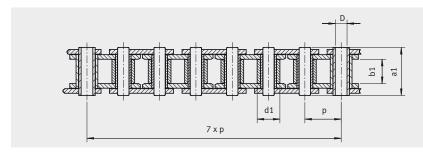
Extrem verschleißfeste iwis Hochleistungskette mit speziell angepassten Stäben und variablen Schutzköpfen.

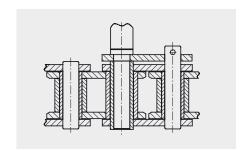
HIGHLIGHTS

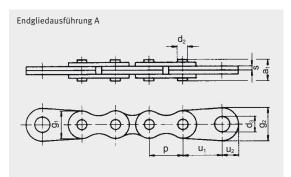

- extrem langlebige und zuverlässige Rollenkette mit integriertem Hohlbolzen, jede siebte Teilung
- einfaches Auswechseln der Transportstäbe in der Anlage
- abtropffester Hochtemperatur-Schmierstoff, der rückstandslos verdampft und für die Lebensmittelindustrie zugelassen ist
- Sollbruchstellen in den Stäben verhindern bei Kollision Schäden in der Anlage

TECHNISCHE MERKMALE

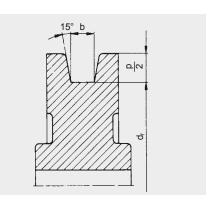

- Die Transportstäbe werden in definierten Abständen in die Hohlbolzen eingesteckt und mit selbstsichernden Muttern oder Splinten gesichert
- exakte Fluchtungen der Kettenräder und gute Führung der Ketten erhöhen die Standzeiten
- vor der gezielten Nachschmierung sollte eine Reinigung der Kette mittels Bürsten erfolgen


ANWENDUNGSBRANCHEN


• Überall dort, wo Dosen oder andere dünnwandige Hohlkörper transportiert, lackiert, getrocknet werden.



Twis Flyerketten


'm's Beeigh.	\$un \(\tilde{	/ /	eilung	Ann	Stuche aft	Seles.	Gewich (Cm2)	BOZENIA (RE/m)	a (mm) rchmesser	Brei	te auße	su solohosi	d (m. s (mm)	(i) (ii) (ii) (ii) (ii) (ii) (ii) (ii)	(m) 88 (m) 8	/ /	iederab	/	,	(uu) *
Flyerketten																				
FL 522	-	8,0	2 x 2	=	5.000	0,05	0,15	2,31	5,6	-	6,3	1,0	6,2	-	16,0	-	15,0	10,0	-	-
FL 523	-	8,0	2 x 3	=	7.000	0,05	0,19	2,31	6,7	-	6,3	1,0	6,2	-	16,0	-	15,0	10,0	-	-
FL 623 1)	3/8	9,525	2 x 3	#	10.000	0,08	0,32	3,31	8,3	-	8,1	1,2	6,2	-	16,0	-	15,0	10,0	-	-
FL 623 b 1)	3/8	9,525	2 x 3	=	20.000	0,20	0,46	3,31	10,9	-	8,2	2,0	6,2	-	-	-	-	-	-	-
FL 823 b	1/2	12,70	2 x 3	=	28.000	0,18	0,65	4,45	12,4	-	10,8	2,0	8,2	-	18,0	-	20,0	11,0	-	-
FL 834 a	1/2	12,70	3 x 4	#	21.000	0,17	0,42	3,68	13,1	-	9,1	1,5	8,2	-	18,0	-	20,0	11,0	-	-
FL 834 b	1/2	12,70	3 x 4	#	42.000	0,27	0,91	4,45	16,5	-	10,8	2,0	8,2	-	18,0	-	20,0	11,0	-	-
FL 845 a	1/2	12,70	4 x 5	丰	34.000	0,24	0,67	3,68	16,9	25	9,1	1,6	8,2	12,2	18,0	25,0	20,0	11,0	30,0	15,0
FL 845 b	1/2	12,70	4 x 5	#	52.000	0,32	1,00	4,45	19,0	25	10,8	1,8	8,2	12,2	18,0	25,0	20,0	11,0	30,0	15,0
FL 866 a	1/2	12,70	6 x 6	重	44.000	0,36	0,88	3,68	21,7	28	9,1	1,6	8,2	12,2	18,0	25,0	20,0	11,0	30,0	15,0
FL 866 bd	1/2	12,70	3 x 3 ²⁾	#	62.000	0,40	1,17	4,45	20,6	28	10,8	1,5	8,2	-	18,0	-	20,0	11,0	_	-
FL 1044 bd	5/8	15,875	2 x 2 ²⁾	丰	57.000	0,37	1,12	5,08	16,8	28	13,7	1,8	10,4	16,2	20,0	35,0	25,0	12,0	45,0	21,0
FL 1066 bd	5/8	15,875	3 x 3 ²⁾	#	86.000	0,55	1,68	5,08	24,0	35	13,7	1,8	10,4	16,2	20,0	35,0	25,0	12,0	45,0	21,0
FL 1266 bd	3/4	19,05	3 x 3 ²⁾	重	115.000	0,76	2,18	5,72	30,0	40	14,9	2,2	10,4	16,2	20,0	35,0	25,0	12,0	45,0	21,0
FL 1644 d	1	25,40	2 x 2 ²⁾	#	157.000	1,00	2,92	8,28	28,0	40	20,8	3,0	12,2	18,2	25,0	40,0	30,0	15,0	50,0	24,0
FL 1666 d	1	25,40	3 x 3 ²⁾	重	231.000	1,50	4,35	8,28	41,0	50	20,8	3,0	12,2	18,2	25,0	40,0	30,0	15,0	50,0	24,0

¹⁾ Laschenform gerade 2) doppelt

Endgliedausführung B (ab Kombination 4 x 4)

iwis Flyerketten (Werksnorm) werden aus Präzisions-Kettenteilen nach DIN 8187 hergestellt. Die Dimensionierung sollte mit mindestens 10facher Sicherheit vorgesehen werden, je nach Beanspruchung durch leichte oder kräftige Stöße und unter Berücksichtigung einschlägiger behördlicher Vorschriften.

Beispiel für die Ausführung einer Umlenkrolle

Innere Rollenbreite: $b = a_1 \cdot 1,15$ Mindest-Fußkreisdurchmesser: $d_{f_{min}} = p \cdot 5$

Nach Möglichkeit größere Durchmesser vorsehen.

System Kettenräder

Die Form der Kettenräder wird durch die Kettengröße, die Zähnezahl, das zu übertragende Moment und die Anwendung bestimmt. Man unterscheidet zwischen Kettenrädern und Kettenradscheiben für Rollenketten nach Norm (zum Beispiel DIN 8187/8188) und solchen in Sonderausführungen. Kettenräder mit Nabe gestatten die Übertragung eines größeren Drehmomentes auf die Welle, während Kettenradscheiben nur dann eingesetzt werden können, wenn kleine Momente zu übertragen sind. Für eine genaue Darstellung der Kettenradkonstruktion siehe hierzu das iwis Kettenhandbuch.

Swis Kettenräder und Kettenradscheiben

nach DIN 8187-1, ISO 606: 2004

KETTENRADSCHEIBEN UND KETTENRÄDER

04	•	-	-
05 B	•	•	-
06 B	•	•	•
08 B	•	•	•
10 B	•	•	•
12 B	•	•	•
16 B	•	•	•
20 B	•	•	•
24 B	•	•	•
28 B	•	•	•
32 B	•	•	•

Das iwis Kettenrad- und Kettenradscheibenprogramm wird direkt durch unsere Schwesterfirma iwis antriebssysteme GmbH aus Wilnsdorf geliefert.

Eine Übersicht über das komplette Produktprogramm entnehmen Sie bitte dem Katalog "Kettenräder" unserer Schwesterfirma.

WEITERES PRODUKTPROGRAMM:

- Konus-Klemmbuchse für Kettenräder
- Kettenspannräder komplett mit Kugellager - einbaufertig
- Kettenräder für Konus-Klemmbuchse
- Rutschnaben Serie DA
- Rutschnaben Serie FT

- Rutschkupplungen Serie FT
- Wellen-Verbindung durch Ketten-Kupplung

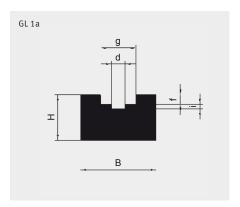
AUF WUNSCH FERTIGEN UND LIEFERN WIR FÜR SIE:

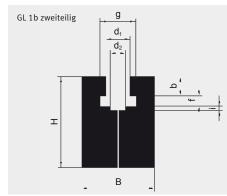
- Sonderkettenräder nach spezifischen Vorgaben
- komplett montierte Baugruppen, bestehend aus Umlenkungen, Kettenrädern, Lagern und Wellen
- sowohl als Prototypen als auch als Serienteile in größeren Mengen (projektbezogen).

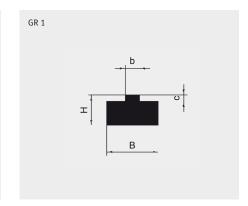
Mögliche Werkstoffe:

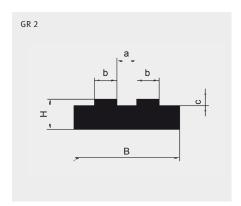
- Einsatzstähle (gehärtet/ungehärtet)
- Vergütungsstähle (gehärtet/ungehärtet)
- Edelstahl
- Kunststoff

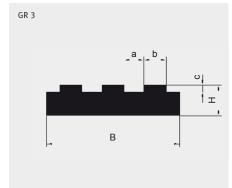
Beschichtungen:

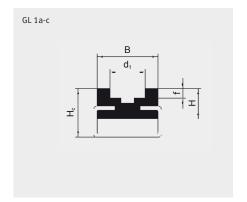

• alle Varianten möglich

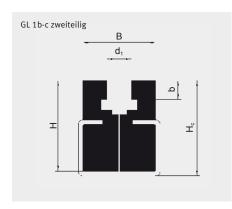

Unterstützung bei der Auslegung von Kettentrieben und Neuentwicklungen erhalten Sie von unserem kompetenten Technischen Service Team.

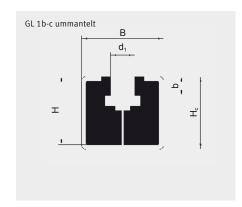


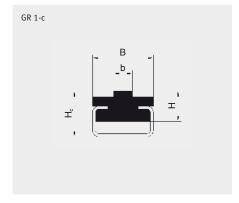

Kettenführungen

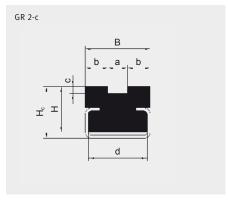

aus Kunststoff und mit Stahl-C-Profil – ein Auszug

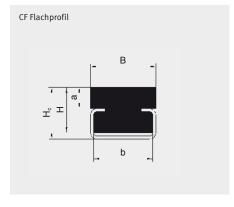


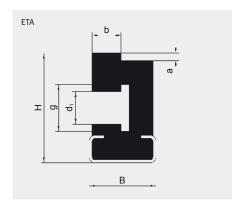












Werkzeugsatz Werkzeugsatz

für den Werkstattgebrauch

Zum Trennen und Vernieten von Rollenketten nach DIN 8187/8188 und Werksnorm der Größen 8 mm bis 1 1/2". Amboss (A) und Gabel (A 1) dienen zum Zerlegen von Ketten mit abgesetzten Bolzen. Für das Zerlegen von Ketten mit glatten Bolzen werden die Nietplatte (D 1) und der Durchschlag (B) benötigt. Zum Vernieten von Ketten beider Bolzenarten werden die Nietplatte (D 1) mit Einsätzen und Buchsen sowie der Nieter (E) und Laschendrücker (C) benötigt.

sales-muenchen@iwis.com www.iwis.com

Anwendung

Zerlegen und Zusammenbau von Ketten

ZERLEGEN (GLATTE BOLZEN)

ZERLEGEN (ABGESETZTE BOLZEN)

Kettenglied mit abgesetztem Bolzen

Man steckt den vorstehenden Bolzen in die entsprechende Büchse der Nietplatte und schlägt ihn mit dem Hammer so weit hinein, bis er nicht mehr übersteht. Mit einem Durchschlag wird dann der Bolzen ganz ausgeschlagen 1.

Bei schweren Ketten (über 3/4") ist es vorteilhaft, den Nietkopf vorher abzuschleifen.

Die Kette wird bis zum Anschlag der beiden benachbarten Rollen in die Gabel geschoben. Dann legt man die Gabel mit der Kette auf den Amboss und schlägt die Bolzen mit einem Hammer so weit hinein, bis sie nicht mehr überstehen. Mit dem Durchschlag (B) werden nun die Bolzen ganz hinausgeschlagen 2. Mehrfachketten werden auf die gleiche Art zerlegt, jedoch ist zu beachten, dass die Gabel in den unteren Kettenstrang eingeschoben wird.

ZUSAMMENBAU

Die Verfahrensweise ist bei Ketten mit abgesetzten Bolzen die gleiche, wie bei Ketten mit glatten Bolzen. Man steckt einen neuen Stiftblock in die zwei Kettenenden, legt die Kette auf das Einsatzstück der Nietplatte und drückt eine neue Außenlasche auf die Nietenden des Stiftblocks 3.

Der Laschendrücker wird über den Nietkopf gesetzt und die Lasche wird so weit nachgeschlagen, dass die Kettenglieder immer noch leicht beweglich sind 4.

Mit dem Nieter (E) wird die Kette nun vernietet 5.

SWIS Bolzenziehmaschine

Gebrauchsanweisung für die iwis Bolzenziehmaschine

BOLZENZIEHMASCHINE

Die Bolzenziehmaschine kann in einen Schraubstock eingespannt oder auf der Werkbank festgeschraubt werden. Die Anordnung an der vorderen Tischkante sichert den vollen Schwenkbereich des Handhebles. Auflageflächen links und rechts erleichtern die Handhabung beim Einlegen längerer Ketten.

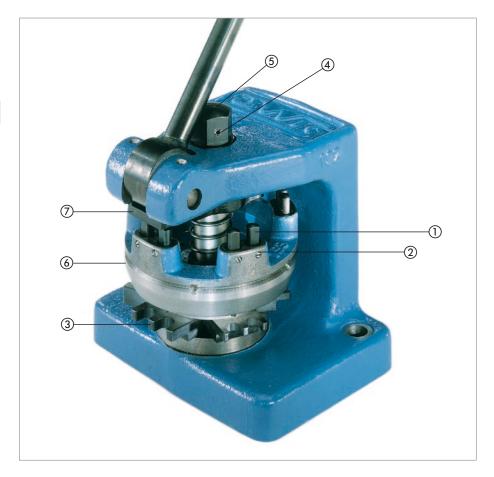
In dem drehbaren Werkzeugteller befinden sich 5 Ausdrück-Werkzeugsätze, die mit den Kettengrößen gekennzeichnet sind. Richtig eingestellt lassen sich folgende iwis Ketten zerlegen. Dabei wird unterschieden zwischen:

- Kette mit abgesetzten Bolzen
- Kette mit glatten Bolzen (siehe Seite 79)

BESTELL-NR. 4500

AUSWECHSELN DER DRUCKSTIFTE UND DER AUFLAGEGABELN

Druckstifte 1:


Madenschrauben 2 lockern, Stifte nach oben herausziehen. Stifte satzweise auswechseln.

Auflagegabeln 3:

Obenliegende Mutter 4 lösen, vorher Sicherungs-Spannstift herausschlagen. Mittelbolzen 5 nach unten ausdrücken und Werkzeugteller 6 nach vorne herausnehmen.

Die 2 Spannstifte der betreffenden Auflage herausschlagen und neue Gabel einlegen.

Beim Zusammenbau auf die richtige Lage der Druckplatte ② und des Rasterstiftes an der Rückseite des Gusskörpers achten. Mutter ④ fest anziehen und mit Spannstift sichern

SWIS Bolzenziehmaschine

Gebrauchsanweisung für die iwis Bolzenziehmaschine

A) KETTE MIT ABGESETZTEN BOLZEN

Bei Ketten mit abgesetzten Bolzen wird mit einem Hebeldruck ein ganzes Außenglied aus der Kette ausgedrückt. Die Ketten werden mit ihren Rollen in die passende Auflagegabel eingeschoben, so dass die 2 Druckstifte auf die Mitte der Nieten eines Außengliedes treffen.

DIN ISO Nummer	iwis Bezeichnung	Teilung	Einstellung
06 B - 2	D 67	3/8 x 7/32"	3/8"
06 B - 3	Tr 67	3/8 x 7/32"	3/8"
08 B - 1	L 85 SL	1/2 x 5/16"	1/2"
08 B - 2	D 85 SL	1/2 x 5/16"	1/2"
08 B - 3	Tr 85	1/2 x 5/16"	1/2"
10 B - 1	M 106 SL	5/8 x 3/8"	5/8"
10 B - 2	D 106 SL	5/8 x 3/8"	5/8"
10 B - 3	Tr 106	5/8 x 3/8"	5/8"
12 B - 1	M 127 SL	3/4 x 7/16"	3/4"
12 B - 2	D 127	3/4 x 7/16"	3/4"
12 B - 3	Tr 127	3/4 x 7/16"	3/4"

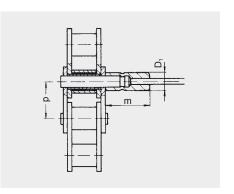
B) KETTE MIT GLATTEN BOLZEN

Voraussetzung für das Teilen von Ketten mit glatten Bolzen ist das Abschleifen der Nietköpfe auf einer Seite des Außengliedes. Danach kann der Stiftbock wie vorher mit nur einem Hebeldruck aus der Kette herausgedrückt werden.

DIN ISO Nummer	ANSI Bezeichnung	iwis Bezeichnung	Teilung	Einstellung
06 B - 1	-	G 67	3/8 x 7/32"	3/8"
08 A - 1	ANSI 40	L 85 A	1/2 x 5/16"	1/2"
08 A - 2	ANSI 40-2	D 85 A	1/2 x 5/16"	1/2"
08 A - 3	ANSI 40-3	Tr 85 A	1/2 x 5/16"	1/2"
10 A - 1	ANSI 50	M 106 A	5/8 x 3/8"	5/8"
10 A - 2	ANSI 50-2	D 106 A	5/8 x 3/8"	5/8"
10 A - 3	ANSI 50-3	Tr 106 A	5/8 x 3/8"	5/8"
12 A - 1	ANSI 60	M 128 A SL	3/4 x 1/2"	3/4"
12 A - 2	ANSI 60-2	D 128 A	3/4 x 1/2"	3/4"
12 A - 3	ANSI 60-3	Tr 128 A	3/4 x 1/2"	3/4"

Fehlt eine Schleifvorrichtung, können die Nieten mit einem Durchschlag nach Abdrücken einer Außenlasche herausgeschlagen werden. Dabei müssen die Hülsen eine gute Auflage haben, damit sie sich nicht aus den Innenlaschen lösen. Auf diese Weise lassen sich zwar die Ketten zerlegen, es besteht jedoch die Gefahr, dass die Hülsenwand verletzt wird mit der Folge eines höheren Verschleißes. Mit der iwis Nietenziehmaschine lassen sich auch Förderketten der entsprechenden Abmessungen mit Mitnehmer- oder Winkellaschen zerlegen. Sie ist nicht geeignet für Ketten mit der Größe 3/8 x 5/32".

TWIS Werkzeug für Tuben- und Dosentransport


zum Austausch von Mitnehmerstiften

SPEZIALWERKZEUG

Das unten abgebildete iwis Spezialwerkzeug dient zur Reparatur von Ketten für Tuben- und Dosentransport. Es ermöglicht den problemlosen Austausch von Mitnehmerstiften in bereits eingebauten Ketten der Typen L 85 SL, M 106 SL, M 127 SL, M 128 ASL und M 128 A-SB (austauschbar).

BESTELL-NR. 40000421

Kette	Teilung	$D_{_{\scriptscriptstyle{1}}}$	m
L 85 SL	12,7	8,0	22,0
M 106 SL	15,876	8,0	22,0
M 127 SL	19,05	8,0	22,0
M 128 ASL	19,05	10,0	22,0
M 128 A-SB	19,05	10,0	22,0

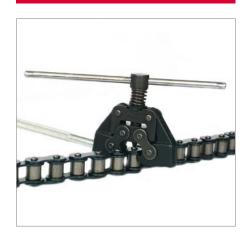
Anwendung

Entfernen und Befestigen eines Adapterstiftes

ENTFERNEN EINES ADAPTERSTIFTES

Der Adapter wird mit der Aufnahme
 gefasst und durch Schließen des
Werkzeuges gesprengt. Vorgang ggf. mit
45° Positionsänderung wiederholen. Der
Adapter ist zerstört, und der Stift kann problemlos entfernt werden.

BEFESTIGEN EINES ADAPTERSTIFTES


Der neue Adapterstift wird auf den verlängerten Kettenbolzen aufgesetzt. Mit der Aufnahme ② wird er gefasst und durch Schließen des Werkzeuges befestigt. Die Kette ist repariert und somit wieder voll funktionsfähig.

<u> ব্যুগ্রে</u> Bolzenzieher und <u>ব্যুগ্রে</u> Montagespanner

UNIVERSAL-BOLZENZIEHER H

BESTELL-NR. 4511

Für Ketten mit abgesetzten Bolzen.

Kettengröße:

- 08B-1 / L 85 SL
- 08B-2 / D 85 SL
- 08B-3 / Tr 85
- 10B-1 / M 106 SL
- 10B-2 / D 106 SL
- 10B-3 / Tr 106
- 12B-1 / M 127 SL
- 12B-2 / D 127
- 12B-3 / Tr 127

Die Ketten werden mit der Zange des Werkzeuges am Innenglied gefasst und der Bolzen einzeln durch die Außenlasche gedrückt.

EINFACHER BOLZENZIEHER F

BESTELL-NR. 4516

Für Ketten mit glatten Bolzen.

Kettengröße:

- P83 V
- S 84 V

Die Ketten werden in die Aufnahmestifte eingelegt und der Bolzen einzeln durch beide Außenlaschen gedrückt.

MONTAGESPANNER

BESTELL-NR. A) 4518 B) 4519

a) Nr. 35 für Ketten von 3/8 bis 3/4"-Teilungb) Nr. 80 für Ketten ab 1"-Teilung oder größer

Swis Werkzeuge zum Zerlegen und Vernieten von Rollenketten Übersicht

	Nr.	Art-Nr.
iwis Bolzenziehmaschine		4500
Ersatzteile für iwis Bolzenziehmaschine		
Druckplatte	7	9806
Reparaturset für 3/8"-Ketten: Kettenauflage, 2 Druckstifte und Feder		11926
Reparaturset für 1/2"-Ketten: Kettenauflage, 2 Druckstifte und Feder		11927
Reparaturset für 5/8"-Ketten: Kettenauflage, 2 Druckstifte und Feder		11928
Reparaturset für 3/4"-Ketten: Kettenauflage, 2 Druckstifte und Feder		11929
Universal-Bolzenzieher		
Universal-Bolzenzieher H für Ketten von 1/2" bis 3/4"		4511
Ersatzspindel (mit Druckstift)		4512
Druckstift		4513
Einfache Bolzenzieher F Nr. 4 für F82V, S84V, L85A		4516
Ersatzstift		4517
iwis Spezialwerkzeug		
Zange zur Reparatur von Ketten für Tuben- und Dosentransport		40000421
Werkzeug zum Zerlegen von Stauförderketten		
Einsatz zum Montieren/Demontieren		40000646
Druckstift		4000173
Werkzeug für Plattenkette		40003392
Montagespanner		
№ 35 ab 3/8" bis 3/4"		4518
Nº 80 ab 1"		4519
Weitere Artikel		
Kettenmesslehren		4568
Kettenspray VP 6 Kombi superplus 400 ml (Verpackungseinheit 12 St.)		15701

...FÜR STAUFÖRDERKETTEN

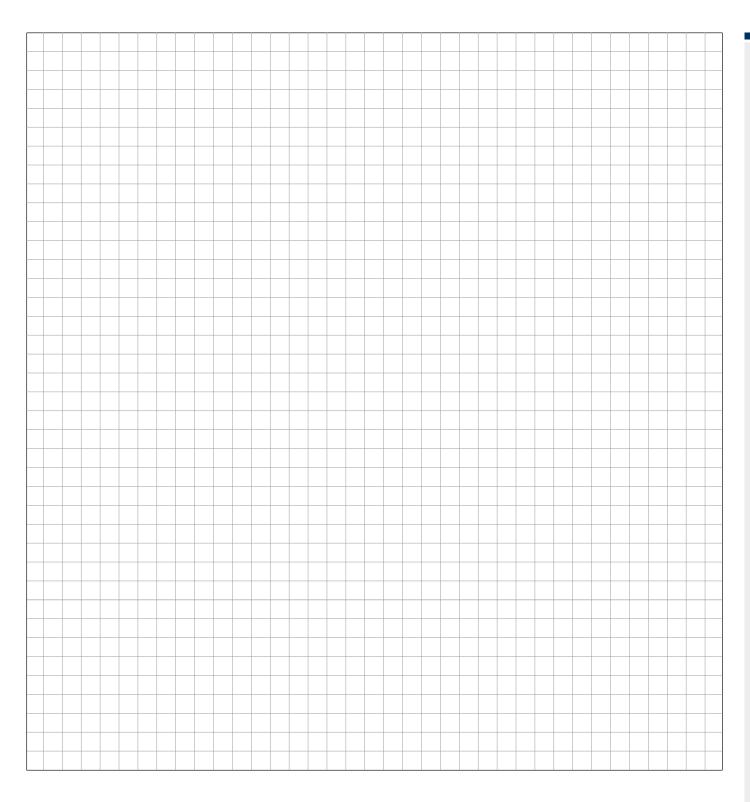
BESTELL-NR. 40000646

Für Stauförderketten M 120 SF und M 127 SF mit Teilung 3/4".

...FÜR PLATTENKETTEN

BESTELL-NR. 40003392

Für Plattenketten M 127 mit Teilung 3/4".


Werkzeuge Übersicht

DIN ISO Nummer	Nr.	Art-Nr.
Amboss A		
08 B, 10 B, 12 B	2	5000
06 B	3	5001
16 B	4	5002
20 B	5	5003
Gabel A1		
08 B	2	5004
10 B	3	5005
12 B	4	5006
06 B	6	5007
16 B	8	5008
20 B	9	5009
•	10	5010
Durchschlag B		
06 B, 08 A	1	5011
08 B	2	5012
10 B	3	5013
05 B	4	5014
20 B, 16 A, 16 B	5	5015
12 A	6	5016
24 B	7	5017
Laschendrücker C		
05 B	1	40006688
06 B	3	40006689
Werksnorm 1/2"	4	40006692
08 A	5	40006691
08 B	6	40006690
10 B	7	40006693
10 A	8	40006694
12 B	9	40006695
12 A	10	40006696
16 A	11	40006705
16 B	12	40006697
20 B	13	40006698
24 B	14	40006699

DIN ISO Nummer	Nr.	Art-Nr.
	INT.	AIL-NI.
Nietplatte D1		
05 B-16 B, 08 A-16 A	1	5024
20 B, 24 B	2	5025
Einsatz D2		
05 B, 06 B	1	5026
08 A, 08 B, 10 B	2	5027
10 A, 12 A, 12 B	3	5028
16 A, 16 B	4	5029
20 B	5	5030
-	6	5031
24 B	8	5032
D. L. D.		
Buchse D ₃		
05 B, 06 B	1	5033
08 A, 10 A	2	5034
12 A, 16 A	3	5035
24 B	4	5036
-	5	5037
Nieter E		
05 B, 06 B	1	5038
08 A, 08 B, 10 B	2	5039
10 A, 12 A, 12 B	3	5040
16 A, 16 B	4	5041
20 B	5	5042
-	6	5043
24 B	7	5044

Notizen

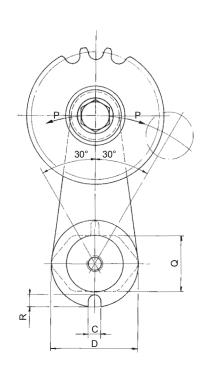
JVIS® Automatische Spanner

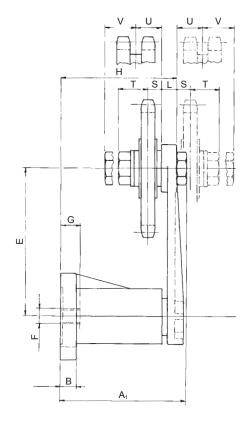
Automatische Kettenspanner kompensieren die Kettenlängung in Maschinen und Förderanlagen und unterstützen so die Lebensdauer der eingesetzten Ketten. iwis Kettenspanner sind aus hochwertigen Materialien hergestellt. Je nach Anwendung stehen unterschiedliche Typen zur Verfügung.

الاین کیکری Typ RHR

mit gelagerter Kettenradscheibe

	Teilung x innere Breite	Р	A ± 1	В	С	D	E	F	G	H ± 1	L	Q	R	S	Т	U	V	Z
Typ RHR																		
RHR 111	3/8" x 7/32"	0÷100	58	6	8	35	80	M6	8,5	51	8	22	5	9,2	19,7	9,7	16,7	21
RHR 155	3/8" x 7/32"	0÷150	71	8	8,5	45	100	M8	10,5	64	8	30	6	9,2	19,7	9,7	16,7	21
RHR 155	1/2" x 5/16"	0÷150	71	8	8,5	45	100	M8	10,5	64	8	30	6	9,2	19,7	12,5	19,5	16
RHR 188	1/2" x 5/16"	0÷300	84	10,5	8,5	58	100	M10	13	78	10	37	8	9,2	19,7	12,5	19,5	16
RHR 188	5/8" x 3/8"	0÷300	85	10,5	8,5	58	100	M10	13	78	10	37	8	9,2	19,7	15,3	23,3	17
RHR 277	3/4" x 7/16"	0÷900	114	15	10,5	78	130	M12	17	107	12	53	10	9,2	19,7	17,7	25,7	15
RHR 277	1" x 17 mm	0÷900	114	15	10,5	78	130	M12	17	107	12	53	10	8,9	19,4	26,4	34,4	12


TYP RHR


- gutes Dämpfungsverhalten, Schwingungs- / Lärmreduzierung
- Arbeitswinkel > 30° in beiden Drehrichtungen
- einfache Montage von innen und außen möglich
- Verwendung auch im Temperaturbereich > 65°C
- kompatibel zu ähnlichen Spannersystemen

AUFTRAGSBEISPIEL

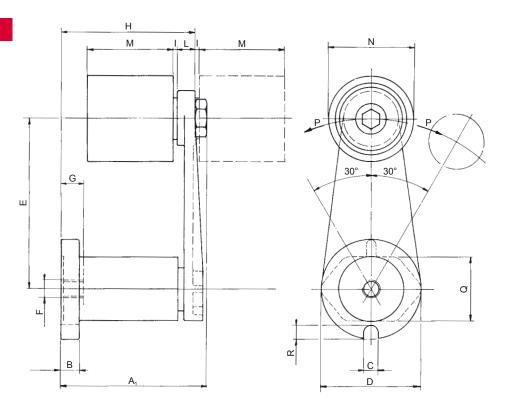
Spanner für Einfach-Kette – Kettenteilung 1/2" – RHR 155 1/2" S. Lieferung ab Lager für Einfach-Ketten. Für Zweifach-Ketten auf Anfrage.

S = Einfach-Kette **D** = Zweifach-Kette

antriebssysteme wir bewegen die welt

סעינs[®] Typ RHP

mit Polyethylenkopf



	Teilung x innere Breite	Р	A ± 1	В	С	D	Е	F	G	H±1	L	M	N	0	R	S	Т	U	V	Z
Typ RHP																				
RHP 111	3/8" x 7/32"	0÷100	57	6	8	35	80	M6	8,5	51	8	20	7	22	5	4	70	20	25	102
RHP 155	3/8" x 7/32"	0÷150	70	8	8,5	45	100	M8	10,5	64	8	20	7	30	6	4	70	20	25	122
RHP 155	1/2" x 5/16"	0÷150	70	8	8,5	45	100	M8	10,5	64	8	20	7	30	6	4	70	20	35	122
RHP 188	1/2" x 5/16"	0÷300	84	10,5	8,5	58	100	M10	13	78	10	20	7	37	8	4	70	20	35	122
RHP 188	5/8" x 3/8"	0÷300	85	10,5	8,5	58	100	M10	13	78	10	22	8	37	8	5	90	25	41,5	129
RHP 277	3/4" x 7/16"	0÷900	114	15	10,5	78	130	M12	17	107	12	22	8	53	10	5	90	30	49	159
RHP 277	1" x 17 mm	0÷900	114	15	10,5	78	130	M12	17	107	12	25	8	53	10	5	110	45	78	165

AUFTRAGSBEISPIEL

Spanner für Einfach-Kette – Kettenteilung 1/2" – RHP 155 1/2" S. Lieferung ab Lager für Einfach-Ketten. Für Zweifach-Ketten auf Anfrage.

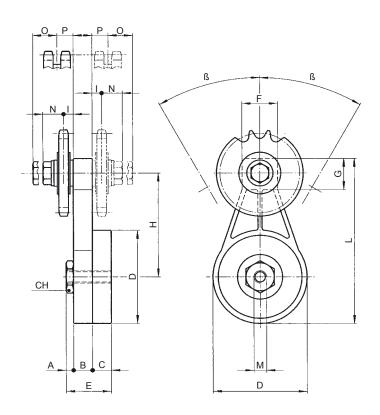
S = Einfach-Kette **D** = Zweifach-Kette

الانتون Typ TCR

mit gelagerter Kettenradscheibe

		vton max.	Teilung x innere Breite	Z	А	В	С	СН	D	Е	F	G	Н	ı	L	M	N	0	Р	ß
Typ TCR																				
*TCR-05 – 3/8"	80	160	3/8" x 7/32"	21	5	15	15	24	63	35	23	23	75,5	9,2	119	M10	19,7	-	-	45°
TCR-1 - 3/8"	100	210	3/8" x 7/32"	21	5	15,5	15,5	24	69	36	30	25	86,5	9,2	134	M10	19,7	18	11	45°
TCR-1 - 1/2"	100	210	1/2" x 5/16"	16	5	15,5	15,5	24	69	36	30	25	86,5	9,2	134	M10	19,7	16,5	12,5	45°
TCR-1 - 5/8"	120	240	5/8" x 3/8"	17	5	15,5	15,5	24	69	36	30	25	86,5	9,2	134	M10	19,7	21,8	15,3	45°
TCR-2 - 5/8"	200	350	5/8" x 3/8"	17	7	18	18	27	90	43	34	30	100	9,2	159	M12	19,7	21,8	15,3	30°
TCR-2 - 3/4"	200	350	3/4" x 7/16"	15	7	18	18	27	90	43	34	30	100	9,2	159	M12	19,7	19,4	17,7	30°
TCR-2 - 1"	240	380	1" x 17 mm	12	7	18	18	27	90	43	34	30	100	8,9	159	M12	19,4	23,9	26,4	30°
TCR-2 - 1 1/4"	240	380	1 1/4" x 3/4"	9	7	18	18	27	90	43	34	30	100	11,5	159	M12	19,4	-	-	30°
TCR-2 - 1 1/2"	240	380	1 1/2" x 1"	9	7	18	18	27	90	43	34	30	100	14	159	M12	19,4	-	-	30°

^{*} Kunststoffausführung


TYP TC

- linearer Kraftverlauf
- Arbeitswinkel > 45° in beiden Drehrichtungen
- einfache Montage von innen und außen möglich
- Verwendung auch bei Temperaturen > 100°C
- unempfindlich gegen Öle und Lösungsmittel
- bessere Fixierung durch 2 (TCR-1) bzw.
 3 (TCR-2) Nuteinstiche an Rückseite des Grundkörpers

AUFTRAGSBEISPIEL

Spanner für Einfach-Kette – Kettenteilung 1/2" – TCP 1 1/2" S. Lieferung ab Lager für Einfach-Ketten. Für Zweifach-Ketten auf Anfrage.

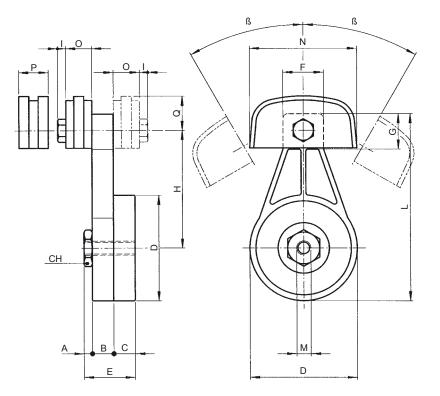
S = Einfach-Kette **D** = Zweifach-Kette

المحتودة Typ TCP

Polyethylenkopf mit niedrigem Reibwert

	Nev min.	vton max.	Teilung x innere Breite	А	В	С	СН	D	Е	F	G	Н	ı	L	M	N	0	Р	Q	ß
Тур ТСР																				
TCP-05 - 3/8"	80	160	3/8" x 7/32"	5	15	15	24	63	35	23	23	75,5	5,5	119	M10	70	20		22	45°
TCP-1 - 3/8"	100	210	3/8" x 7/32"	5	15,5	15,5	24	69	36	30	25	86,5	7	134	M10	70	20	20	22	45°
TCP-1 - 1/2"	100	210	1/2" x 5/16"	5	15,5	15,5	24	69	36	30	25	86,5	7	134	M10	70	20	20	22	45°
TCP-1 - 5/8"	120	240	5/8" x 3/8"	5	15,5	15,5	24	69	36	30	25	86,5	7	134	M10	90	22	25	29	45°
TCP-2 - 5/8"	200	350	5/8" x 3/8"	7	18	18	27	90	43	34	30	100	8	159	M12	90	22	25	29	30°
TCP-2 - 3/4"	200	350	3/4" x 7/16"	7	18	18	27	90	43	34	30	100	8	159	M12	90	22	30	29	30°
TCP-2 - 1"	240	380	1" x 17 mm	7	18	18	27	90	43	34	30	100	8	159	M12	110	25	45	35	30°

AUFTRAGSBEISPIEL


Spanner für Einfach-Kette – Kettenteilung 1/2" – TCP 1-1/2" S. Lieferung ab Lager für Einfach-Ketten.

Für Zweifach-Ketten auf Anfrage.

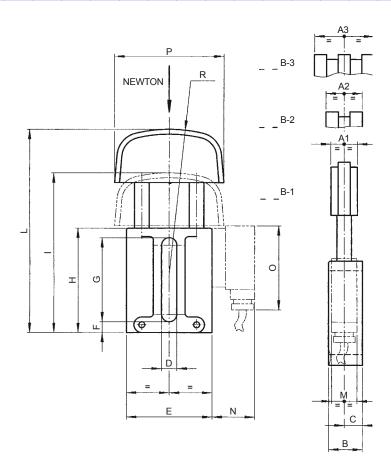
S = Einfach-Kette **D** = Zweifach-Kette

HINWEIS

Montagehinweis Spanner Typ TC → Seite 97

TO Serie TO Serie

Automatische Kettenspanner


	Nev	vton	Teilung x																	
	min.	max.	innere Breite	A1	A2	А3	В	С	D	Е	F	G	Н	I	L	M	N	0	Р	R
Тур ТО																				
TO-1 - 3/8"	130	250	3/8" x 7/32"	20	20	25	23	12,5	11	56,2	7	58	74	110	138	-	-	-	70	100
TO-1 - 1/2"	130	250	1/2" x 5/16"	20	20	25	23	12,5	11	56,2	7	58	74	110	138	-	-	-	70	100
TO-1 - 5/8"	130	250	5/8" x 3/8"	20	25	41,5	23	12,5	11	56,2	7	58	74	110	138	-	-	-	70	100
TO-2 - 5/8"	180	420	5/8" x 3/8"	22	25	41,5	28	15	12,5	70,5	9	70	87	133	169	-	-	-	90	120
TO-2 - 3/4"	180	420	3/4" x 7/16"	22	30	49	28	15	12,5	70,5	9	70	87	133	169	-	-	-	90	120
TO-3 – 1"	300	650	1" x 17 mm	25	45	78	33	17,5	14,5	82	9	86	104	160	202	21	35	70	110	140
TO-3 – 1 1/4"	300	650	1 1/4" x 3/4"	25	54	90	33	17,5	14,5	82	9	86	104	160	202	21	35	70	110	140
TO-3 – 1 1/2"	300	650	1 1/2" x 1"	25	71	119	33	17,5	14,5	82	9	86	104	160	202	21	35	70	110	140
TO-05 – 3/8"	95	190	3/8" x 7/32"	20	-	-	25	12,5	9	60	10	53	75	120	149	22	48	1,5	70	100
TO-05-DP1 - 3/8"	95	190	3/8" x 7/32"	20	20	-	25	12,5	9	60	10	53	75	111	139	22	48	1,5	70	100
TO-05-DP1 – 1/2"	95	190	1/2" x 5/16"	20	20	-	25	12,5	9	60	10	53	75	111	139	22	48	1,5	70	100
TO-05-DP1 - 5/8"	95	190	5/8" x 3/8"	20	25	-	25	12,5	9	60	10	53	75	111	139	22	48	1,5	70	100

AUTOMATISCHE KETTENSPANNER

Automatische Kettenspanner kompensieren die Kettenlängung. Die Spanner der Serie TO-AT-ET haben eine lange Lebensdauer und sind aus hochwertigem Material hergestellt. Die Betriebshöchsttemperatur beträgt 65°C (100°C für den ET-Spanner).

Auf Anfrage produzieren wir:

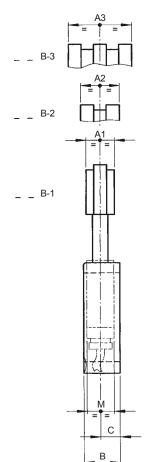
- Ausführung für den
 Nahrungsmittelsektor mit Schraubbolzen
 und Feder aus INOX AISI Stahl 304
- 2. Spezielle Kopfprofile
- 3. Ausführung TO-05 und TO-05 DP1 Grundkörper aus Kunststoff (DELRIN). Leichte Ausführung mit niedrigerer Spannkraft – lieferbar auf Anfrage
- $*\ {\sf Kunstoffausf\"{u}hrung}$

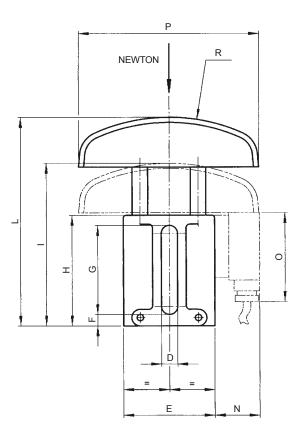
TA Serie

		wton max.	Teilung x innere Breite	A1	A2	А3	В	С	D	Е	F	G	Н	I	L	M	N	0	Р	R
Тур ТА																				
TA-1 - 3/8"	130	250	3/8" x 7/32"	20	20	25	23	12,5	11	56,2	7	58	74	115	143				140	120
TA-1 – 1/2"	130	250	1/2" x 5/16"	20	20	35	23	12,5	11	56,2	7	58	74	115	143				140	120
TA-2 – 5/8"	180	420	5/8" x 3/8"	22	25	41,5	28	15	12,5	70,5	9	70	87	128	164				140	140
TA-2 – 3/4"	180	420	3/4" x 7/16"	22	30	49	28	15	12,5	70,5	9	70	87	128	164				140	140
TA-3 – 1"	300	650	1" x 17 mm	25	45	78	33	17,5	14,5	82	9	86	104	145	187	21	35	70	140	160
TA-3 – 1 1/4"	300	650	1 1/4" x 3/4"	25	54	90	33	17,5	14,5	82	9	86	104	145	187	21	35	70	140	160
TA-3 – 1 1/2"	300	650	1 1/2" x 1"	25	71	119	33	17,5	14,5	82	9	86	104	145	187	21	35	70	140	160
TA-3 – 1 3/4"	300	650	1 3/4" x 31 mm	29,5	-	-	33	17,5	14,5	82	9	86	104	145	187	21	35	70	140	160

SERIE TA

- verschleißfester Spannkopf aus Kunststoff mit niedrigem Reibwert (dynamischer Reibwert 0.06 auf trockenem Stahl)
- Geschliffene, ultrafeste Schraubenbolzen aus Stahl
- Selbstschmierendes Bronzelager für die Achsenbewegung
- geeignet auch für Reversierbetrieb


AUFTRAGSBEISPIEL

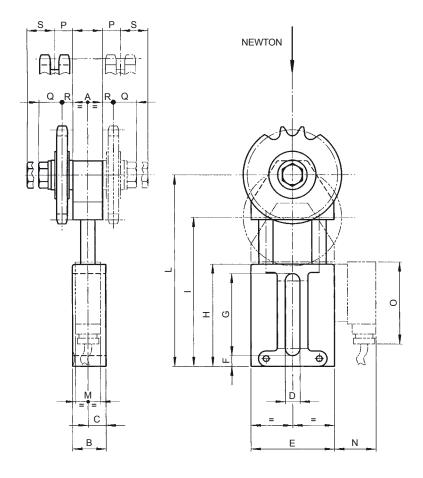

Spanner für Duplex-Kette – Kettenteilung 1/2" = TA 1 - 1/2"-D

 $\mathbf{S} = \text{Einfach-Kette} \quad \mathbf{D} = \text{Zweifach-Kette}$

T = Dreifach-Kette

N.B.: Die Spanner sind für Ketten nach ISO geeignet.

उ₩ाड[®] ETR Serie


mit gelagerten Kettenradscheiben

		vton max.	Teilung x innere Breite	Z	А	В	С	D	Е	F	G	Н	ı	L	M	N	0	Р	Q	R	S
Typ ETR																					
ETR1 - 3/8"	130	250	3/8" x 7/32"	21	20	23	12,5	11	56,2	7	58	74	99	127	-	-	-	11	19,7	9,2	18
ETR1 - 1/2"	130	250	1/2" x 5/16"	16	20	23	12,5	11	56,2	7	58	74	99	127	-	-	-	12,5	19,7	9,2	16,5
ETR2 - 5/8"	180	420	5/8" x 3/8"	17	25	28	15	12,5	70,5	9	70	87	127	163	-	-	-	15,3	19,7	9,2	21,8
ETR2 - 3/4"	180	420	3/4" x 7/16"	15	25	28	15	12,5	70,5	9	70	87	127	163	-	-	-	17,7	19,7	9,2	19,4
ETR3 – 1"	300	650	1" x 17 mm	12	30	33	17,5	14,5	82	9	86	104	151	193	21	35	70	26,4	19,4	8,9	26,4
ETR3 - 1 1/4"	300	650	1 1/4" x 3/4"	9	30	33	17,5	14,5	82	9	86	104	151	193	-	-	-	29,7	19,4	11,5	37,5

SERIE ETR

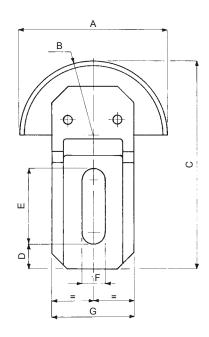
- Wartungsfrei
- Spannkraft auf Wunsch änderbar
- unempfindlich gegen Öle und Lösungsmittel
- einfache Montage und Nachbestellung
- geeignet auch für Reversierbetrieb

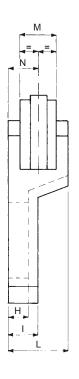
TF Serie TF Serie

Kunststoff - Spannkopf

	Teilung x innere Breite	А	В	С	D	E	F	G	Н	I	L	N	R	A1	A2	A3
Typ TF																
TF 1	3/8"	69	35	138	10	73	10,5	40	10	15	30	15	15	20	20	
TF 1	1/2"	69	35	138	10	73	10,5	40	10	15	30	15	15,25	20	20,5	
TF 2	5/8"	89	45	164	12	85	12,5	50	12	18	36	18	19,5	22	25	
TF 2	3/4"	89	45	164	12	85	12,5	50	12	18	36	18	21,75	22	29,5	
TF 3	1"	109	55	173	13	82	12,5	60	14	20	40	20	30,5	25	46	
TF 3	1 1/4"	109	55	173	13	82	12,5	60	14	20	40	20	-	25	-	
TF 3	1 1/2"	109	55	173	13	82	12,5	60	14	20	40	20	-	25	-	

TYP TF


- Verschleißfester Spannkopf aus Kunststoff mit niedrigem Reibwert ($\mu = 0.06$)
- Einfache Montage und Nachstellung
- Verwendung im Temperaturbereich bis 65°C
- geeignet auch für Reversierbetrieb

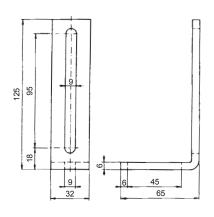

AUFTRAGSBEISPIEL

– Spanner für doppelte Kette / – Kettenteilung 1/2" = TF 1-1/2" – D

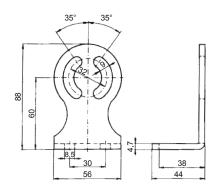
S = Einfach-Kette **D** = Zweifach-Kette **T** = Dreifach-Kette

Die Spanner sind für Ketten nach den ISO-Bestimmungen geeignet.

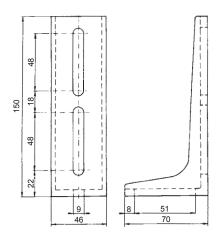
Swis Kettenspanner AMS



Ü, inis Kez	s), // / / / / / / / / / / / / / / / / /	Spanneinheit	'simesam'	Spannkraff	Spannwegs	Nachstellues	Wage A	Mage B	Sundelemen.	Befestigum of Winkelsungs.	Spanner Kompolet Mit Red
Typ AMS											
G 67	06 B-1	10	21	0-100	0-25	60	47,6	39,4	AMS 11	01	AMS 116
G 67	06 B-1	10	21	0-100	0-25	60	47,6	39,4	AMS 12	02	AMS 126
L 85	08 B-1	10	18	0-100	0-25	60	47,6	39,4	AMS 11	01	AMS 118
L 85	08 B-1	10	18	0-100	0-25	60	47,6	39,4	AMS 12	02	AMS 128
M 106	10 B-1	10	17	0-100	0-25	60	47,6	39,4	AMS 11	01	AMS 1110
M 106	10 B-1	10	17	0-100	0-25	60	47,6	39,4	AMS 12	02	AMS 1210
M 127	12 B-1	20	15	0-300	0-45	40	52,0	40,0	AMS 23	03	AMS 2312
M 1611	16 B-1	20	12	0-300	0-45	40	52,65	41,3	AMS 23	03	AMS 2316

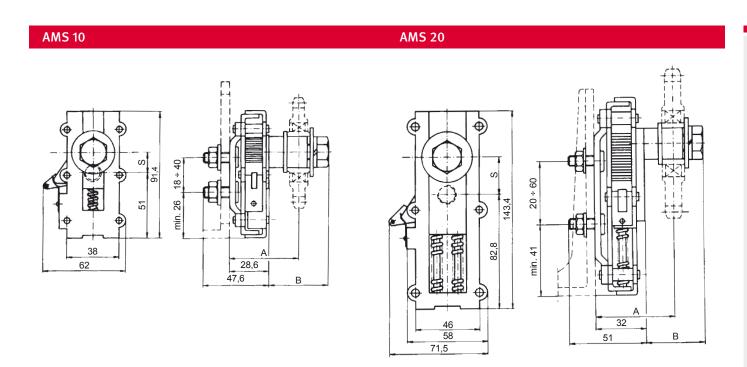

TYP AMS

- automechanische Nachspannung
- gerasterte Rückschlagsicherung
- gleichbleibende Schwingungsdämpfung
- einfache Nachstellvorrichtung
- Wartungsarm


 Unempfindlich gegen Öle und Lösungsmittel

Befestigungswinkel 01

Befestigungswinkel 02



Befestigungswinkel o3

Swis Kettenspanner AMS

Typ TC Montage des Spanners Typ TC

	VARIANTE A	VARIANTE B	RICHTIGE MONTAGE	FALSCHE MONTAGE	
Spanner		Untergestell Spanner	+	+	

97

Kettenratgeber

Regelmäßige Wartung und Schmierung sind Grundvoraussetzung für einen geringen Verschleiß und eine lange Lebensdauer des Kettentriebes. Die Wartungs- und Schmierintervalle des Kettentriebes werden durch die Betriebsbedingungen der Anlage bestimmt. Unser Ketten-Ratgeber gibt Ihnen einen Überblick über unsere Auswahl an iwis Grund-Kettenschmierstoffen und die empfohlenen Nachschmierstoffe. Alle iwis Erstschmierstoffe sind eigens für iwis entwickelt und in ihrer Zusammensetzung optimal auf das Produkt Kette abgestimmt. Unser Technisches Service Team gibt Ihnen gerne weitere Hilfestellung der Wartung und Handhabung. Wir beraten Sie gerne!

Effiziente Schmierung der 🎞 Ketten

iwis Erstschmierstoffe

UNSERE KETTENSCHMIERSTOFFE - DIE OPTIMALE LÖSUNG FÜR JEDEN ANWENDUNGSFALL

Eine ausreichende und wirksame Schmierung der Kettengelenke erhöht die Lebensdauer der Ketten um ein Vielfaches. Der richtig ausgewählte Schmierstoff und das passende Schmierverfahren gewährleisten gute Verschleißminderung, ausreichenden Korrosionsschutz und optionale Dämpfeigenschaften.

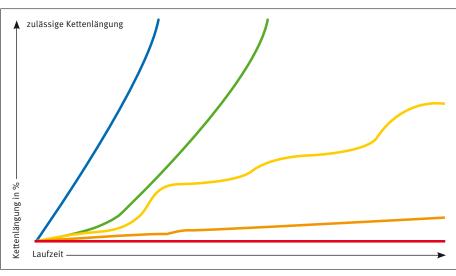
Unzählige Versuche auf speziell entwickelten Testgeräten und eine enge Zusammenarbeit mit renommierten Schmierstoffherstellern machen iwis zu dem kompetenten Partner für alle Fragen der Kettenschmierung.

Nach exakt festgelegten und ständig überwachten Verfahrensabläufen werden alle iwis Ketten ausreichend und zuverlässig mit hochwertigen Erstschmierstoffen versorgt und einbaufertig geliefert. Alle Erstschmierstoffe sind eigens für iwis entwickelt und in ihrer Zusammensetzung optimal auf das Produkt Kette zugeschnitten.

UNSERE ERSTSCHMIERSTOFFE IM ÜBERBLICK

- IP2 die bewährte
 Standardschmierung mit guter
 Schmierwirkung und hervorragendem Korrosionsschutz
 für Anwendungen aller Art von
 -10° bis +80 °C
- IP3 die Langzeitschmierung bei höheren Geschwindigkeiten, Belastungen und Temperaturen. Durch extrem hohe Viskosität absolut abschleuderfest über den gesamten Temperaturbereich von –5° bis + 150 °C
- IPW das grifffeste Hochleistungsschmierwachs mit sehr hohem Verschleißschutz ermöglicht wesentlich längere Nachschmierintervalle. Als »Sperrfett« in allen Umgebungen mit Staub und Puder problemlos einsetzbar. Temperaturbereich –10° bis +80 °C
- IP4 der thermisch stabile Hochtemperaturschmierstoff mit gutem Verschleiß- und Korrosionsschutz. Geringe Verdampfungsrate im Temperaturbereich 0° bis +250°C. Keine Rückstandsbildung bei Temperaturen höher +250°C
- IP9 der Korrosionsschutz zur Konservierung mit sehr geringer Schmierwirkung. Temperaturbereich 0° bis +70 °C

- **IP14** die Trockenschmierung bei langsam laufenden Kettentrieben und geringen bis mittleren Belastungen. Einbrenngleitlack für Anwendungen von –70° bis +250 °C
- IP16 die Lebensmittelschmierung mit gutem Verschleiß- und Korrosionsschutz. Erfüllt die hohen Anforderungen der USDA-H1 und LMBG Kontakt mit Lebensmittel zugelassen. Temperaturbereich –20° bis +130 °C
- IPO die Tieftemperaturschmierung mit optimaler Schmierwirkung. Fließfähig im gesamten Temperaturbereich von -45° bis +150°C


Effiziente Schmierung der 🎞 Ketten

Nachschmierstoffe

NACHSCHMIERUNG

Die Lebensdauer einer Kette hängt entscheidend von der richtigen und ausreichenden Nachschmierung ab. Durch die oszillierenden Bewegungen des Kettengelenkes verbraucht sich der Erstschmierstoff je nach Betriebsbedingungen im Laufe der Zeit. Bei regelmäßiger Nachschmierung befindet sich das Kettengelenk überwiegend im Bereich der Mischreibung. Fehlende Schmierung oder unsachgemäß gewählte Nachschmierstoffe verursachen Grenzreibung, was zu Passungsrostbildung und erhöhtem Kettenverschleiß führt.

Für eine wirkungsvolle Nachschmierung ist die Auswahl des Schmierstoffes und die richtige Schmiertechnik entscheidend.

Trockenlauf: Kette ohne Erst- und Nachschmierung Erstschmierung ohne Nachschmierung Nachschmierintervall zu lang zeitweiliger Trockenlauf unsachgemäße Nachschmierung optimale Nachschmierung

EMPFOHLENE NACHSCHMIERSTOFFE FÜR UNSERE ERSTSCHMIERUNGEN

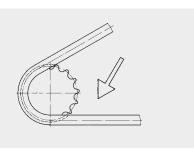
- **IP2** iwis VP6 Kombi superplus (Spray) Alle handelsüblichen Kettenöle
- IP3 iwis VP6 Kombi superplus (Spray) Hochleistungs-Kettenöle verschiedener Hersteller, z.B. STRUCTOVIS HD-Reihe von Klüber Lubrication
- IPW iwis VP6 Kombi superplus (Spray) Hochleistungs-Kettenöle verschiedener Hersteller, z.B. STRUCTOVIS HD-Reihe von Klüber Lubrication
- IP4 iwis VP6 Kombi superplus (Spray)
 Hochtemperatur-Kettenöle
 verschiedener Hersteller bei
 Temperaturen über +250 °C
 mit Festschmierstoffanteilen

- **IP9** iwis VP6 Kombi superplus (Spray) Alle herkömmlichen Kettenöle
- **IP14** iwis VP6 Kombi superplus (Spray) Kettenöle mit Festschmierstoffanteilen wie Graphit, MOS2
- IP16 Lebensmittelechte Kettenöle z. B. Klüberoil 4 UH 1-Reihe
- **IPO** Tieftemperatur-Kettenöle verschiedener Hersteller

NACHSCHMIERSTOFFE

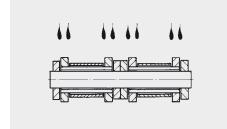
sollten – je nach Einsatzfall – folgende Eigenschaften erfüllen:

- Haftfähigkeit
- · Verträglichkeit mit Erstschmierstoff
- Korrosionsschutz
- Tragfähigkeit des Schmierfilms
- Kriechfähigkeit
- Notlaufschmierung
- hohe Viskosität und gleichzeitig Fließfähigkeit
- Hochtemperaturstabilität
- Wasserabweisung
- Medienbeständigkeit etc.

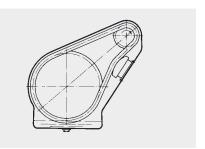

Erstschmierstoff
Empfehlung Nachschmierstoffe

Effiziente Schmierung der 🎞 Ketten

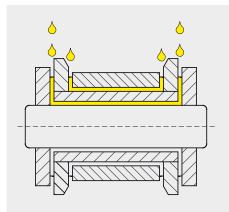
Schmiertechniken


SCHMIERUNG VON HAND

mittels Pinsel, Ölkanne oder <u>Sprühdose</u> bei langsam laufenden Kettentrieben. Das bewährte iwis VP6 Kombi Superplus Kettenspray zeichnet sich durch folgende Eigenschaften aus:


- synthetischer Hochleistungs-Kettenschmierstoff
- optimale Schmierwirkung und Haftung
- sehr gute Kriechfähigkeit
- für Normal- und Hochtemperaturanwendungen bis +250 °C
- hervorragender Korrosionsschutz
- auch für O-Ringketten gut geeignet

TROPFSCHMIERUNG



mittels Tropföler, automatischer Schmierstoffgeber oder Zentralschmiereinheiten bei mittleren Kettengeschwindigkeiten.

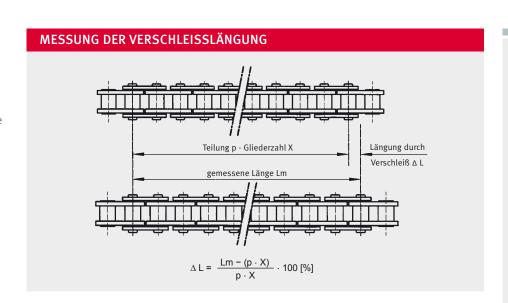
ÖLBADSCHMIERUNG

mittels geschlossener Kettenkasten und ggfs. zusätzlicher Schleuderscheibe bei schnell laufenden Kettentrieben.

Das Schmierprodukt muss in das Kettengelenk eindringen können. Um das sicherzustellen, sollte der Schmierstoff gezielt in den Spalt zwischen Innen- und Außenlaschen eingebracht werden.

ALLGEMEINE HINWEISE

Vor der Nachschmierung sollte eine Reinigung des Kettentriebes mittels Bürste erfolgen, um den Zutritt des Schmiermittels zu ermöglichen. Zusätzlich kann die Oberfläche der Kette mit Reinigungsbenzin oder Petroleum gesäubert werden. Ein völliges Tauchen und Auswaschen ist nicht empfehlenswert.


Verbindungsglieder (z.B. Steckglieder) sind bei separater Lieferung nur rostschutzgetaucht und müssen beim Einbau gefettet werden.

Bei Lieferung zusammen mit den Ketten sind die Verbindungsglieder mit dem gleichen Schmierstoff wie die Ketten versehen.

Perfekte Wartung der VIS® Kettentriebe

Regelmäßige Wartung und Schmierung sind Grundvoraussetzungen für geringen Verschleiß und lange Lebensdauer des Kettentriebes. Die Betriebsbedingungen (Zugkräfte, Temperaturen, Verschmutzungen, aggressive Medien) bestimmen die Wartungs- und Schmierintervalle sowie die darauf abgestimmte Nachschmierung.

WARTUNG

Bei einer regelmäßigen Sichtkontrolle sollte besonders auf Verschleißlängung, Spannung, Schmierzustand und Verschleißerscheinungen durch Spurfehler geachtet werden.

Kontrolle der maximal zulässigen **Verschleißlängung:**

Die Länge einer Kette ist durch die Teilung p und die Gliederzahl X definiert. Im Laufe der Zeit erfolgt eine Längung durch Verschleiß, die normalerweise auch im eingebauten Zustand gemessen werden kann. Der Unterschied zur genauen Messung unter vorgeschriebener Messlast ist gering, wenn über eine möglichst große Anzahl von Kettengliedern, ca. 20 bis 40, gemessen wird.

Ein Austausch der Kette sollte erfolgen bei:

- max. 3% bei einfachen Trieben
- ca. 2% bei Hochleistungstrieben
- ca. 1% bei Sonderanwendungen (Synchronlauf, Positionierung)

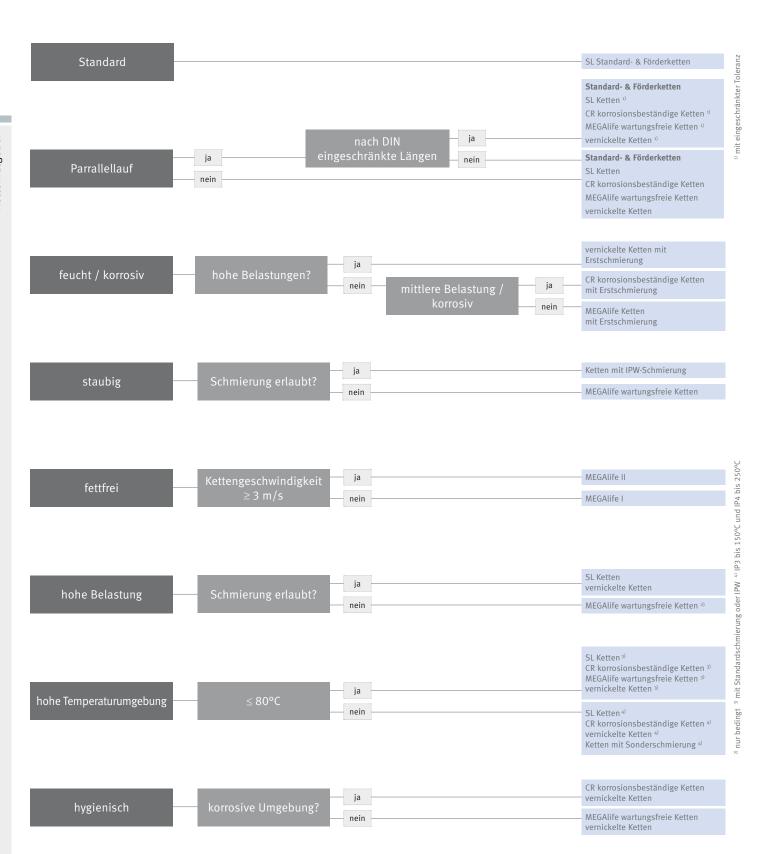
Ein kontrolliertes Nachspannen der Kette wirkt sich positiv auf die Lebensdauer aus. Dabei sollte ein zu starkes Nachspannen ebenso vermieden werden wie ein zu großer Durchhang. Als Richtwert können ca. 5% der tatsächlich auftretenden Kettenzugkraft ange-setzt werden. Bei parallel laufenden Ketten müssen beide Stränge gleichmäßig gespannt werden, am besten über eine gemeinsame Welle für das rechte und linke Kettenrad. Wenn keine automatische Spannvorrichtung vorhanden ist, muss die Kette von Hand nachgestellt werden, z.B. durch Verändern des Achsabstandes. Eine weitere Möglichkeit bei längeren Trieben ist das Verkürzen der Kette durch Herausnehmen einzelner Glieder, sofern die Verschleißlängung noch relativ gering ist. Zum Zerlegen und Verbinden von Rollenketten gibt es für die beiden unterschiedlichen Bolzenformen, abgesetzt oder glatt, verschiedene Werkzeuge.

Vor der **Nachschmierung** sollte eine **Reinigung** der Ketten (und Kettenräder) von stark anhaftenden Verunreinigungen erfolgen, um den Zutritt des Schmiermittels über die Laschenrücken zu ermöglichen.

Der grobe Schmutz wird mit einer harten Bürste entfernt. Zusätzlich kann die Oberfläche der Kette, z.B. mit Waschbenzin, gesäubert werden. Ein völliges Tauchen und Auswaschen, z.B. mit Petroleum, ist nicht empfehlenswert, da sich das Reinigungsmittel nicht restlos verflüchtigt und so das Eindringen des neuen Schmierstoffes verhindert.

Bei der **Sichtkontrolle** sollte auch auf Anlauf- und Verschleißerscheinungen aufgrund von Spurfehlern geachtet werden. Die werden durch nicht fluchtende oder schrägstehende Kettenräder oder nicht parallele Ketten verursacht.

Richtwerte für die Fluchtungsabweichung je 100 mm Achsabstand:


- 0,1 mm bei schnellaufenden Trieben und kurzen Achsabständen
- 0,2 mm bei langsam laufenden Trieben.

Auch die Kettenräder sollten immer überprüft und ggfs. durch neue ersetzt werden. Neue Ketten auf abgenutzten Kettenrädern werden schneller unbrauchbar.

ᠫ₩ɪ͡s® Ketten-Leitfaden

Welche Anwendung erfordert welchen Typ?

ত্যু Ketten-Leitfaden

Wichtige Informationen und Hinweise

WICHTIG

Der folgende Leitfaden unterstüzt Sie bei der Entscheidung der Kettenauswahl. Aber beachten Sie bitte, dass jede Anwendung individuell ist. Keinesfalls sollten Sie das Ergebnis als Grundlage einer Bestellung verwenden. Wenden Sie sich hierzu bitte an unsere kompetenten Mitarbeiter, die Ihnen gerne ein individuelles Angebot unterbreiten. Wir übernehmen daher keinerlei Gewähr oder Haftung.

KETTENBERECHNUNGSPROGRAMM

Als Unterstützung bei der individuellen Kettentriebauslegung bzw. der Vorauswahl einer geeigneten Kette, stellt Ihnen iwis eine spezielle PC-Software zur Verfügung. Fragen Sie unser Customer Service Team!

INFORMATIONEN ZU...

- SL-Ketten
 - → Seite 12 und 18
- vernickelte Ketten
 - → Seite **12**
- MEGAlife wartungsfreie Ketten
 → Seite 30
- CR korrosionsbeständige Ketten
 → Seite 40

KETTENSTANDARDLÄNGEN

- 5 m
- 10 m • 10 Fuß

Abgepasste Längen können entweder offen oder geschlossen geliefert werden. Sonderlängen (z.B. auf Haspeln) sind auf Anfrage und abhängig vom Kettentyp verfügbar.

Bei einem evtl. erforderlichen exakten Ketten-Parallellauf, insbesondere vor allem bei Förderketten mit gegenüberliegenden Mitnehmer- oder Winkellaschen, können in der Länge genau aufeinander abgestimmte und gebündelte oder entsprechend gekennzeichnete Kettenstränge gefertigt

UNSERE FÖRDERKETTEN

und geliefert werden.

Zuschläge werden berechnet für:

- abgepasste Längen
- Sonderschmierungen
- Kurzlängen
- Sondertoleranzen

ZUSCHLÄGE

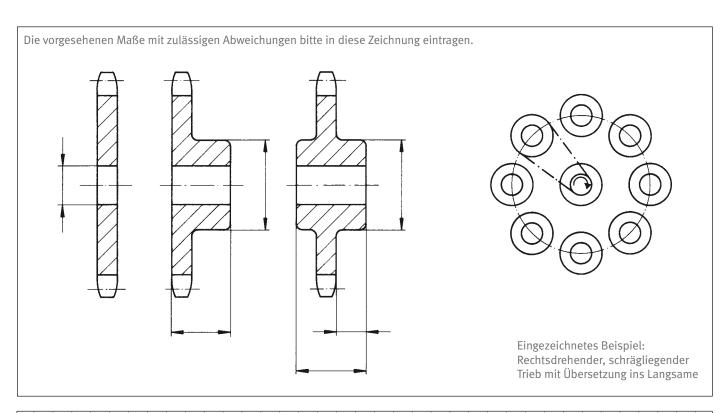
- Sonderbeschichtungen
- vernickelte Ketten und Einzelteile Preise auf Anfrage

SONDERKETTEN

FÜR EINZELTEILE GILT FOLGENDE MINDESTABNAHMEREGELUNG

Sonderketten nach Kundenzeichnungen auf Anfrage. Mindestabnahmemenge für Sonderketten ist 50 m.

Größe	Innenglied / Außenglied / Steckglied	Gekröpftes Glied
6 mm – 3/4"	je 20 Stück	je 10 Stück
1" - 1 1/4"	je 10 Stück	je 10 Stück
Zweifach – Dreifach	je 5 Stück	je 5 Stück
ab 1 1/4"	je 1 Stück	je 1 Stück



TWIS Fragebogen für Kettentriebe

Anfrage der Firma:	Datum:
Anschrift:S	Sachbearbeiter:
Telefon:	
Antrieb	
Elektro-, Hydraulik-, Pneumatik-, Verbrennungsmotor (2, 4 oder (6 Zyl.)?
Leistung?	kW
Drehzahl?	min ⁻¹
Drehmoment max.?	bei n = min ⁻¹ Nm
Antriebsleistung gleichbleibend oder Spitzenlast?	
Lauf gleichmäßig, schwankend oder stoßartig?	
Einschaltdauer, Taktbetrieb?	
Sind stoßdämpfende Übertragungselemente vorhanden (Rutsch	kupplung)?
Abtrieb	
Art der getriebenen Maschine?	
Drehzahl?	min ⁻¹
Erforderliche Leistung? Im Anlauf – normal – maximal	kW
Belastung gleichmäßig, schwankend oder stoßartig?	
Drehrichtung gleich oder wechselnd? (in Skizze kennzeichnen)	
Kettentrieb	
Achsabstand	mm
Ist eine konstruktive Änderung des Achsabstandes möglich?	±
Spannmöglichkeit? (Verstellbarkeit, Spannrad, Spannschiene)	
Kann sich der Achsabstand während des Laufs ändern? z.B. Hint Motorrad	erradfederung am
Gewünschte bzw. vorhandene Übersetzung?	
Achsen horizontal oder vertikal?	
Kann der Trieb gegen Schmutz und Staub geschützt oder ganz ge	ekapselt werden?
Welche Schmierung ist möglich? (Von Hand, Tropf-, Ölbad-, Druc	kschmierung)
Äußere Einflüsse? (Temperatur °C, Staub, Feuchtigkeit, Fasern)	
Kette	
Vorgesehene oder bereits eingebaute Kette?	
Soll die Kette einen schon vorhandenen Antrieb ersetzen?	
Höchstzulässige Breite der Kette?	mm
Kettenräder	
Zähnezahlen?	$z_1 = z_2 =$
Höchtzulässiger Außendurchmesser einschließlich Kette?	mm
Kettenrad als Scheibe oder mit Nabe, vorgebohrt oder mit Fertigl	bohrung?

<u> স্থার</u> Fragebogen für Kettentriebe

Unsere Standorte

Deutschland

iwis antriebssysteme GmbH & Co. KG Albert-Roßhaupter-Straße 53 81369 München Tel. +49 89 76909-1500 Fax +49 89 76909-1229 sales@iwis.com

Frankreich

iwis systèmes de transmission 10, rue du Luxembourg 69330 Meyzieu Tel. +33 4374515-70 Fax +33 4374515-71 salesfr@iwis.com

USA

iwis drive systems, LLC Building 100, 8266 Zionsville Road Indianapolis, IN 46268 USA Tel. +1 317 821-3539 Fax +1 317 821-3569 sales@iwisusa.com www.iwisusa.com

Deutschland

iwis antriebssysteme GmbH Essener Straße 23 57234 Wilnsdorf Tel. +49 2739 86-0 Fax +49 2739 86-22 sales-wilnsdorf@iwis.com

Schweiz

iwis AG Kettentechnik Bahnweg 4 (Postfach) 5504 Othmarsingen Tel. +41 62 8898999 Fax +41 62 8898990 info@iwis-ketten.ch

Kanada

iwis drive systems, Inc. # 22-20881-87th Ave., Langley B.C. V1M 3X1 Tel. +1 778-298-3622 Fax +1 778-298-7219 salesca@iwisusa.com www.iwisusa.com

Deutschland

iwis agrisystems Schützenweg 5 36205 Sontra Tel. +49 5653 9778-0 Fax +49 5653 9778-26 agrisystems@iwis.com

Italie

iwis antriebssysteme Italia Tel. +39 340 9296142 Fax +49 89 76909 491647 salesit@iwis.com

Brasilien

iwis ketten correntes do brasil Ltda. Rua Ella Muhlemann, 200 Itapecerica da Serra – São Paulo Bairro Ressaca – 06850.000 Tel. +55 11 46663927 Fax +55 11 46663927 salesbr@iwis.com

England

iwis drive systems Ltd. Unit 8c Bloomfield Park Bloomfield Road, Tipton West Midlands, DY4 9AP Tel. +44 12 15213600 Fax +44 12 15200822 salesuk@iwis.com

China

iwis drive systems Co. Ltd. Room #717, German Center 88 Keyuan Road Zhangjiang, Pudong Shanghai 201203, R.O.C. Tel. +86 21 289863-88 Fax +86 21 289863-90 salescn@iwis.com

Brasilien

iwis sistemas de transmissão Av. Comendador Aladino Selmi, 5216 Campinas – São Paulo – 13069.096 Tel. +55 11 9484-0593 Fax. +55 11 4533-1787 salesbrazil@iwis.com

www.iwis.com

Ihr Partner vor Ort